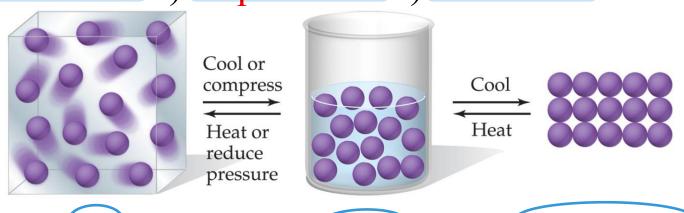


اسم الموضوع: Gaseous state


إعداد الصيدلاني/ـة: ياسمين خليل

States of Matter

- Three primary state of matter
- 1) Gaseous state 2) Liquid state 3) Solid state

Total disorder; much empty space; particles have complete

freedom of motion; particles far apart

Gas

Liquid

Disorder; particles or clusters of particles are free to move relative to each other; particles close together Crystalline solid

Ordered arrangement; particles are essentially in fixed positions; particles close together

الحبزمكي^{ات} م<u>ن</u> وجعية ثابتة

Other mesophases:

Liquid crystals, Supercritical fluids

رَبِّ اشْرَحْ لِي صَدْرِي وَيَسِّرْ لِي أَمْرِي وَاحْلُلْ عُقْدَةً مِّن لِّسَانِي يَفْقَهُوا قَوْلِي)

We can get liquid from gas by: Cool, comperss

We can get liquid from solid by: Heat We can get solid from liquid by: Cool

We can getgas from liquid by: Heat, reduce pressure

. Heating is the way/process

Convert solid to liquid

بميغة آخي : ـ

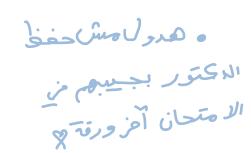
The gaseous state
لافة حركية عالية والسبب أنه الجزينات عن الحرقة وبينها فراغات بالتالي حركتها سويعة

- Gases are described as molecules that have high kinetic energy \rightarrow rapid motion of molecules.
- Gas molecules exert relatively small forces on each other (molecules try to act independently of one another).

نغرض انه عنا غازین ، حدول الفازین بختلطوا دح بعف General properties . مدول الفازین ، عدول الفازین بختلطوا دح بعف سیموله و سریه عادی د من أسبان ولک ان ایجز مئیان میتباعده .

- A gas mixes rapidly and completely with any other gas.
- A gas uniformly fills any container and assumes its shape ا خد الغاز شکل الوی که لکتوا جد فیع (volume).
- Gas is the only state that is compressible.
- The vigorous motion produces a pressure called vapor pressure.

العركة العزايات العدية تنتج طفط السه : العدية تنتج طفط السه العربيات العدية العربيات العديد العربية العربية


Pressure units

• The SI unit is the Pascal (Pa) where:

• The relationship of other commonly used pressure units to the Pascal is as follows:

- $\Box 1 \text{ bar} = 10^5 \text{ Pa}$
- $\Box 1 \text{ mmHg} = 1 \text{ torr} = 133.32 \text{ Pa}$
- $\Box 1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$
- $\Box 1 \text{ psi} = 6894.76 \text{ Pa}$

• Standard atmospheric pressure is 760 mmHg = 760 torr = 1.013 bar = 1.013×10^5 Pa

الفازيكون مثالي لما ما يجون في قوة بين الجزيمات

- Ideal gas is a gas where no intermolecular interactions exist and collisions are perfectly elastic, and thus no energy is exchanged during collision. خي ماية الميلدام الجزيئات المخرومان تفقد مزدمان طاغتها مع ؟ مع ببين في الحالة الفازية المغزيات المغزومان تفقد مزدمان طاغتها ولانتباد لها مع بعضها .
- The properties of the ideal gas can be described by the general ideal gas law, which is derived from Boyle, Charles and Gay-Lussac laws

I olume (V) + pressure (P)

inversely:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{$

3. 90g-14550c

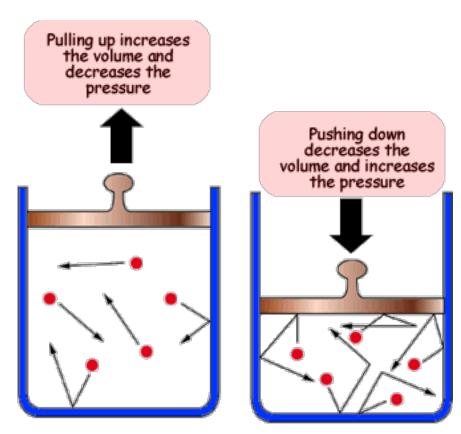
Pressure (p) + temp (T)

$$\frac{1}{2} = k$$

2. Charles

Volume (V) + temp (T)

