

تفريغ فيزيكال 🚺

Phase equilibria and the phase rule :اسم الموضوع

إعداد الصيدلاني/ـة: ياسمين خليل 🐺

درسنا في النشاس لاول عن الحالة الطبية و النائة والفازية و بدناعرى إنهم موجو دين مع بعل بالطبيعة مع يعن المحالة والفازية و بدناعرى إنهم موجو دين مع بعل بالطبيعة مع يعن المحالة إن الله و نعط ببالذ المقازن له علاقة بالحول مدة الفقط

عین نعنی ؟

تَ ضِيحِ بِسِيعُ كَالَّ يَعَلِنَ سِن حَالِيَن

مثك الثلج لو ارتفيل الحوارة حرم ٥٠٠ ٥٠ يوس له الهادا

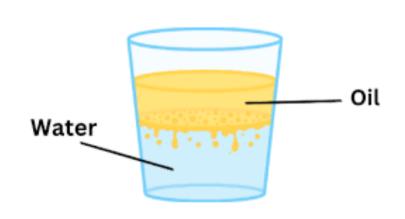
و اسائل لونز له و ارته لعند ۵° و تحت رح يمهر الله المحافظة المحاف


Phase equilibria and the phase rule is a relation ship helps to

det mine the least number of variables to discribe a system in a complet way

The Phase

- A phase is a homogenous physically-distinct portion of a system that is separated from other parts of the system by boundary surfaces.
- A system containing water and its vapor is a two-phase system. An equilibrium mixture of ice, liquid water, and water vapor is a three phase system.
- A phase may be gas, liquid or solid.


عكن رؤي طبقتين

water + ice
بنقه رندون اعاء و ندی اللج
بر فهو لذلا هم

two phases

عتى لوحكو نينا متطا نبان الاجل العلا الم H2O+H2O

water + oil

co > Thesis insip

two phases

1

والمهما ب سعد مين وين الماء دوين الماء دوين الماء دوين الماء دوين الماء دوين الله دوي

One phase

CH3 CH2OH + H20

حمى لو حكونين حضالاً الأمهل

The Phase

فليطه الفازات شوصاكان دليًا المناده ع

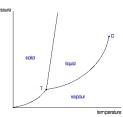
• A gas or a gaseous mixture is a single phase

السقیال القابهة الاحتزاج تکویه وجه واحد میثل الیمنزل+ماء

- Completely miscible liquids constitute a single phase.
 - In an immiscible liquid system, each layer is counted as a separate phase. حین دمهین او آکار صب عدد امکونات د
 - Every solid constitutes a single phase except when a solid solution is formed. کا جلب هوره الله الحالية الحالية المحالية المحالية الحالية المحالية المحال
 - A solid solution is considered as a single phase.
 - Each polymorphic form constitutes a separate phase.

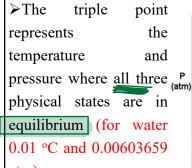
7; 12 de 19 de 19

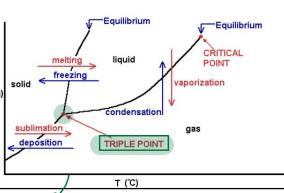
م بما إنه بانه ما در منهى أكيد مدد phase د السبب انهما بنسسي و در


ابي مناهد الماني مال استزمب المحيد ا

The Phase diagram

• Phase diagram shows the multisystem state changes with the temperature, pressure, composition and other <u>intensive</u> properties.


not extensive

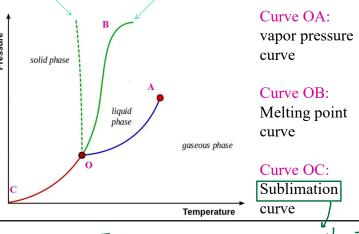

Intensive properties are properties that do not depend on size; e.g. pressure and temperature.

The Phase diagram: One component system

- The simplest phase diagrams are pressure-temperature diagrams of a single simple substance.
- Y-axis • The axes correspond to the pressure and temperature.
- The lines in the phase diagram represent two phase systems, while the spaces between the lines represent one phase systems.

