

تفريغ فيزيكال

Solubility and distribution: اسم الموضوع: phenomena (part 1)

Heba AbuSbeitan :اعداد الصيدلاني/ـة

Solubility and distribution phenomena

Introduction

- A solution can be defined as a system in which molecules of a solute are dissolved in a solvent vehicle.
- Solubility is defined as the maximum solute concentration in a certain solvent at a certain temperature.

Solute concentration < solubility → undersaturated solution

Solute concentration = solubility \rightarrow saturated solution

Solute concentration > solubility → supersaturated solution

- ممكن المرف الناسية بانصا: concentration of saturateal solution

* كازم اذكر اله يو حمد الما المادي عن اله يو المانطين المادي المانطين المانطين المرادة . أن مادة .

اليحكيا كيف بنحضرهم بمادة الفيرست . إما بيخرال للمصااءى أوتفيس الـ المسلط معظم للعاد ذا شيتها بتزيد في الذن نن ن

Expressions of solubility

- The solubility of a drug can be expressed in terms of concentration such as:
 - Molarity

أي رحمة علن أعبر فيها

- Normality
- Molality
- Mole fraction
- percentage (% w/w, % w/v, % v/v).

Expressions of solubility

• The pharmacopeias used the following less specific way to denote to solubility

Descriptive term	Approximate volume of solvent in milliliters per gram of solute	
very soluble	less than 1	
freely soluble	from 1 to 10	
soluble	from 10 to 30	
sparingly soluble	from 30 to 100	
slightly soluble	from 100 to 1000	
very slightly soluble	from 1000 to 10 000	
practically insoluble	more than 10 000	

Prediction of solubility

- Solubility depends on chemical, electrical & structural effects that lead to mutual interactions between the solute and the solvent.
- "like dissolves like".
- A solute dissolves best in a solvent with similar chemical properties. i.e.
 - Polar solutes dissolve in polar solvents. e.g salts & sugar dissolve in water.
 - Non polar solutes dissolve in non polar solvents. Eg.
 naphtalene dissolves in benzene.

Prediction of solubility

- If the solvent is A and the solute B and the forces of attraction are represented by A—A, B—B and A—B, one of three conditions will arise:
- 1. If A—A >> A—B, i.e. the affinity of a solvent molecule for its own kind is markedly greater than its affinity for a solute molecule, the solvent molecules will be attracted to each other and form aggregations from which the solute is excluded (e.g. benzene in water).
- 2. If B—B >> A—B, the solvent wil<u>l not</u> be able to break the binding forces between solute molecules and disperse them (e.g. sodium chloride in benzene).
- 3. If A—B > A—A or B—B, or the three forces are of the same order, the solute will disperse and form a solution.

له hydrophilic solvent المرابع المراب

Polar solvents

- · Polar solvents dissolve ionic solutes and polar substances.
- The solubility of a drug in polar solvent depends on:
- 1. The polarity of the solvent (measured by dielectric constant)
- 2. The ability of the solute to form hydrogen bonds.
 - Water dissolves Phenols, alcohols. aldehydes, ketones, amines, and other oxygen- and nitrogen-containing compounds that can form hydrogen bonds with water
- 3. The ratio of polar to nonpolar groups of the molecule
 - As the length of a nonpolar chain of an aliphatic alcohol increases, the solubility in water decreases (e.g. Straight chain monohydroxy alcohols, aldehydes, and acids with more than 4 carbons cannot enter into the hydrogen-bonded structure of water and hence are only slightly soluble).

Dielectric constant

- A molecule can maintain a separation of electric charge either through induction by an external electric field or by a permanent charge separation within a polar molecule.
- Dielectric constant (relative permittivity) of a material is its (absolute) permittivity expressed as a ratio relative to the permittivity of vacuum.