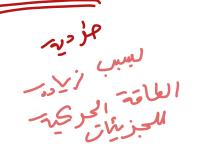
$$V = MT$$
 $V = MT$
 $V = MT$


• Boyle's law states that the volume and pressure of a given mass of gas is inversely proportional at a constant temperature (i.e. when the pressure of a gas increases, its

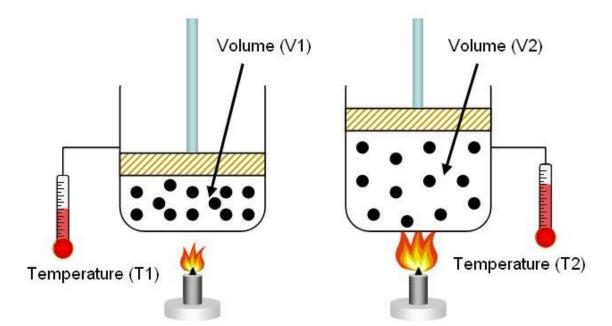
$$\mathbf{P} \mathbf{\alpha} \frac{1}{V} \quad or \quad \mathbf{P} \mathbf{V} = \mathbf{k}$$

$$\mathbf{P_1V_1} = \mathbf{P_2V_2}$$

P: pressure, K: constant,


V: volume

In the smaller space the particles suffer more collisions with the walls of the container - it is this that we measure as 'pressure exerted by the gas'.


ضفط عالى رح تقلل من حجم العناز

• The Charles law states that the volume and absolute temperature of a given mass at constant pressure are directly proportional:

$$V\underline{\alpha}T$$

$$V \alpha T$$
 or $V = kT$

• Gay-Lussac's law states that the pressure of a given mass of gas varies directly with the absolute temperature of the gas, when the volume is kept constant:

$$P/T = k$$

رَبِّ إِنِّي لِمَا أَنزَلْتَ إِلَيَّ مِنْ خَيْرٍ فَقِير

Avogadro's law

• Equal volumes of gas at the same temperature and pressure contain the same number of molecules.

$$V1/n1 = V2/n2$$

- 1 mole of ideal gas occupies 22.4 L regardless the identity of the gas under standard temperature and pressure.
- The volume of gas is directly proportional to the number of moles

V ∝n at constant T and P

 Boyle, Gay-Lussac and Charles law can be combined to obtain the familiar

relationship:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

هاد القانوس المجامع للكائة حقاش

• T: kelvin scale (0 °C=273.15 K)

ملاحظة :- للتحيل من أ إلى الم بن بنزيد المعرارة بالسلسو ~ 173 . مثال: الحرارة على الحرارة السلسو ~ 326 الله على الحرارة على الما 326 الله على الحرارة على الما 326 الله على ا

Example

• In the assay of ethylnitrite spirit, the nitric oxide that is librated from a definite quantity of spirit and collected in a gas burette occupies a volume of 30.0 ml, at a temperature of 20 °C and a pressure of 740 mm Hg. Assuming the gas is ideal, what is the volume at 0 °C and 760 mm Hg.

$$T_{1} = 20 + 273 = 293 \text{ K}$$
 $T_{2} = 0 + 273 = 273 \text{ K}$
 $T_{2} = 0 + 273 = 273 \text{ K}$
 $T_{3} = 0 + 273 = 273 \text{ K}$
 $T_{4} = 0 + 273 = 273 \text{ K}$
 $T_{5} = 0 + 273 = 273 \text{ K}$
 $T_{7} = 0 + 273 = 273 \text{ K}$
 $T_{1} = \frac{\rho_{1} V_{1}}{T_{1}} = \frac{\rho_{2} V_{2}}{T_{2}} \longrightarrow \frac{740 \times 30}{293} = \frac{760 \times V_{2}}{273} \longrightarrow V_{2} = 27.2 \text{ m}$

General ideal gas law

• General ideal gas law (also called equation of state) relates the pressure, volume, and temperature of a given mass of gas.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \implies \frac{P V}{T} = \mathbb{R}^{\frac{1}{2} - \frac{1}{2} - \frac{1}{2}}$$

• R: the molar gas constant value for the PV/T ratio of an ideal gas.

• For n moles the equation becomes:

$$PV = nRT$$

المنحان المنحان ال

General ideal gas law

- The volume of 1 mole of an ideal gas under standard conditions of temperature and pressure (i.e., at 0° C and 1 atm) has been found by experiment to be 22.414 liters.
- Substituting this value in general ideal gas law:

$$R = \frac{PV}{T} = \frac{1 \times 22.414}{273.16} = 0.08205 atm L/mole K$$

- The molar gas constant can also be expressed by energy units:
- R = 8.314 Joules/mole K or
- R = 1.987 cal/mole deg

```
1 atm = 1.0133 × 10<sup>6</sup> dynes/cm<sup>2</sup>
1 Joule = 1 N.m = 1 Pa.m<sup>3</sup>
1 cal = 4.184 Joule
```