X - QXis

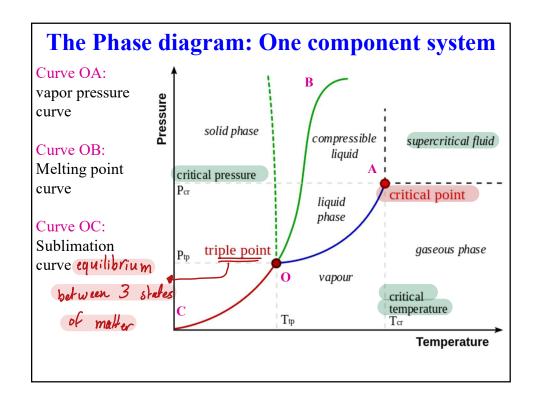
هذه diagram هذه محن يجون من حجن واعد او انحس ورم نفتل هذا إن شادالله


Ohl component

Y axis

ez suncero

The Phase diagram: One component system


not all The frozen state of water (ice) is actually For most substances the solid is denser less dense than the liquid state. Therefore; than the liquid. Therefore; an increase pressure (which in pressure usually favors the more compactness of the molecules) will favor dense solid phase. the liquid state.

تحديد أكمادة من صلب الى غاز دون المرور ١٠ كمالة را اللة (سامن)

- שובה ביים בישובותים השובותים השובותים

 - In the same way, the critical pressure is the pressure above which the substance can no longer exist as a gas, no matter عد المادة ا how high the temperature is.
- Supercritical fluid is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist.

الــلهم أعني على ذكــرك وشــكــرك وحــســن عـــادتــك

The supercritical fluids

- In general terms, supercritical fluids have properties between those of a gas and a liquid.
- Supercritical fluids are suitable as a substitute for organic solvents in a range of industrial and laboratory processes.
- Supercritical fluids have the viscosity of a gas, but the densities and solvent power of a liquid, making SC fluids ideal for extraction.

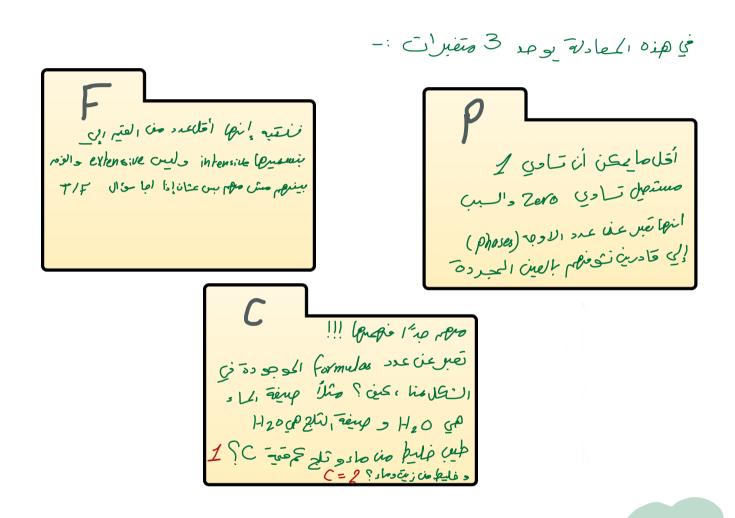
to calculate the least
number of variables required to define
the state of the system

