

Solubility products And

- For poorly soluble materials such as silver chloride and barium sulfate the concept of the solubility product can be used. Bo Soy
- The following equilibrium exists in solution between crystalline silver chloride AgCl_c and ions in solution:

$$AgCl_c \rightarrow Ag^+ + Cl^-$$

• An equilibrium constant *K* can be defined as:

$$K = \frac{[Ag^+][Cl^-]}{[AgCl_c]}$$

• At saturation the concentration of the crystalline silver chloride [AgCl_c] is essentially constant and the solubility product, K_{sn} , may therefore be written:

$$K_{\rm sp} = [Ag+][Cl-]$$

Solubility of slightly soluble electrolytes

Table 5.7 Solubility products of some inorganic salts

Compound	$K_{\rm sp}$ (mol ² dm ⁻⁶)	
AgCl Al(OH)₃ BaSO₄	1.25×10^{-10} 7.7×10^{-13} 1.0×10^{-10}	1" 20 Mg

- The solubility product equation is not applicable to freely soluble salts (such as NaCl) and losses accuracy for sparingly soluble (1 part in 30-100 parts) or if other salts are present.
- When other salts are present activity rather than concentration should be used

Solubility products

- As in the case of other equilibrium expressions the concentration of each ion is raised to a power equal to the number of ions appearing.
- Thus, for Al(OH)₃

$$Al(OH)_{3 \text{ solid}} \rightarrow Al^{+3} + 3OH^{-}$$

 $K_{sp} = [Al^{+3}][OH^{-}]^{3}$

Solubility products

- Example: Calculate the solubility of AgBr in water in grams per المواتبج والمواتبج المواتبج المواتبج المواتبج المواتبج والمواتبج المواتبج المواتبج المواتبج والمواتبج والمواتبج والمواتبج والمواتبج المواتبج والمواتبج والمواتب والموات

$$AgBr(s) \Leftrightarrow /Ag^{+}(aq) + / Br(aq)$$
 | $Ag^{+}(aq) + / Br(aq)$

We then write the solubility product expression for this reaction.

$$Ksp = [Ag+][Br-] = 5.0 \times 10^{-13}$$

• Because there is no other source of either ion in this solution, the concentrations of these ions at equilibrium must be the same.

$$[Ag^+] = [Br^-]$$

- Substituting this equation into the K_{sp} expression gives the $[Ag^{+}]^{2} = 5.0 \times 10^{-13}$
- Taking the square root of both sides of this equation gives the equilibrium concentrations of the Ag⁺ and Br⁻ ions?

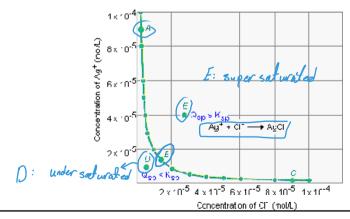
$$[Ag^+] = [Br^-] = 7.1 \times 10^{-7} M$$

consider Br - Ast e là sp value de se Br come Agt in Filiso و مع نفس الهية عني كاننا بندي رعم و احد تربيع تمام اله اله اله اله عنه العصة عنهم رربيع = 13-10 . ى طي بد نامزن عنه - 13 كالها -- نامذالجنار وبطللي ال-17/17 تم اله

Solubility products: common ion effect

- The presence of other sources of the same ions like Cl- or Ag+ reduces the solubility of AgCl.
- Because

$$[Ag+][Cl-]>Ksp$$

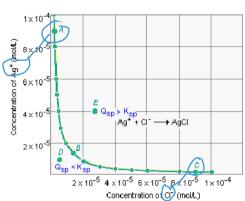

AgCl precipitates until [Ag+][Cl-]=Ksp

• In some cases the solubility increases when a common ion is added this is due to the formation of complexes with the compound that are soluble.

Solubility products: common ion effect

Saturated solution of AgCl to which NaCl has been added:

• The figure below shows a small portion of the possible combinations of the Ag+ and Cl- ion concentrations in an aqueous solution. Any point along the curved line in this graph corresponds to a system at equilibrium, because the product of the Ag+ and Cl- ion concentrations for these solutions is equal to Ksp for AgCl.



Curve Us die s' equillibrium shide

Solubility products: common ion effect

Saturated solution of AgCl to which NaCl has been added:

- Point A represents a solution at equilibrium that could be produced by dissolving two sources of the Ag+)ion such as AgNO3 and AgCl in water.
- Point B represents a saturated solution of AgCl in pure water, in which the [Ag+] and [Cl-] terms are equal.
- Point C describes a solution at equilibrium that was prepared by dissolving two sources of the Cl-ion in water, such as NaCl and AgCl.

Solubility problems in formulation

Mixtures of acidic and basic compounds form salt but with low solubility

then form

- e.g. Septrin infusion
- Sulfamethoxazole is a weakly acidic substance and trimethoprim is a weakly basic one.
- consequence, in an ordinary aqueous solution sulfamethoxazole and trimethoprim demonstrate a high degree of incompatibility and mutual precipitation occurs on mixing.
- To optimize mutual dissolution, an aqueous solution which includes 40% propylene glycol is utilized in the formulation of the infusion. Concent no ted - كا يعطوه المريمة المنطقة م
- On dilution, the infusion becomes less stable and at the recommended 1 in 25 dilution stability is about 7 hours.

cosolvent with normal saline

اكمفتص.