مشرح المتحولان ال بتة

8.314 Toules make the 1 cal \longrightarrow 4.184 Joules

1? \longrightarrow 8.314 Joules $\frac{8.314}{1.184} = 1.987 \text{ cal mole th}$

اللَّهمَّ اكْفِي بحلالِكَ عَن حَرَامِكَ، وَاغْنِي بِفَضلِكَ عَمَّن سِوَاك

General ideal gas law

Example: Calculation of volume using the ideal gas law

• What is the volume of 2 moles of an ideal gas at 25°C and 780 mm Hg?

atm = 760 mmHg

$$P = \frac{780 \text{ mmHg}}{760 \text{ mmHg}} = 1.0263 \text{ atm}$$

$$T = 273 + 25^{\circ}C = 298 \text{ M}$$

$$PV = nRT \qquad V = \frac{2*0.08205*298}{1.026} = 47.65 \text{ L}$$

صحن حد سيال ليه استضمنا حتية ع = 0.0 و استخدمناها بعد ماحولنا ها لوهدان ثانية (اللاسدار) ؟ المع بدأناهل بوهدة علم بالتالي نختار حتيمة ع وحد سما معلم المعلم المعلم

General ideal gas law: Molecular weight of gas

The approximate molecular weight of a gas can be determined by use of the ideal gas law: مش مفلوبة بين حكا

فيها الدكتكر عن المبيرات كمانحسب حجم الرذاذ الخارج من العبوة زي مثلاً صبير الحيوات الزاحة كبيرة اما رذاد المخارة معنيرة وهبل

PV = nRT

since **n=g/M** then:

$$PV = \frac{g}{M} RT$$

$$\mathbf{M} = \frac{\mathbf{gRT}}{\mathbf{PV}}$$

General ideal gas law: Molecular weight of gas

Example: Molecular weight determination using the ideal gas law

If 0.30 g of ethyl alcohol in the vapor state occupies 200 mL at a pressure of 1 atm and a temperature of 100 °C, what is the molecular weight of ethyl alcohol?

$$\sigma \mathbf{RT} = 0.3 \times 0.082 \times 373$$

$$\mathbf{M} = \frac{\mathbf{gRT}}{\mathbf{PV}} = \frac{0.3 \times 0.082 \times 373}{1 \times 0.2} = 46 \frac{\mathbf{g}}{\text{mole}}$$

Kinetic Molecular Theory

Kinetic molecular theory explains the behavior of gases according to the ideal gas law and to lend additional support to the validity of the gas law:

- Sases are composed of particles called atoms or molecules, the total volume of which is so small (negligible) in relation to the volume of the space in which the molecules are confined.
- Gas molecules exert <u>neither attractive nor repulsive forces</u> on one another
- The particles exhibit continuous random motion. The average kinetic energy, E, is directly proportional to the absolute temperature of the gas, or E=(3/2)RT.
- The molecules exhibit perfect elasticity; there is no net loss of speed or transfer of energy after they collide with one another and with the walls of the confining vessel.

 walls of the confining vessel.

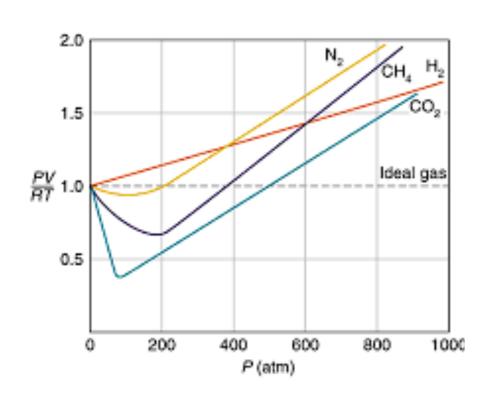
- Real gases do not interact without energy exchange, and therefore do not follow the laws of Boyle, Charles, and Gay-Lussac.
- Real gases are not composed of infinitely small and perfectly elastic non-attracting spheres.
- They are composed of molecules of a finite volume that tend to attract one another.
- The significant molecular volume and the intermolecular attractions between gas molecules affect both the volume and the pressure of a real gas respectively.

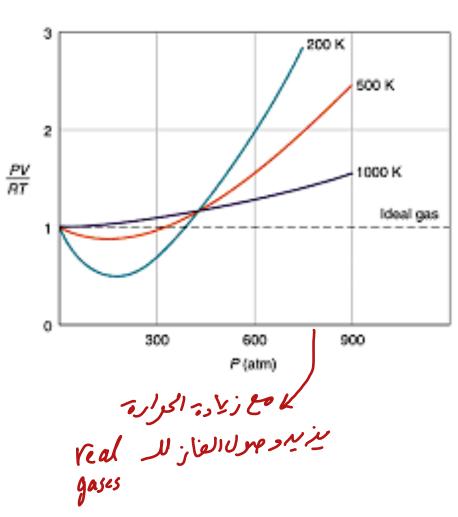
Volume and pressure of real gas are effected by Significant molecular volu

- interprolecular affraction between gas molecules

Real gas: van der Waals equation

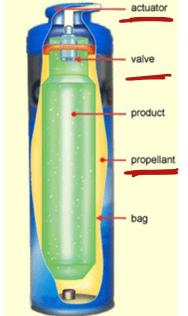
• The van der Waals equation is a modified ideal gas equation that takes into account the factors that affect the volume and pressure of a real gas.

