Phase equilibria and the phase rule

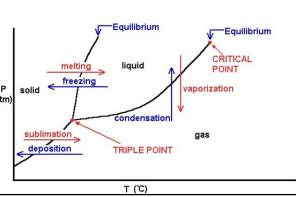
The Phase

- A phase is a homogenous physically-distinct portion of a system that is separated from other parts of the system by boundary surfaces.
- A system containing water and its vapor is a two-phase system. An equilibrium mixture of ice, liquid water, and water vapor is a three phase system.
- A phase may be gas, liquid or solid.

The Phase

- A gas or a gaseous mixture is a single phase.
- Completely miscible liquids constitute a single phase.
- In an immiscible liquid system, each layer is counted as a separate phase.
- Every solid constitutes a single phase except when a solid solution is formed.
- A solid solution is considered as a single phase.
- Each polymorphic form constitutes a separate phase.

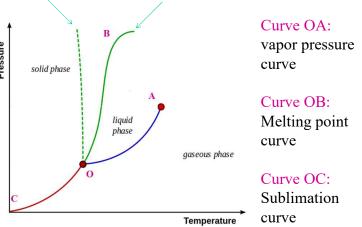
The Phase diagram


• Phase diagram shows the multisystem state changes with the temperature, pressure, composition and other intensive properties.

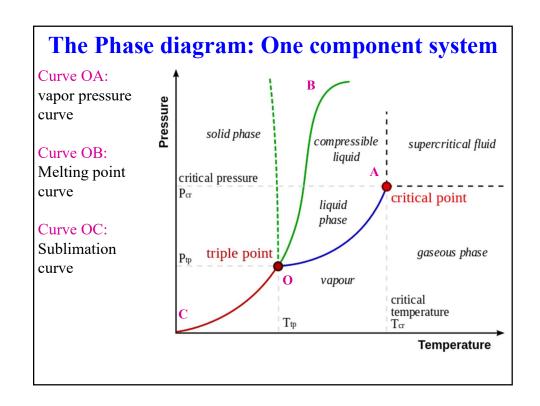
Intensive properties are properties that do not depend on size; e.g. pressure and temperature.

The Phase diagram: One component system

- The simplest phase diagrams are pressure-temperature diagrams of a single simple substance.
- The axes correspond to the pressure and temperature.
- The lines in the phase diagram represent two phase systems, while the spaces between the lines represent one phase systems.


The triple point represents the temperature and pressure where all three physical states are in equilibrium (for water 0.01 °C and 0.00603659 atm).

The Phase diagram: One component system


The frozen state of water (ice) is actually less dense than the liquid state. Therefore; increasing pressure (which favors compactness of the molecules) will favor the liquid state.

For most substances the solid is denser than the liquid. Therefore; an increase in pressure usually favors the more dense solid phase.

The Phase diagram: One component system

- The critical point is the point on a phase diagram that indicates the critical temperature and pressure.
- The critical temperature of a substance is the temperature above which that substance can no longer exist as a liquid, no matter how much the pressure is increased.
- In the same way, the <u>critical pressure</u> is the pressure above which the substance can no longer exist as a gas, no matter how high the temperature is.
- Supercritical fluid is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist.

The supercritical fluids

- In general terms, supercritical fluids have properties between those of a gas and a liquid.
- Supercritical fluids are suitable as a substitute for organic solvents in a range of industrial and laboratory processes.
- Supercritical fluids have the viscosity of a gas, but the densities and solvent power of a liquid, making SC fluids ideal for extraction.

The Gibbs phase rule

- To understand and define the state of a phase, knowledge of several independent variables is required.
- Independent variables (also called intensive variables) are the variables that do not depend on the volume or size of the phase, e.g. temperature, pressure, density, boiling point and concentration.
- The Gibbs phase rule is expressed as follows:

$$F = C - P + 2$$

- **F**: is the number of <u>degrees of freedom</u> of the system which is the least number of intensive variables required to define the system completely (vary independently).
- C: number of components, P: number of phases present

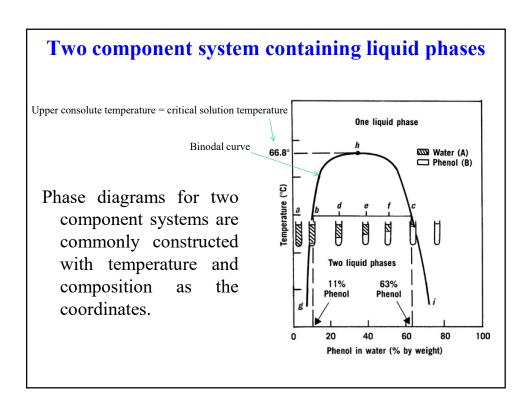
Application of phase rule to one component system

System	Number of Phases	Degrees of Freedom	Comments
Gas, liquid, or solid	1-	F = C - P + 2 = 1 - 1 + 2 = 2	System is bivariant (F = 2) and lies anywhere within the area marked vapor, liquid, or solid in Figure 2–22. We must fix two variables, e.g., P ₂ and t ₂ , to define system D.
Gas-liquid, liquid-solid, or gas-solid	2	F = C - P + 2 = 1 - 2 + 2 = 1	System is univariant (F = 1) and lies anywhere along a line between two-phase regions, i.e., AO, BO, or CO in Figure 2–22. We must fix one variable, e.g., either P ₁ or t ₂ , to define system E.
Gas-liquid-solid	3	F = C - P + 2 = 1 - 3 + 2 = 0	System is <i>invariant</i> (F = 0) and can lie only at the <i>point</i> of intersection of the lines bounding the three-phase regions, i.e., point O in Figure 2–22.

