

Solutions of nonelectrolytes

Solutions

5 151 16/20 = (SELLY 3/5/16/6 /2 /2).

Mica ai Man

14-1300000

- Solution is a mixture of two or more components that form a homogenous molecular dispersion (one phase).
- It consists of one or more solutes dissolved in one or more solvents.
- Solute molecules or ions are "dissolved" and uniformly distributed in the solvent medium.

solution عبود الثان تاماً و Solution عبود الثان المام المام المام المام يني

nater + ethanal

Solutions

- A true solution is a single phase system.
- NaCl and water, ethanol and water
 - Form a solution (one phase) ⇒ a solution
- · Talc and water
 - Form a suspension (two phase) \Rightarrow not solution
- · Oil and water
 - Form an emulsion (two phase) ⇒ not solution

Solutions are composed of:

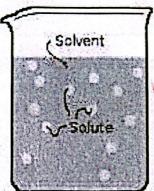
- Solute: is the substance that dissolves which may be solid, liquid, or gas
- Solvent: is the substance that does the dissolving which may be solid, liquid, or gas.

Solv. Judy alen de solver as per la solv

الساخل بسكام

(solid in solid)

(الخل العادب = (عض الاستيك المائل ف الماء)

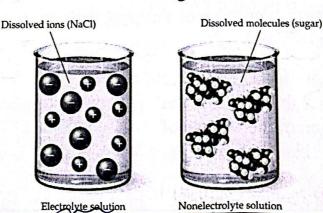

أملة على الخاود من مناس . في بعض حسوات الاسات فيها العائل (الزشق) ينوب في بعض عيماند (ل اعد) .

Which the solvent and which is the solute?

- Solvent: component in greater extent.
- Solute: component in minor extent.
- Note: When a solid is dissolved in liquid, it is the solute irrespective of relative amount.

بغض النظرى

الدن الديس مثال عن (Syrup) عن (Syrup) عن (Syrup) عن المرابع الديسة عالى المرابع الديسة المرابع المراب



Types of Solutions Solute Solvent Solution Example (Gas) Air $(0, in N_2)$ Gas Gas Carbonated beverages (CO₂ in H₂O) (Liquid) Gas Liquid Swimming pool (Cl₂ in H₂O) Wine (ethanol in H₂O) Liquid Liquid Liquid (الال العادي Vinegar (acetic acid in H2O) Dental amalgam for fillings (liquid Solid Liquid Solid mercury in solid silver) Solid Liquid Liquid) Saline (NaCl in H₂O) Sugar in water Solid ا لسائك ال 14-karat gold (Ag in Au) Solid Solid Steel (carbon in iron) ביפצי

لوبعر ن مکستویس هون ما کان قعد د اینسخ مهم

Solutions

- Non-electrolytes: do not yield jons when dissolved in water; therefore, do not increase electrical conductivity of solution (e.g. sugar, some polymers, some drugs).
- Electrolytes: form ions in solution; therefore, increase electrical conductivity (e.g. NaCl).

Concentration expressions

- Molarity(M): no. of moles of solute in 1 litre of solution.
- Molality (m): no. of moles of solute in 1 kg of solvent
- Normality(N): no. of equivalents in 1 liter of solution.
- Mole fraction (X): ratio of number of moles of one component to total moles of all constituents (solute and solvent).
- Percent by weight (w/w): no. of grams of solute in 100 g of solution.
- Percent by volume (v/v): no. of milliliters of solute in 100 ml of solution.
- Percent weight in volume (w/v): no. of grams of solute in 100 ml of solution.

19

Ideal solutions

- Solutions in which there is no change in the properties of the components when they are mixed
- For a mix of molecules of A and B, the interactions between unlike neighbors (UAB) and like neighbors UAA and UBB must be of the same average strength, i.e., $2U_{AB} = U_{AA} + U_{BB}$
- · No heat is evolved or absorbed, the final volume is the sum of the volume of the individual components.

الحجم الزواي = محجوع احجامًا الكذان الفادة .

لايعدث إطلام/لمتعلم الممارة عنه خلط المكونان .

كا يعدث الكاث م/ تررد المحيم عنر الخلط .

UAB = URR = UAA

التعسير

-Ideal solution:

الهى بين الجزييات الإيثانول سساوي القوى بين حزيثات الميثانول كساول القوى بين جزياك اكميثانول والابيانول

- E.g. 100 ml of ethanol + 100 ml of methanol = (200 ml solution. ___ hydrogen
- No heat is evolved or absorbed.

Real solution:

- E.g. 100 ml of sulfuric acid + 100 ml of water = (180 ml solution.
- في فرق في العدى • Heat is evolved (exothermic).

فالاروط مزي في القوي غارح تنبخ طاعة .