إذا مُرْسَهِم حلى بعض مساحات معيناً الثيار جمكن ينتقل حو بالفروليك يتلامسول . لكن قابليت الثبار حَس بنقل بتحمّد على طبيعة العادة

Dielectric constant

- Consider two parallel conducting plates, such as the plates
 of an electric condenser, which are separated by some
 medium across a distance <u>r</u> and apply a potential across the
 plates.
- Electricity will flow from the left plate to the right plate through the battery until the potential difference of the plates equals that of the battery supplying the initial potential difference.

 Conductive Parallel Plates Electrical

Dielectric constant

• The *capacitance*, C (in farads), is equal to the quantity of electric charge, q (in coulombs), stored on the plates, divided by the potential difference, V (in volts), between the plates:

 $C = qIV \quad C = \frac{q}{V}$ The conscitones of the condensor depends

- The capacitance of the condenser depends on the type of medium separating the plates as well as on the thickness .

 الك ما استربوا على بعض بصبر في وص أحد المستنال الشعنات التحويات
- When a vacuum fills the space between the plates, the capacitance is C_0 .
- This value is used as a reference to compare capacitances when other substances fill the space.

لك ماكان بين الـ adalas مانة مستقطبات. بعير عندها ورع انطا تتقل المشحنات

Dielectric constant

- If water fills the space, the capacitance is increased, since the water molecule can orientate itself so that its negative end lies nearest the positive condenser plate and its positive end lies nearest the negative plate.
- This alignment provides additional movement of charge because of the <u>increased ease with which electrons can</u> <u>flow between the plates.</u>
- Thus, additional charge can be placed on the plates per unit of applied voltage.

 Conductive Parallel Plates

 Electrical

Dielectric constant

• The capacitance of the condenser filled with some material, C_x , divided by the reference standard C_0 , is referred to as the *dielectric constant*, $1/\varepsilon$:

$$\varepsilon = C_x/C_0$$

 The dielectric constant ordinarily has no dimensions, since it is the ratio of two capacitances.

Vacuum الم	1.0 (by definition)
Metals	ويها الى العالالفاية Infinite
Gases	أمانين (at one atmosphere)
Water	87.9 (0°C) to 55.5 (100°C)
Hexane	1.8865 (20°C)
Cyclohexane	2.0243 (20°C)
Benzene	2.285 (20°C)
Hydrocarbon lubrication oils	2.1 to 2.4 (room temperature)

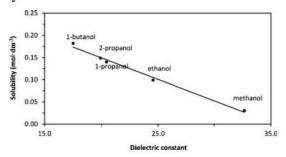
Table 1. Dielectric Constant of Common Materials

solvent I polarity I Estivation in dielectric Il constant constant polarity of solvents Il constant

Dielectric constant

• The capacitance of the condenser filled with some material, C_x , divided by the reference standard C_0 , is referred to as the *dielectric constant*, $1/\varepsilon$:

$$\varepsilon = C_x/C_0$$


• The dielectric constant ordinarily has no dimensions, since it is the ratio of two capacitances.

Vacuum	1.0 (by definition)		
Metals	Infinite		
Gases	1.00xx (at one atmosphere)		
Water	87.9 (0°C) to 55.5 (100°C)		
Hexane	1.8865 (20°C)		
Cyclohexane	2.0243 (20°C)		
Benzene	2.285 (20°C)		
Hydrocarbon lubrication oils	2.1 to 2.4 (room temperature)		

Table 1. Dielectric Constant of Common Materials

Dielectric constant

• The dielectric constants *of* solvent mixtures can be related to drug solubility:

علاقة عكسية

« الا Flavorieid عنه hydrophobic

hydrophilic كانك العلاقة طردية

Solubility of morin flavonoid in alcohols (Journal of Molecular Liquids, Volume 233, 2017)

الdielectric constant بزيديعني بلون عنا polarity أعلى olielectric عنا non polar عنا non polar

Polar solvents

 When additional polar groups are present in the molecule, water solubility increases greatly.

