

# تغريغ بيوفارما



إعداد الصيدلاني/ة: Sarah al Sabie





Physicochemical and Formulation Factors For Improving Bioavailability

# Improving the bioavailability of drugs due to poor aqueous solubility

Salts: Formation of drug salts can significantly enhance drug solubility and dissolution, since the ionized form of the drug has much higher solubility

E.g. <u>Diclofenac sodium</u>, <u>Amitriptyline</u> Hydrochloride

CI

Improving the bioavailability of drugs due to poor aqueous solubility

Amorphous solids Drugs may exist in amorphous forms (e.g. cefuroxime axetil and quinapril hydrochloride), which have higher apparent solubility and faster dissolution compared to their crystalline counterparts.

# Improving the bioavailability of drugs due to poor aqueous solubility

#### **Amorphous solid dispersions**

In amorphous solid dispersions, the drug is dispersed in its amorphous form in an inert carrier, which is commonly a polymer or a mixture of surfactant and polymer

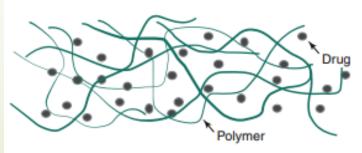


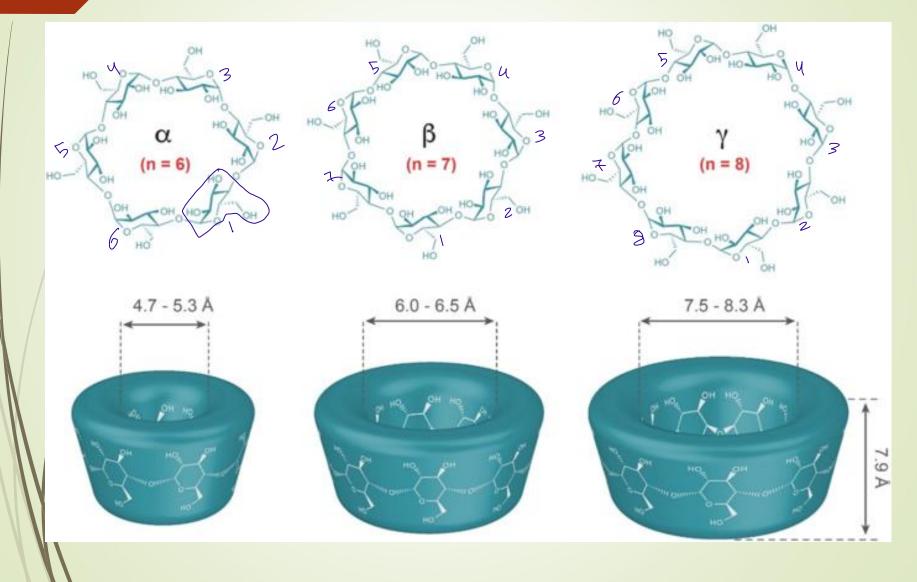

Fig. 20.7 Drug/polymer amorphous solid dispersion.

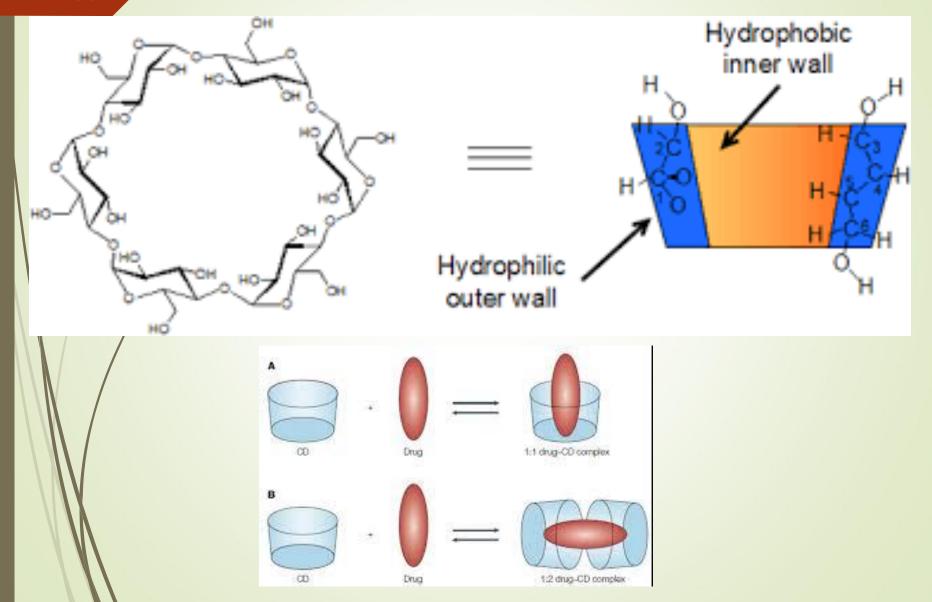
#### Cosolvents

- Predissolving drugs in low molecular weight cosolvents (e.g. polyethylene glycols (PEGs), propylene glycol,glycerol) followed by filling the cosolvent solution into soft capsules;
- This approach has been utilized in several commercial formulations, with PEG 400 most commonly used