Two component system containing liquid phases

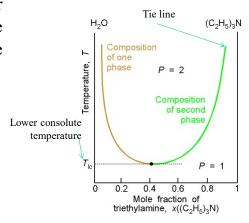
- Systems in which the vapor phase is ignored and only solid and liquid phases are considered are termed condensed systems.
- Systems containing liquids might be:
- 1. Completely immiscible (such as mercury and water)
- 2. Completely miscible in all proportions (e.g. ethanol and water)
- 3. Partially miscible (e.g. phenol and water)

Two component system containing liquid phases

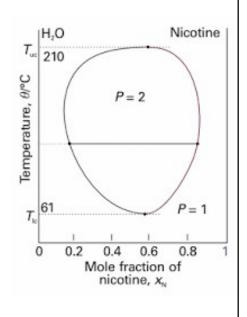

For two component systems:

$$C=2 F=C-P+2 \implies F=4-P$$

 $P \ge 1 \Longrightarrow F \le 3$


Three variables are required: temperature, pressure, and composition.

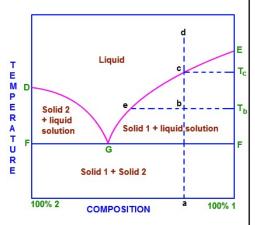
If the pressure is fixed, only temperature and composition are required.


Two component system containing liquid phases

Other liquid mixtures show no upper consolute temperature but lower consolute temperature.

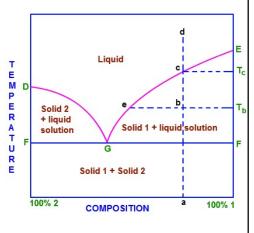
Two component system containing liquid phases

Other liquid mixtures show both upper and lower consolute temperatures.



Two component system containing solid and liquid phases

The points of **D** and **E** represent the melting points of solids 2 and 1.


Two component system consisting of two solids (2 and 1) when heated to a temperature above the melting points of both (point d), a one-phase system will form consisting of a liquid solution of 2 and 1.

When the temperature fall to point c, pure solid 1 will form dispersed in a liquid solution of 1 and 2.

Two component system containing solid and liquid phases

- At point G solid 1, solid 2 and solution phase are in mutual equilibrium (exist together).
- The solid phase at this point is a finely divided two-phase dispersion of crystalline 1 and 2 called a eutectic, and G is the eutectic point. Eutectic melts at a lower temperature than either of its pure components.

Phase equilibria in three-component systems

For three component systems:

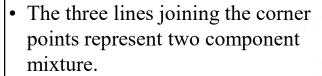
$$C = 3$$
 $F = C - P + 2 \Longrightarrow F = 5 - P$
 $P \ge 1 \Longrightarrow F \le 4$

Four variables are required: temperature, pressure, and two compositions.

If the temperature and pressure are both fixed then, only two compositions are required

➤ Because we are dealing with a three-component system, it is more convenient to use triangular coordinate graphs

Rules relating to triangular diagram

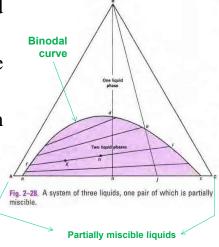

• Each of the three corners represent 100% by weight of one component.

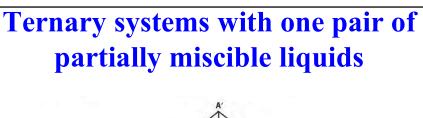
The three lines joining the corner points represent two component mixture.
The area within the

triangle represent all possible combinations of A, B, and C to give three-component system

Rules relating to triangular diagram

• Each of the three corners represent 100% by weight of one component.


 The area within the triangle represent all possible combinations of A, B, and C to give threecomponent system


Ternary systems with one pair of partially miscible liquids

• E.g. Water, benzene and ethanol mixture

• Water and benzene are partially miscible

• Ethanol is miscible with both water and benzene

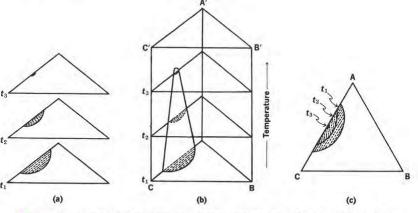


Fig. 2–29. Alterations of the binodal curves with changes in temperature. (a) Curves on the triangular diagrams at temperatures t_1 , t_2 , and t_3 . (b) The three-dimensional arrangement of the diagrams in the order of increasing temperature. (c) The view one would obtain by looking down from the top of (b).

Ternary systems with two or three pairs of partially miscible liquids

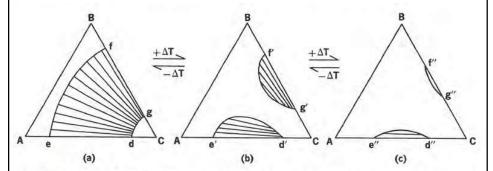


Fig. 2–30. Effect of temperature changes on the binodal curves representing a system of two pairs of partially miscible liquids.

Ternary systems with two or three pairs of partially miscible liquids

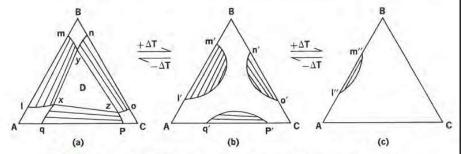


Fig. 2–31. Temperature effects on a system of three pairs of partially miscible liquids.