Name	Chemical formula	structure	Solubility s	الذاشيث في ألما
Hexanoic acid	$C_6H_{12}O_2$	ОН	1 g/100 ml	
Adipic acid	$C_6H_{10}O_4$	HOOOH	24 g/100 ml	
Citric acid	$\mathrm{C_6H_8O_7}$	но он он	148 g/100 ml very soluble in water	

Factors influencing solubility

Polar solvents

• Branching of the carbon chain reduces the nonpolar effect and leads to increased water solubility (e.g. Tertiary butyl alcohol is miscible in all proportions with water, whereas n-butyl alcohol dissolves to the extent of about 8 g/l00 mL of water at 20°C).

Polar solvents

Compound	Solubility (molality, m)	Surface area (nm²)	Boiling point (°C)	Structure
n-Pentanol	2.6 × 10 ⁻¹	3.039	أخلى الم المالية الما	~~~°
3-Methyl-1-butanol	3.11×10^{-1}	2.914	131.2	OH
2-Methyl-1-butanol	3.47 × 10 ⁻¹	2.894	128.7	OH
2-Pentanol	5.3 × 10 ⁻¹	2.959	119.0	OH
3-Pentanol	6.15 × 10 ⁻¹	2.935	115.3	OH
3-Methyl-2-butanol	6.67 × 10 ⁻¹	2.843	111.5	7
2-Methyl-2-butanol	1.403	2.825	102.0	✓ OH

حالقت عكسية بين الرئم انظماله واله point كل ما اله وط أعلى معناها موى الأرتباط ما بين الجزيدات في الهواها على وهذا وفن خاشة في العادة أقل

Factors influencing solubility

Nonpolar solvents

- Non polar solvents are unable to reduce the attraction between the ions due to their *low dielectric constants*.
- They are unable to form hydrogen bonds with non electrolytes.
- Non polar solvents can dissolve non polar solutes through weak van derWaals forces
- Example: solutions of oils & fats in carbon tetrachloride or benzene.

Semipolar solvents

- Semipolar solvents, such as ketones can induce a certain degree of polarity in non polar solvent molecules.
- They can act as intermediate solvents to bring about miscibility of polar & non polar liquids.
- Example: acetone increases solubility of ether in water.

Solubility of gases in liquids

- Examples of pharmaceutical solutions of gases include:

 HCl, ammonia water & effervescent preparations containing CO₂ maintained in solution under pressure.
- The solubility of a gas in a liquid is the concentration of dissolved gas when it is in equilibrium with some of the pure gas above the solution.
- The solubility depends on:
 - molecular weight of gas
 - the pressure
 - temperature
 - presence of salts
 - chemical reactions that sometimes the gas undergoes with the solvent

غاز لونات بميل للامغ العخض بنوب في العام 20 يستخدا في العياه الغازيّة

Solubility of gases in liquids

Effect of molecular weight of gas

• The solubility of gas molecules typically increases with increasing molecular weight of gas due to stronger London and Debye forces between gas and solvent molecules.

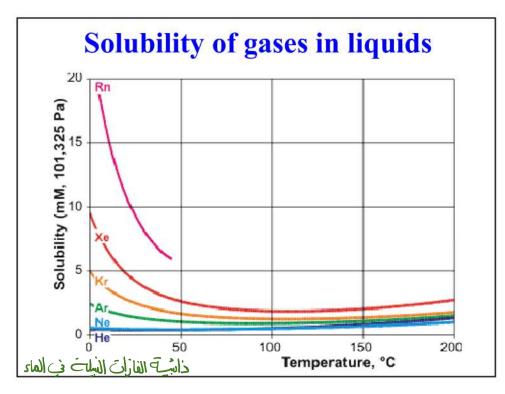
Effect of pressure

• The effect of the pressure on the solubility of a gas is expressed by *Henry's law*, which, states that in a very dilute solution at constant temperature, the concentration of dissolved gas is proportional to the partial pressure of the gas above the solution at equilibrium.

المائلة المسكل عام ذائلية المائلة بالمائلة بالمائلة المائلة المائلة المائلة المائلة المائلة المائلة المائلة الم المائلة المائ

، بتزييد فاشية الغازات بزيادة ضغط الغاز فعق السبائل.