Ideal solutions

Raoult's Law Intermolecular Forces (310 Chizzon)

- · Cohesive interactions in liquid prevent all molecules from escaping as a vapor. Disrupting the cohesion (by increasing T) will increase the tendency of molecules to escape from the liquid as a vapor.
- When the vapor pressure equals the external pressure, the system is said to be in equilibrium, and the vapor pressure is known as the equilibrium vapor pressure (P)
- · A substance with a high vapor pressure at normal temperatures is often referred to as colatile

البداية الضفط فجوي اعلى سكا ولايوطلاخفط البعدي يصبع متوازى

ع يهاي عند درجة حرارة طبيعية بدنيخ بسيولة

بالماني ريفي عشما منفط بخاري عالى (حدد كيس من الجزيران) elle makes lagras this;

عنف محول الجزئناف क्रिंधिकिर्ड (بن ر) ریادہ ۲ مرد سل الجزيئات للعول عنافالة الغاركم للنعزعادة درجا الحرارة تزداد الطاقة الحركية

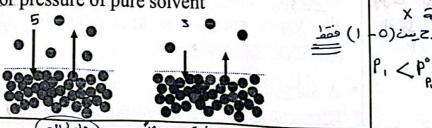
المجزينان.

Raoult's Law:

• The partial vapor pressure of each component in an ideal solution is equal to the vapor-pressure of the pure component multiplied by its mole fraction in the mixture.

$$\frac{P_i}{=} = (x_i) + \underline{P_i}^{\circ}$$

Ideal solutions


Raoult's Law

• For a non-volatile solute, the total vapor pressure (Ptotal) is equal to the vapor pressure of the solvent

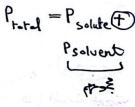
$$(P_{\text{solvent}})$$
 only: $P_{\text{total}} = P_{\text{solvent}}$

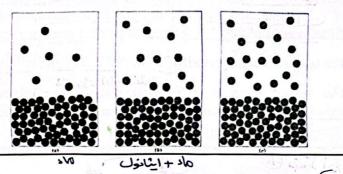
X: mole fraction of solvent

P₁: vapor pressure of pure solvent

يقل معدل المتبخر

تحل جزء من عج المداء (قالت المسادة المعرقة النبخر)


منوا عدد الحزيد التا تند.


(المكاملة يؤوند) ويماضا المفافعات المؤوند المبالغة المبا

We (me Aldy)

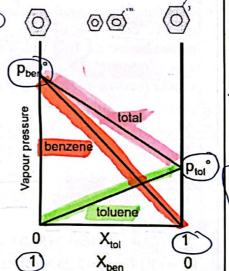
Raoult's Law

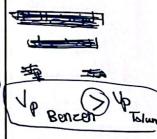
- If components constituting a solution are volatile, each will produce a partial pressure above the solution, which can be calculated from Ideal Solutions Raoult's Law
- The total pressure is the sum of the partial pressures of all the constituents.

volatile solute in L رحسّناب الضفط البخاري طولًا مع تركيز علماء و توكيز للمعامة Pi>Po

الماخلفي سوا بنتعامل هع كل واحد

وبنحسب الففظ الجزيائي


لكلمنهما وسنجيع


Ideal solutions

Raoult's Law

- For two constituents, toluene and benzene?

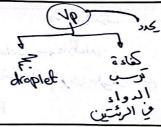
- $\bullet \quad P_{total} = P_{tol} + P_{ben}$
- P_{tol}, P_{ben}: partial vapor pressures
- P_{tol}°, P_{ben}°: vapor pressures of pure components.
- X_{tol}, X_{ben}: mole fractions

Misa go.

(Ideal) buil in deele

النزن +التولين = 0.5 + 0.5

1 = 0.4 + 0.6


12 Co + 6.4

world Monte

Aerosols and Raoult's law

- Raoult's law is important because it allows the calculation of vapour pressure from a knowledge of the composition of the solution. اع البروتوكول
- The requirement of the Montreal Protocol in 1989 for the replacement of chlorofluorocarbon (CFC) propellants in pressurised metered-dose inhalers) with hydrofluoroalkanes (HFAs), because of المرزون the ozone-depleting properties of CFCs, led to a substantial review of the formulation of these devices as a consequence of major 7 differences in physical and chemical properties of these propellants. J
 - The two most widely used (HFAs) are HFA 227 and HFA 134a.
 - aerosol droplet size and consequently has an important influence on the efficiency of deposition in the lungs

The vapour pressure of metered dose inhalers determines the

Ideal solutions

Example:

های المارة وبدولة

(propellant)S

الله سيس ثقب

ف صبقة الاوزون

لذان تم استبدال

كانت تستمزح

Calculate the vapour pressure (in Pa) at 20°C above an aerosol mixture consisting of 30% w/w of HFA 134a (tetrafluoroethane, molecular weigh (102) with a vapour pressure of 68.4 psig and 70% w/w of HFA 227 (heptafluoropropane, molecular weight 170) with a vapour pressure of 56.0 psig. Assume ideal behaviour.

