



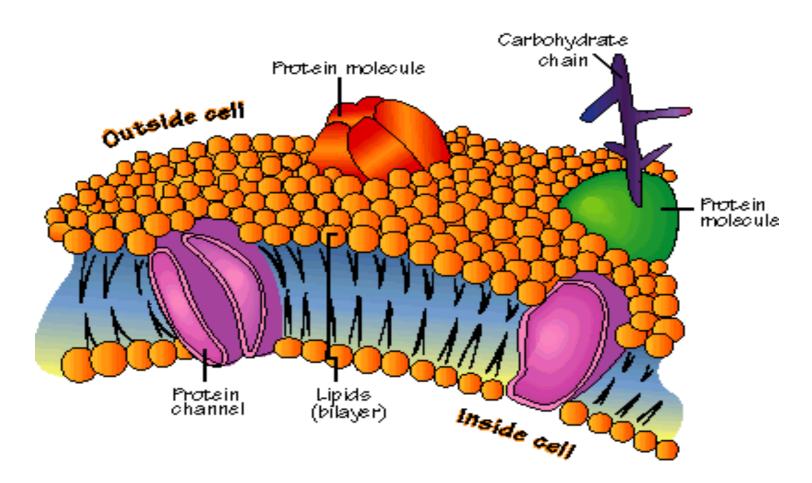

اسم الموضوع: Absorption

إعداد الصيدلاني/ـة: سارة سميح السبع



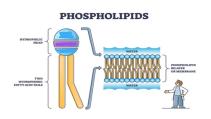





# Drug absorption

# Absorption

Main factors affecting oral absorption: الانتان Physiological factors. مجسم الانتان المناكم الرجل Physical-chemical factors. III Formulation factors. تعنيع الدواء ٢ الما خار عليه I Physiological factors affecting oral absorption: →1- Membrane physiology. 2- Passage of drugs across membranes. عانوالامتعاس الرئيسي في الآ الجهاز الهضب 3- Gastrointestinal physiology. Characteristics of GIT physiology and drug absorption وقت افراخی المعدی Gastric emptying time and motility


#### Physiological factors influencing bioavailability

#### 1- Membrane physiology:



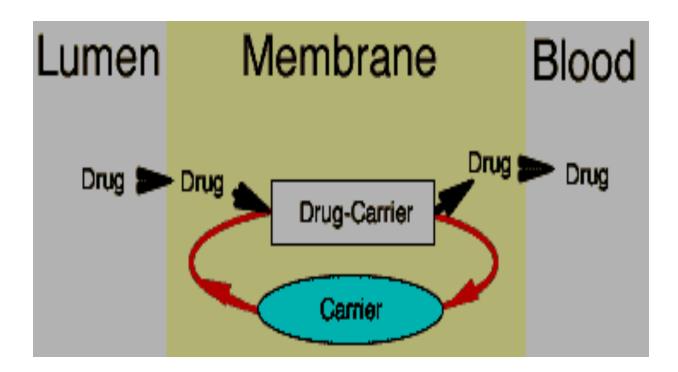
## 1- Membrane physiology

- The cell membrane is the barrier that separates the inside of the cell from the outside.
  - The cell membrane is made up of phospholipids, proteins, and other macromolecules. حنيات



- The phosopholipids make up a bilayer. It contains hydrophilic and hydrophobic molecules.

- The proteins in the cell membrane are located within the phospholipid bilayer.


## What is nature of biologic membrane?

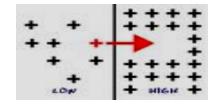
- So, the biologic membrane is mainly lipid in nature but contains small aqueous channels or pores.

## 2-Passage of drugs across membranes

#### 2—Transport across the membranes:

1- Carrier mediated:



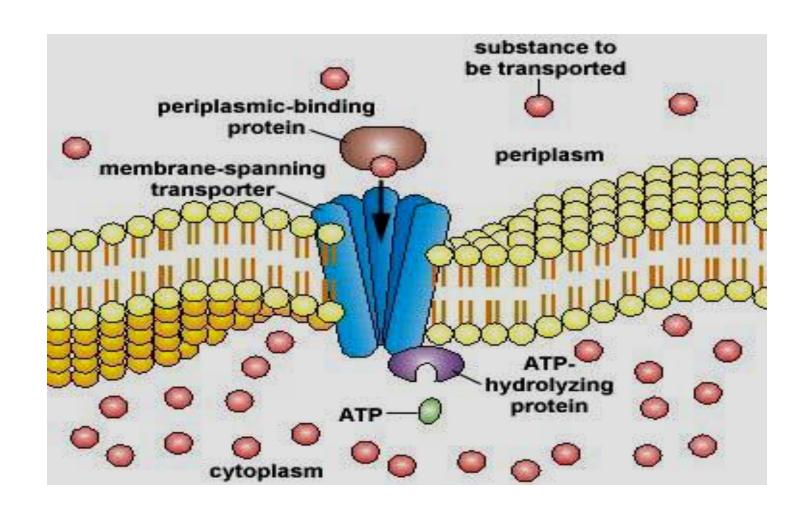

#### A- Active transport:

- A few lipid-insoluble drugs (e.g.5-flurouracil, L-dopa) that resemble natural physiologic metabolites (e.g. glucose, amino acids) are absorbed from the GIT by this process.