#### Cyclodextrin complexation

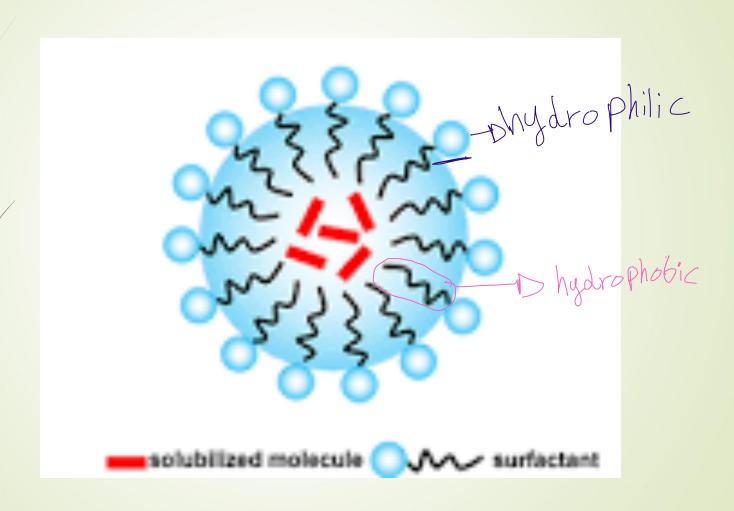
- Cyclodextrins (CDs) are natural cyclical oligosaccharides produced by enzymatic modification of starch. by bacteria
- They are composed of glucopyranose units which form a ring of six (α-CD), seven (β-CD) or eight (γ-CD) units.


### Formulation approaches to improving drug bioavailability Lipophilics1921 chrisi\* hydrophobic a-1, iso


hydrophobic a 15,00%

Lipophilic 4 loz cio \*

#### Cyclodextrin complexation


- The outer surface of the ring is hydrophilic and the inner cavity is hydrophobic; they are often described as 'bucket-like' structures.
- Lipophilic molecules can fit into the cavity to form soluble inclusion complexes in aqueous solution.





#### Micellar solubilization

- The drug solubilization by surfactant micelles is a commonly used approach in aqueous liquid preparations to improve bioavailability.
- Surfactants may also be included for the same purpose in solid oral dosage forms.



#### Self-emulsifying drug delivery systems

- In self-emulsifying drug delivery systems, drug is solubilized in an oil/surfactant vehicle and filled into a soft capsule.
- On contact with gastrointestinal fluids, the contents form a microemulsion or nanoemulsion spontaneously.

#### Self-emulsifying drug delivery systems

- The emulsion droplets formed maintain drug in solution for a prolonged period even after dilution in gastrointestinal fluids.
- The small droplets have a high surface area facilitating rapid diffusion of drug from the dispersed oil phase into the aqueous intestinal fluids, enhancing drug absorption.

## Improving the bioavailability of drugs with poor permeability

#### **Permeation enhancers**

- The rate-limiting step for the absorption of BCS class III drugs is permeability, which can potentially be improved by using permeation enhancers.
- Permeation enhancers work to increase drug permeability mainly through
  - (i) the paracellular route by reversibly opening the tight junctions and/or
  - (ii) the transcellular route by altering membrane integrity through disruption of the lipid bilayer

# Improving the bioavailability of drugs with poor permeability

#### **Permeation enhancers**

- Numerous permeation enhancers are being investigated in clinical trials; these include:
- 1, surfactants,
- 2. bile salts,
- 3. medium chain fatty acids
  - ► Fatty acids and bile salts are mild surfactants that act by fluidizing the gastrointestinal membrane.
- 4. chelating agents (e.g. ethylenediamine tetraaceticacid; EDTA).
  - EDTA chelates calcium, thereby altering the tight junctions.

### Improving the bioavailability of drugs with poor permeability

#### **Permeation enhancers**

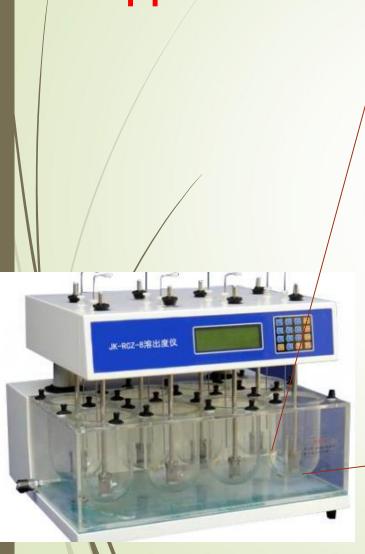
- They offer particular promise in the oral delivery of peptides and proteins.
- Semaglutide is a polypeptide indicated for adults with type 2 diabetes, which became available as a once-daily tablet formulation at the end of 2019 (Rybelsus).
- This product utilizes a small fatty acid derivative, sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC), as a permeation enhancer.