Solubility of gases in liquids


Effect of temperature

 As the temperature increases, the solubility of most gases <u>decreases</u>, owing to the greater tendency of the gas to expand, increased kinetic energy of gas molecules, leading to breaking of intermolecular forces.

Presence of salts

 Gases are often liberated from solutions in which they are dissolved by the introduction of an electrolyte such as sodium chloride and sometimes by a nonelectrolyte such as sucrose. This phenomenon is known as salting out.

- فعليًا العلم رح يتفاعل مع الهي ويبطل في كمية كافية من المي للتفاعل مع الغازات ومصطلح الراح ومع الفارات ومصطلح الراح ومع العالمة بطلقوه على أي خاشية بتقل وليس نقط الغازات

11/2 Egyzlall

Solubility of gases in liquids

Effect of chemical reactions

- Henry's law <u>applies</u> strictly to gases that are only slightly soluble in solution and that do not react in any way in the solvent.
- Gases such as hydrogen chloride, ammonia, and carbon dioxide show deviations as a result of chemical reaction between the gas and solvent, usually with a resultant increase in solubility.
- Accordingly, hydrogen chloride is about 10,000 times more soluble in water than is oxygen.

على معلى منطق فالمبتيعة أعلى عند المستوقع وحاد بعود لل المستوبير المستوبة المستوبة

Solubility of gases in liquids

Gas	Structure*	Polarity	Solubility in water (g/L)	Temperature (°C)
Nitrogen	N≡N	Nonpolar	0.018	40
Oxygen	0=0	Nonpolar	0.035	50
Carbon dioxide	<u>*</u> _* o=c=o	Nonpolar	0.97	45
Ammonia	H H H	Polar	900	10
Hydrogen sulfide	H H	Polar	1,860	40

Solubility of liquids in liquids

- Liquid-liquid systems may be divided into 2 categories:
- 1) Systems showing *complete miscibility such as alcohol & water, glycerin* & alcohol, benzene & carbon tetrachloride.
- Complete miscibility occurs when the adhesive forces between different molecules (A-B) >>cohesive forces between like molecules (A-A or B-B).
- 2) Systems showing *Partial miscibility as phenol and water;* two liquid layers are formed each containing some of the other liquid in the dissolved state.

Effects of substituents

Substituents can influence solubility by affecting the solute molecular cohesion and its interaction with water molecules.

Polar groups such as -OH are capable of hydrogen bonding (high solubility).

(high solubility).

20H & 2 carboylic

E.g. Hydroxy acids, such as tartaric and citric acids, are quite soluble in water because they are solvated through their hydroxyl groups.

Non-polar groups such as -CH₃ and -Cl are hydrophobic (low solubility).

Factors influencing solubility

	Table 5.4 Substituent group classification	
	Substituent	Classification
ا کنن دجود. تین خالدها اهرین کامل hydrophobic تین خالدها اهرین کامل	-CH ₃ -CH ₂ CI, -Br, -F O(CH ₃) ₂ -SCH ₃ -OCH ₂ CH ₃ -OCH ₃ -OCH ₃ -OCH ₃ -NO ₂ -CHO-alddycle group	Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Slightly hydrophilic Slightly hydrophilic Hydrophilic
	-COO <u>H</u> -COO- -NH ₂ -NH ₃ -OH	Slightly hydrophilic Very hydrophilic Hydrophilic Very hydrophilic Very hydrophilic

- من خلال معرفة هاي الجروبات على الجزيدًات بإمكاننا نتنباً كيف ذائب الجزيء مع تكون بالحي

Table 5.5 The effect of substituents on solubility of acetanilide derivatives in water

Derivative	X	Solubility (mg dm ⁻³)
NHCOCH ₃	Н	6.38
	Methyl	1.05
	Ethoxyl	0.93
	Hydroxyl	13.9
	Nitro	15.98
X	Aceto	9.87

Solubility of solids in liquids

Effects of substituents

The position of the substituent on the molecule can affect the solute molecular cohesion and its interaction with water molecules, and hence its solubility.