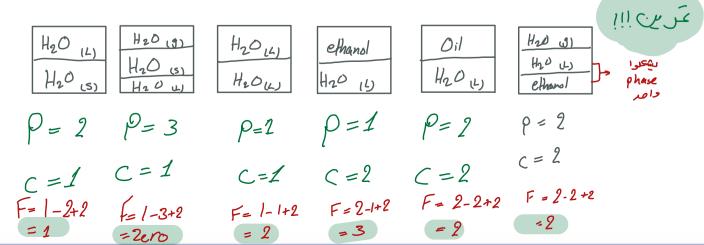
The Gibbs phase rule

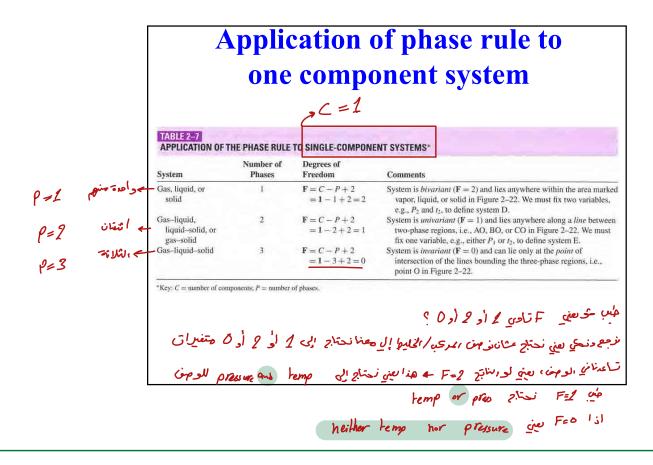
- To understand and define the state of a phase, knowledge of several independent variables is required.
- Independent variables (also called intensive variables) are the variables that do not depend on the volume or size of the phase, e.g. temperature, pressure, density, boiling point and concentration.
- The Gibbs phase rule is expressed as follows:

$$\mathbf{F} = \mathbf{C} - \mathbf{P} + \mathbf{2}$$

F: is the number of <u>degrees of freedom</u> of the system which is the least number of intensive variables required to define the system completely (vary independently).

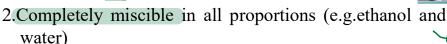

C: number of components, P: number of phases present




· The Gibbs phase rule is expressed as follows:

$$\mathbf{F} = \mathbf{C} - \mathbf{P} + \mathbf{2}$$

- **F**: is the number of <u>degrees of freedom</u> of the system which is the least number of intensive variables required to define the system completely (vary independently).
- **C**: number of components, **P**: number of phases present



or solubility ? -

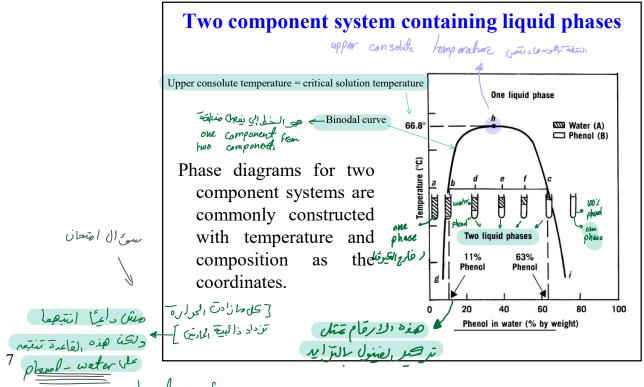
Two component system containing liquid phases

سيم تجا مل لفان

- Systems in which the vapor phase is ignored and only solid and liquid phases are considered are termed condensed systems.
- Systems containing liquids might be:
 رُنبُوم المُورَامِ المُورَامِينَ المُورَامِ المُورَامِ المُورَامِ المُورَامِ المُورَامِينَ المُعْمَالِينَ المُعْمَالِينَ المُعْمِلُونِ المُورَامِينَ المُعْمَالِينَامِينَ المُعْمَالِينَ المُعْمِينَ المُعْمَالِينَ المُعْمَالِينَ المُعْمَالِينَامِينَ المُعْمَالِينَامِينَ المُعْمَالِينَامِينَ المُعْمَالِينَامِي

3. Partially miscible (e.g. phenol and water)

Two component system containing liquid phases


For two component systems:

 $F = C - P + 2 \implies F = 4 - P$

جوز الدر الذات $F \ge 0$ $F \le 3$ Three variables are required: temperature, pressure, and composition.

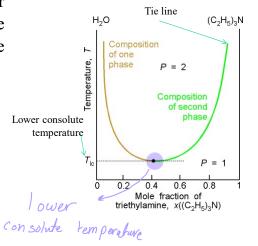
The pressure is first to the left of the pressure is first to the pressure is fi

If the pressure is fixed, only temperature and composition are required.