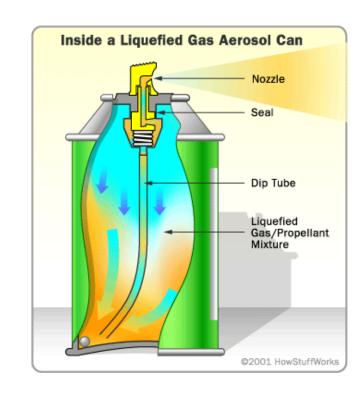

For mole of gas:
$$\left(P + \frac{\partial n^2}{V^2} \right) (V - nb) = nRT$$


- where a and b are constants for a particular gas.
- Around each molecule of a gas is a particular volume from which other molecules are excluded for purely physical reasons. The bulk molar volume, V, of the gas is consequently an overestimation of the true molar volume.

Real gas: van der Waals equation

- The influence of non-ideality is greater when the gas is compressed (At high pressure and low temperature). 19 17
 - When the volume of a gas is large (At low pressure and high temperature), the molecules are well dispersed and far apart. Under these conditions, a/V^2 and b become insignificant with respect to P and V, respectively, and the van der Waals equation for the real gas reduces to the ideal gas equation: PV = nRT
 - At these conditions, real gases behave in an ideal manner.
 - A convenient means of expressing departure from ideality is by a plot of PV/RT as a function of pressure for 1 mole of each gas


لا إله إلا أنت سبحانك إني كنت من كنت من الظالمين


Aerosols and ideal gas law عليها استارة بس اعد منه ها.

- An Aerosol product consists of the following component parts:
 - 1) product concentrate
 - active ingredient &
 - Additives (such as, antioxidants, surface- active agents, and solvents)
 - مادة مافعة. Propellant
 - liquefied gas or a mixture of liquefied gases or
 - compressed gases (carbon dioxide, nitrogen, and nitrous oxide)
- The drug is dissolved or suspended in a propellant
- Propellant, material that is liquid under the pressure conditions existing inside the container under but that forms gas normal atmospheric conditions
- Part of the propellant exists as a gas and exerts the pressure necessary to expel the drug, whereas the remainder exists as liquid and provides a solution or suspension vehicle for the drug.
- When the propellant is a liquefied gas or a mixture of liquefied gases, it frequently serves the dual role of propellant and solvent or vehicle for the product concentrate.

- 3) Container
- 4) Valve and actuator
- By depressing a valve on the container, some of the drug-propellant mixture is expelled owing to the excess pressure inside the container.
- Outside the container, the liquid propellant reverts to gas and vaporizes off, while the drug forms a fine spray

عندالمنفطة الادلى يعنرج الرذاد بعج كبير بعد أكثر من منفطة بمير ومام و المداد معنير

Aerosols and ideal gas law

• The propellant is responsible for developing the proper pressure within the container, and it expels the product when the valve is opened and its ,in the atomization or form production of the product.

Types of propellants:

1) Liquefied gases

- a. Fluorinated hydrocarbons
- b. Hydrocarbons (propane, butane, and isobutane)

مضفوط

2) Compressed gases - can be determined by ideal gas low

Carbon dioxide, nitrogen and nitrous oxide.

CO2 N N20

The pressure in the case of compressed gas propellants can be determined by ideal gas law assuming ideal gas behavior.

Typleo

General ideal gas law

Example: Calculation of pressure using the ideal gas law

Calculate the pressure at 25° C within an aerosol container of internal volume 250 cm^3 containing 160 cm^3 of concentrate above which has been introduced 0.04 mol of nitrogen gas. Assume ideal behavior.

T = 25+273 = 298 K

$$PV = NRT$$

$$P = \frac{0.04 * 8.314 * 298}{(250 - 160) * 10^{-6}}$$

$$= |.01 \times 10^{6}| Pa (or Nm^{-2})$$

مهم مفظها للامتدان

قيمتها الاسية	رمزها	البادئة
109	G	کیکا
10 ⁶	M	میکا
10^{3}	k	كيلو
10-1	d	دیسی
10-2	c	سنتي
10-3	m	ملي
10-6	μ	مايكرو
10-9	n	نانو
10 ⁻¹²	p	بيكو