عندما حادثين عنير قا للان اللم متزاج مع نصه (زي + حاء) وضعت صادة محت ساء بامتزا جمهم (خل) دهاي المادة تعذي بين الطبقتين

e.g. emulsion
oil water gun
preservative

Partition coefficient

Pharmaceutical applications

The movement of molecules from one phase to another is called partitioning. Examples of the process include:

- •The absorption and distribution of drug in the body is affected by partitioning between aqueous phases and lipid biophases
- •Preservative molecules in emulsions partitioning between the aqueous and oil phases
- •Antibiotics partitioning into microorganisms
- •Drugs and preservative molecules partitioning into the plastic of containers or giving sets
- •Extraction from crude drugs.

المستخدام ماء الحمندة

Partition coefficient

- If a substance (liquid or solid) is added to a mixture of two immiscible liquids, it will distribute itself between the two phases in a definite concentration ratio.
- The distribution of the solute between the two phases is represented by the partition coefficient or distribution coefficient, P, defined as the ratio of the solubility in the nonaqueous (oily) phase, C_o to that in the aqueous phase, C_w, i.e.

$$P = C_{0} C_{\overline{w}}$$

26

 $h_{\omega/b} = \frac{C_{\omega}}{C_{\omega}}$ $h_{\omega/b} = \frac{C_{\omega}}{C_{\omega}}$

اله عنقار بسعاد عى الحفلق ب الما متعالم

Partition coefficient

Example

When boric acid is distributed between water and amyl alcohol at 250 C', the concentration in water was found to be 0.0510 mole/liter and in amyl alcohol it was found to be 0.0155 Mole/liter. What is the distribution coefficient?

$$K_{\text{w/o}} = C_{\text{H2O}}/C_{\text{alc}} = 0.0510/0.0155 = 3.29$$

No convention has been established with regard to whether the concentration in the water phase or in the organic phase should be placed in the numerator. Therefore, the result may also be expressed as

$$K_{o/w} = C_{alc}/C_{H2O} = 0.0155/0.0510 = 0.304$$

One should always specify in which of these two ways the distribution constant is being expressed.

8C + oH

Partition coefficient

Octanol as a nonaqueous phase

- Octanol is often used as the <u>nonaqueous phase</u> in experiments to measure the partition coefficient of drugs.
- It most closely simulates the properties of biological fluids.
 Its polarity means that water is solubilised to some extent in the octanol phase (biological membranes are also not simple anhydrous lipid phases).

 It is usual to express the partitioning as log P. The greater the value of log P, the higher the lipid solubility of the solute.

ادع م ادع می ادمین ادمین می انتخامان می است ادع میرین اوی برمیرین اوی برمیرین اوی برمیرین اوی برمیرین اوی برمیرین

Partition coefficient

P > 1 or Log P > 0 implies that the drug has affinity for (lipid) סיר אינים א

P = 1 or Log P = 0 there is equal distribution between the water and oil layer.

P < 1 or Log P < 0 the drug has affinity for water or hydrophilic layer.

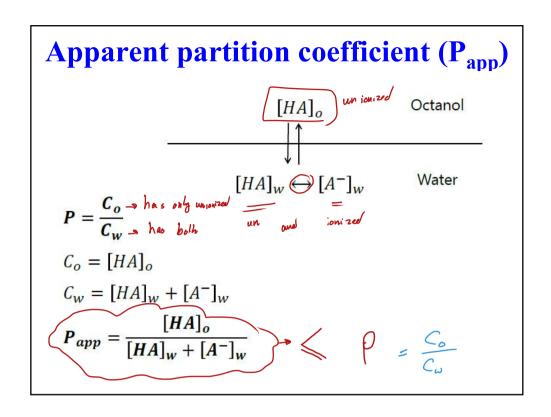
Structure affect the value of partition coefficient P e.g. substituent that increase P value are -alkyl, -aryl, -halogens and substituent that decrease P decrease are -OH, -COOH, -NH2, -O, -CO.

ای خربی ماهه مهماه مهم ترید م دانی خرب عالم، المهم المهم می تعلی م

Apparent partition coefficient (P_{app})

When association and dissociation of drugs occur, the situation becomes more complicated, e.g. benzoic acid-associates in the oil phase and dissociates in the aqueous phase.

Drugs that are weak acids or weak bases ionize in water, depending on their pkas and on the pH of the aqueous phase.


In general, **ionized structures cannot partition in octanol** or other hydrophobic solvents.

P value cannot be used to assess the true distribution of the ionizable drug in the two immiscible phases, simply because its value is dependent on the ionic state of the drug (which in turn depends on pH).

امیر draphdric عبد المحاید کا یود کا یاد کا یود کا

octanol has

water has:

اللهم اغفر لي ولوالدي وللمسلمين والمسلمات والمؤمنين والمؤمنات الاحياء والاموات

اللهم اني اسالك توبة قبل الموت وشهادة عند الموت ومغفرة بعد الموت وأمانا من المار ونصيبًا من الجنة آمين آمين