E.g. the OH group of salicyclic acid cannot contribute to the solubility because it is involved in an intramolecular hydrogen bond.

ظل HO سلم تعل وسالمه وط- H مع الحي والد HOO و والحي

هما بهلوا مع بجن ، بسب تربهم من وجن وبالثاني بيتل لا interaction مع اله Solvent فحشان حيث بتكون ذائبية - ولمات

Effects of substituents

E.g. the aqueous solubility of o-, m- and p-dihydroxybenzenes are 4, 9 and 0.6 mol/L, respectively.

Symmetric particles (p-dihydroxybenzenes) can be less soluble than unsymmetric ones (m-dihydroxybenzenes) because they form a compact crystals (which require more work to separate the particles), while the unsymmetric particles pack less efficiently in crystals.

Solubility of solids in liquids

Effects of solid state

 The less stable solid state (e.g. metastable polymorph, amorphous or anhydrous state) will be more soluble than the stable state.

Particle size

- Above a certain size, solubility is not influenced by the particle size of the solid solute. However, the reduction in the size of particles to micron or sub-micron size can influence solubility.
- A micronized drug may have an increase in solubility if the micronization process breaks down the crystal lattice of the solid.

اذا جبت سكرنام وسكرضش الا يختلف معدل النوبان (الوقت الى الا يختلف معدل النوبان (الوقت الى الا يختلف) ، هاد الحكي محدج خصن الربيج الأشن والناعم . والمحتسلات المنافية تزييد المانية الموريام في الفالب بلون بخرب البناء الملولاي فبكون أقرب لله amorphous

ذابية الدواء ممكن تعمدعل نع ال العالم الي استخدمته

Solubility of solids in liquids Effects of salt form

The solubility of the drug in aqueous media may be markedly dependent on the salt form.

Salt	Melting point	Solubility (mg cm ⁻³)
Free base	215	7-8
Hydrochloride	331	32-15
dĥLactate	172 (dec)	1800
l-Lactate	193 (dec)	900
2-Hydroxy-1-sulfonate	250 (dec)	620
Methanesulfonate	290 (dec)	300
Sulfate	270 (dec)	20

 $cm^3 = 1mL$ $cm^3 = 10^{-3} Liker$

الموجودة باللورة.

Solubility of solids in liquids

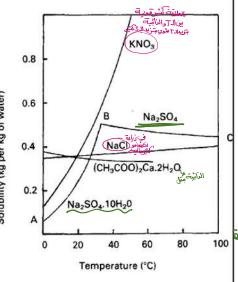
Table 5.3 Correlation between melting points of sulfonamide derivatives and aqueous solubility

Compound	Melting point (°C)	Solubility
Sulfadiazine	253	1 g in 13 <u>dm³</u> (0.077 g dm³
Sulfamerazine	236	1 g in 5 dm ³ (0.20 g dm ⁻³)
Sulfapyridine	192	1 g in 3.5 dm ³ (0.29 g dm ⁻³)
Sulfathiazole	174	1 g in 1.7 dm ³ (0.59 g dm ⁻³)

dm3 = 1000 mL

clm3 = 1 Liter

Effect of temperature


- الغالسة

- A rise in temperature will lead to an increase in the solubility of a solid with an endothermic dissolution.
- Conversely, in the case of the less commonly occurring systems that exhibit exothermic dissolution, an increase in temperature will give rise to a decrease in solubility.
- Plots of solubility versus temperature which are referred to as *solubility curves*, are often used to describe the effect of temperature on a given system.
- Most of the curves are continuous; however, abrupt changes in slope may be observed with some systems if a change in the nature of the dissolving solid occurs at a specific transition temperature.