## Biopharmaceutical classification system (BCS)

The BCS categorizes drugs into four types depending on their solubility and permeability characteristics:

- Class I: High solubility—High permeability
  - Class II: Low solubility—High permeability
  - Class III: High solubility—Low permeability
  - Class IV: Low solubility—Low permeability

Assessment of biopharmaceutical properties


### Assessment of biopharmaceutical properties

Biopharmaceutics is concerned with the factors that influence the rate and extent of drug absorption, which include the factors that affect:

- 1. the release of a drug from dosage form and its dissolution in physiological fluids
- 2. its stability within those fluids
- its ability to cross the relevant biological membranes
- 4. its presystemic metabolism

- ☐ The solubility of a drug across the gastrointestinal pH range will be one of the first indicators as to whether dissolution is liable to be rate limiting in the absorption process.
  - The aim of dissolution testing is to measure an in vitro characteristic of a potential formulation that reflects its in vivo performance.
- Several pharmacopeial methods are used and their standards regarding apparatus design and operation are discussed in pharmacopeia which include:

**USP** Apparatus 1: Basket





#### **USP** Apparatus 2: Paddle



#### **USP Apparatus 4 (Flow-Through Cell)**





Useful for low solubility drugs

When designing a dissolution test to assess drug release from a biopharmaceutical perspective, it is important to mimic as closely as possible the conditions of the gastrointestinal tract.

Clinical scientists increasingly want to rely on dissolution tests to establish in vitro-in vivo correlations (IVIVCs) between the release of the drug from the dosage form and its absorption.

### Assessment of Drug Stability in physiological fluids

The stability of drugs in physiological fluids (in the case of orally administered drugs, the gastrointestinal fluids) depends on two factors:

- the chemical stability of the drug across the gastrointestinal pH range, i.e. the drug's pH stability profile between pH 1 and pH 8; and
- its susceptibility to enzymatic breakdown by the gastrointestinal fluids.

### Assessment of Drug Stability in physiological fluids

- The stability of a drug in gastrointestinal fluids can be assessed by using simulated gastric and intestinal fluids or by obtaining gastrointestinal fluids from humans or animals.
- In general, the drug is incubated with either real or simulated fluid at 37 °C for 3 hours and the drug content is analysed. A loss of more than 5% of the drug indicates potential instability

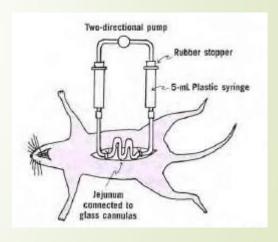
A wealth of techniques is available for either estimating or measuring the rate of drug permeation across membranes. These include:

- 1. Computational/ in silico
- 2. Physicochemical
- 3. Cell culture
- 4. Excised tissues
- 5. In situ studies
- 6. In vivo studies

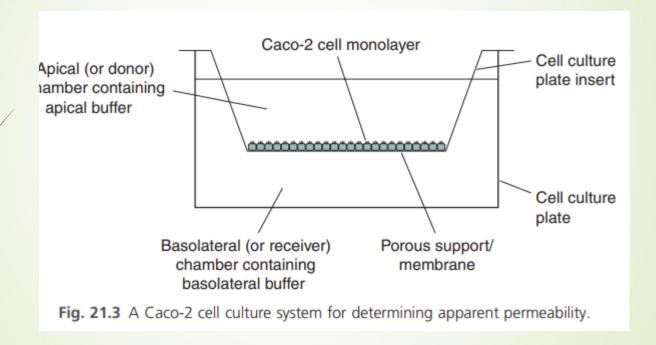
#### Some models available for predicting or measuring drug absorption

| Model type                | Model                    | Description                                                                                                                              |
|---------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Computation al/ in silico | clog P                   | Commercial software that calculates the n-octanol/water partition coefficient based on fragment analysis, known as the Leo Hansch method |
| Physico-<br>chemical      | Partition<br>coefficient | Measure of lipophilicity of a drug, usually measured between noctanol and aqueous buffer via a shake-flask method                        |
| Cell culture              | Caco-2<br>monolayer      | Measures transport across<br>monolayers of differentiated human<br>colon adenocarcinoma cells                                            |

Some models available for predicting or measuring drug absorption (continued)


|  | Model type        | Model              | Description                                                                |
|--|-------------------|--------------------|----------------------------------------------------------------------------|
|  | Excised tissues   | Cells              | Measures uptake into cell suspensions, e.g. erythrocytes                   |
|  |                   | Everted sacs       | Measures uptake into intestinal segments/sacs                              |
|  |                   | Isolated sheets    | Measures the transport across sheets of intestine                          |
|  | Perfusion studies | Intestinal<br>loop | Measures drug disappearance from perfusate of loop of intestine in animals |




Partition coefficient



**Everted sac** 



In situ rat intestinal absorption



### Assessment of Presystemic metabolism

- Presystemic metabolism occurs before a drug reaches systemic circulation, primarily in the gut wall and liver for orally administered drugs.
- Intestinal presystemic metabolism can be studied using gut wall homogenates, where drugs are incubated and analyzed for metabolic changes.
- Various liver preparations, including microsomes, isolated hepatocytes, and liver slices, are used to study hepatic metabolism