Answer

No. of moles of HFA 134a in 100 g mixture = (30/102 = 0.2941 moles)No. of moles of HFA 227 in 100 g mixture = (70)170 = 0.4118 moles

$$x_{134} = 0.2941/0.7059 = 0.4166$$

$$x_{227} = 0.4118/0.7059 = 0.5834$$

$$P = p^{0}_{134} x_{134} + p^{0}_{227} x_{\underline{227}}$$

$$P = (68.4 \times 0.4166) + (56.0 \times 0.5834)$$

$$P = 61.17 \text{ psig} = 5.23 \times 10^5 \text{ Pa}$$

).) + P.O = 1

(1) (A) propellant (HFA)139 - 30/ w/w

CFC, w.

HFAST

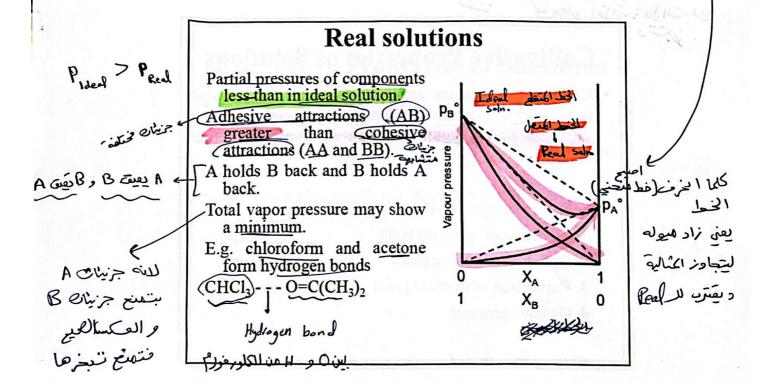
-102 g/mol @ 68.4 psig

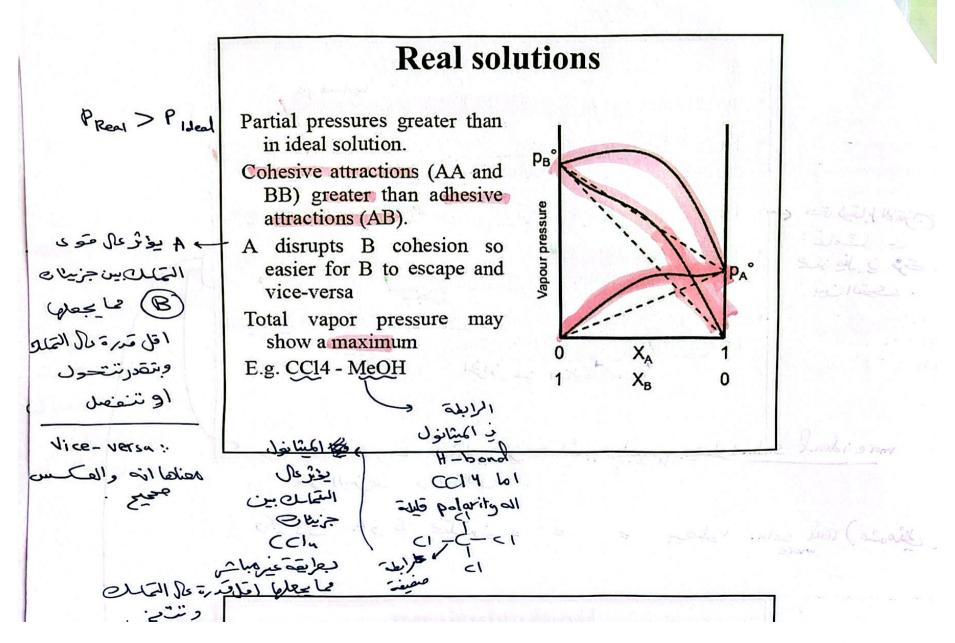
@propellant (HFA)22>

701. 2/2 - 170 g/mol

- 56 psig

0.7059


- In real solutions, the attractive forces are not uniform.
- The adhesive attraction of A for B might be less or exceed the cohesive attraction between A and A or B and B.
- حق لوقابل الاقتراج تمامت محكن يغل ي مؤت بين القوك .


)

- This can happen even if the liquids are completely miscible.
 - The more dissimilar the nature of A and B, the more strongly the solution is expected to deviate from ideality.
 - These real solutions may not obey Raoult's law. There can be negative of positive deviations.

سرد نطعم علم المربع من المربع المربع

(مثمالات على المولا عند المولاد عند المولاد) real soln. المولاد الم