Solubility of solids in liquids

Effect of temperature

- Sodium sulphate exist as the decahydrate Na₂SO₄,10H₂O up to 32.5°C, and its dissolution in water is an endothermic process.
- Its solubility therefore increases with rise in temperature until 32.5°C is reached.
- Above this temperature the solid is converted into the anhydrous form Na₂SO₄, and the dissolution of this compound is an exothermic process.
- The solubility therefore exhibits a change from a positive to a negative slope as the temperature exceeds the transition value.

العلامة على المالي الكاره العلامة العلامة على العلامة على العلامة العلامة العلامة العلامة العلامة العلامة ويحسر لها الحدد العلامة ويحسر لها العلامة ويحسر لها الحدد العلامة ويحسر لها الحدد العلامة ويحسر لها العلامة ويحسر ا

* اذا یافت ال المالنظسامی بسترید بزیادة العسامی الم المسامی بسترید بزیادة العسامی المسامی بازید بریاده العسامی

م اذا كانت اله الله المعادة توريد وبدها قالت محتاها عبار في تقير على تكويت.

Influence of pH on solubility of weak electrolytes Luxente base

Systems of solids in liquids include the most frequent and important type of pharmaceutical solutions.

Most drugs belong to the class of weak acids and bases. They react with strong acids or bases to form water soluble salts.

Acidic drugs (e.g. NSAIDs), are more soluble in alkaline solutions where the ionized form is the predominant.

$$pH - pK_a = log \frac{[Ionized]}{[Unionized]}$$

Basic drugs (e.g. ranitidine), are more soluble in acidic solutions where the ionized form of the drug is predominant.

$$pH - pK_a = log \frac{[Unionized]}{[Ionized]}$$

Solubility of solids in liquids

Influence of pH on solubility of weak acids

• If we represent the drug as HA and the total saturation solubility of the drug as S, and if S_0 is the solubility of the undissociated species HA then:

$$pH - pK_a = \log(\frac{S - S_o}{S_o})$$
 هند بعرف قيمة ال

ذاست الها قيمة والت ماسم بتعياله حسن تملية عجيتن ج تمالما اله ٦٠ ، ولست تغير ناسية

IL HH

Unionized = S.

Example

What is the pH below which sulfadiazine $(pK_a = 6.48)$ will begin to precipitate in an infusion fluid, when the initial molar concentration of sulfadiazine sodium is 4×10^{-2} mol dm⁻³ and the solubility of sulfadiazine is 3.07×10^{-4} mol dm⁻³?

Answer

The pH below which the drug will precipitate is calculated using equation (5.11):

$$pH = 6.48 + \log \frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$= 8.60$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$= 8.60$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$= 8.60$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$= 8.60$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$= 8.60$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

$$\frac{(4.00 \times 10^{-2}) - (3.07 \times 10^{-4})}{3.07 \times 10^{-4}}$$

Supersaturation في يعنما رح للون Supersaturation وبالمالي ممكن تتبلور.

Solubility of solids in liquids

Influence of pH on solubility of weak bases

• If we represent the basic drug as B and BH+ and the total saturation solubility of the drug as S, and if S_{θ} is the solubility of the unprotonated species B then:

$$pH - pK_a = \log\left(\frac{S_0}{S - S_0}\right)$$

Influence of pH on solubility of weak electrolytes

Carboxylic acids containing more than 5 carbons are relatively insoluble in water; however, they react with dilute NaOH, carbonates, and bicarbonates to form soluble salts.

The fatty acids (> 10 carbon) form soluble soaps with the alkali metals and insoluble soaps with other metal ions.

Phenol is weakly acidic and only slightly soluble in water but is quite soluble in dilute sodium hydroxide.

OH

Solubility of solids in liquids

Boiling point and melting point

In general, aqueous solubility decreases with increasing boiling and melting point.

This is because the higher the boiling point of liquids and melting point of solids, the stronger the interactions between the molecules in the pure liquid or the solid state.

Solubility increases with decreasing particle size, due to the increased particle surface area; meaning more of the solid is in contact with the solvent.