الى سىست خارج الكين هويس مه phase المادانا

two component. Sia gram

X- axis -> Concentration Y-axis -temperature

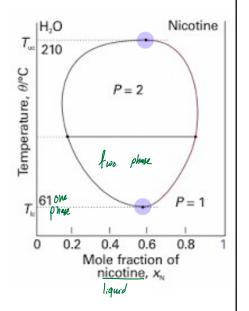

سئال امتحان

two components

Two component system containing liquid phases

Other liquid mixtures show no upper consolute temperature but lower consolute temperature.

ا المال عدد المولا المولدة ال

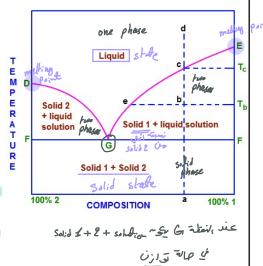


Two component system containing liquid phases

Other liquid mixtures show both upper and lower consolute temperatures.

Nicotine has upper + lower constite

nicotine is a liquid form and has a closed curve

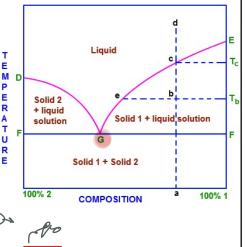

تريم دمان قل مسب الحررة

Two component system containing solid and liquid phases

The points of **D** and **E** represent the melting points of solids 2 and 1.

Two component system consisting of two solids (2 and 1) when heated to a temperature above the melting points of both (point d), a one-phase system will form consisting of a liquid solution of 2 and 1.

When the temperature fall to point c, pure solid 1 will form dispersed in a liquid solution of 1 and 2.



اللَّهمَّ اغفِر لـــي ذنبي كُـلَّهُ دِقَّـهُ، وجِـلَّــهُ، وأَوَّلَـــهُ وأَخـــرهُ وعــلانــيتَهُ وسِـــرهُ

Two component system containing solid and liquid phases

- At point G solid 1, solid 2 and solution phase are in mutual equilibrium (exist together).
- The solid phase at this point is a finely divided two-phase dispersion of crystalline 1 and 2 called a eutectic, and G is the eutectic point. Eutectic

melts at a lower temperature than either of its pure components.

عالة تقالمزنا بين ويحك نيني أو أتحثر

9

5) le 150 C=3 je 3 component, ais slated, vos Telzit cup. م مارج تادي أمّل که سيّ F=3-1+2 glip US il Sig, culp عما يكل في ومن يدار إلى دن /2 Eup = rel, viel in Fortes 100 11 Tage Cilid ولازم نوجل 100/ عندالقة sacrie de Sinsisco 80 ر المراج في المراج ا des la Sucre conster 100 the is 10 be to which to bas 4 on no view ch ulp issus e is atai rule A-Bir TUES of A: 80% San 1-20 US This DOE مالنا نعن انه عد كل فع 25 ولوكان و عطويا ، كل فط 20 ، تم ا Corners - V/9's lines — gup "

> و آ مِنرِدًا النقاط إلى دافل المثلاث الهم 3 فتم عن على مر قيم ورد نكف كن مهم عشر وما ي بالاحتمان (علام الاعترا)

Phase equilibria in three-component systems

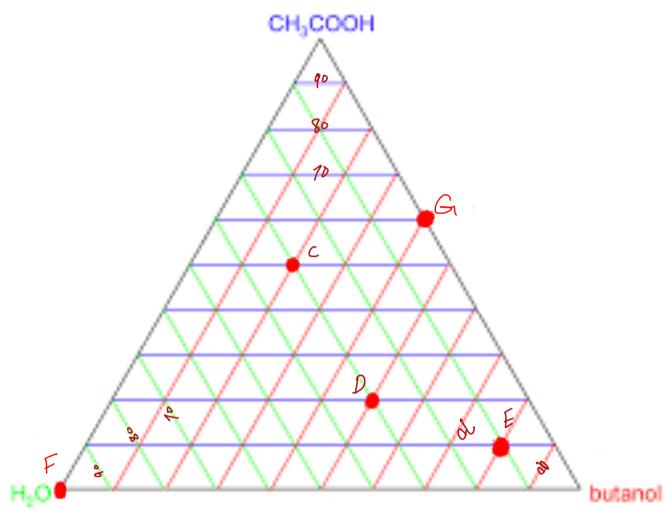
For three component systems:

$$C = 3$$
 $F = C - P + 2 \Longrightarrow F = 5 - P$
 $P \ge 1 \Longrightarrow F \le 4$

Four variables are required: temperature, pressure, and two compositions.

If the temperature and pressure are both fixed then, only two compositions are required

➤ Because we are dealing with a three-component system, it is more convenient to use triangular coordinate graphs

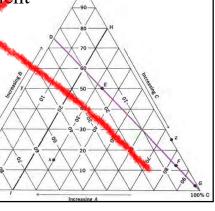


Rules relating to triangular diagram Each of the three corners represent 100% by weight of one component. The three lines joining the corner points represent two component mixture. The area within the triangle represent all possible combinations of A, B, and C to give three-

component system

همان المكل بدوره أرقام و العزد فه نكون قادرين نطا بعدما عرفنا , لثلاثة فوا لا حوم على لى الم محقر طلب نسبة المواد , لثلاثة عنه النقاط , لآتية ، البواب رون ا

	1120	butanel	CH3 COOH	h
C	30	20	50	
D	30	50	20	
E	10	80	(D	
F	100	0	D	-1
G	\cap	UD	60	Li.


نلاحظ أن جوج الارتمام عند نفس النفار سيادي 100 وبرجما ي نتأكرون صحة حلنا

Rules relating to triangular diagram

• Each of the three corners represent 100% by weight of one component.

 The three lines joining the corner points represent two component mixture.

• The area within the triangle represent all possible combinations of A, B, and C to give three-component system

Ternary systems with one pair of partially miscible liquids

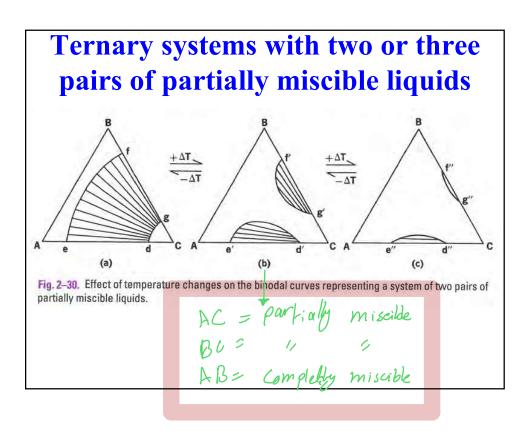
• E.g. Water, benzene and ethanol mixture

Water and benzene are partially miscible

• Ethanol is miscible with both water and benzene

کا سکو ن بقعہ او مرشہ دافل مثلث هذایعنی م المزیج عنا من 3 مکونات معضین عابلات للامتزاع عامیٰ Binodal Curve

Two liquid phases


Fig. 2–28. A system of three liquids, one pair of which is partially miscible.

Partially miscible liquids

benzene

Ternary systems with one pair of partially miscible liquids Fig. 2-29. Alterations of the binodal curves with changes in temperature. (a) Curves on the triangular diagrams at temperatures t₁, t₂, and t₃. (b) The three-dimensional arrangement of the diagrams in the order of increasing temperature. (c) The view one would obtain by looking down from the top of (b).

Ternary systems with two or three pairs of partially miscible liquids

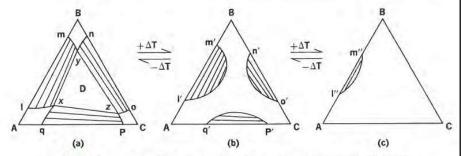


Fig. 2-31. Temperature effects on a system of three pairs of partially miscible liquids.

سبحان الله الحمدلله لا اله الا الله الله اكبر