- Transport of a drug against concentration gradient (from regions of low drug concentrations to regions of high concentrations).

omight's

- It is an energy-consuming system.



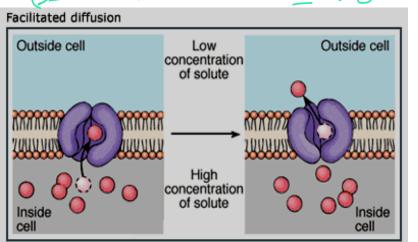

التمقائي

- The carrier molecule may be highly <u>selective</u> for the drug molecule, therefore, drugs of similar structure may compete for sites of <u>adsorption</u> on the carrier (competitive inhibition is possible)

هتوفره

- Because only a certain amount of carrier is <u>available</u>, all the adsorption sites on the carrier may become saturated if the drug concentration gets very high.




Carryer + Saturable

#### **B- Facilitated diffusion:**

-D lassive gassive de se d'unit

- Play a very minor role in absorption.
- A drug carrier is required but no energy is necessary. e.g. vitamin B12 transport.
- Saturable if not enough carrier and structurally selective for the drug and shows competition kinetics for drugs of similar structure.
  - No transport against a concentration gradient only downhill but faster.

ال أسقل (يعنى بنقل من اعلى توكيز لأقل تركير)

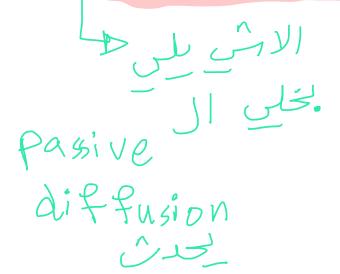


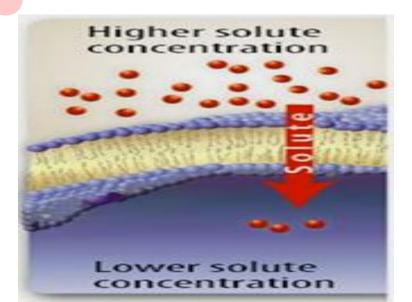
نشر الميسر

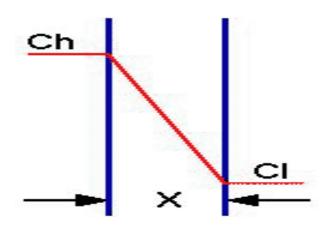
الانتشار الميسر يشبه الانتشار السلبي باستثناء أن البروتينات الحاملة المضمنة في الطبقة الثنائية للغشاء تسهل نقل المواد الكيميائية عبر الغشاء. فإن حركة المواد الكيميائية عبر الأغشية تكون من جانب التركيز العالي إلى جانب التركيز المنخفض دون إنفاق طاقة خلوية. الانتشار الميسر خاص إلى حد ما بالمواد الكيميائية القادرة على الارتباط ببروتين حامل. يحدث امتصاص العناصر الغذائية مثل الجلوكوز والأحماض الأمينية عبر الغشاء الظهاري للجهاز الهضمي عن طريق الانتشار الميسر. ونظرًا لأن عددًا محدودًا من البروتينات الحاملة متاح للنقل، فإن العملية قابلة للتشبع عند تركيزات عالية من المواد الكيميائية وقد يحدث التنافس عند تركيزات عالية من النقل بين جزيئات ذات بنية مماثلة .

#### **C- P-glycoprotein:**

- P-glycoprotein transporters (PGP) are present throughout the body including liver, brain, kidney and the intestinal tract epithelia.


- Act as reverse pump generally inhibiting absorption.


- This is an active, ATP-dependent process.


عكس الامتصاص (يطلعول الدواء)

#### 2- Passive diffusion:

- Most drugs cross biologic membranes by passive diffusion.
- Diffusion occurs when the drug concentration on one side of the membrane is higher than that on the other side.
- The process is passive because no external energy is expended.
- The driving force for passive diffusion is the difference in drug concentrations on either side of the cell membrane.







#### **Diagram of Passive Transport with a Concentration Gradient**

-The rate of transport of drug across the membrane can be described by Fick's first law of diffusion:-

Fick's First Law, Rate of Diffusion  $\frac{dM}{dt} = \frac{D \cdot A \cdot (Ch - Cl)}{x}$ 

• The parameters of this equation are:-

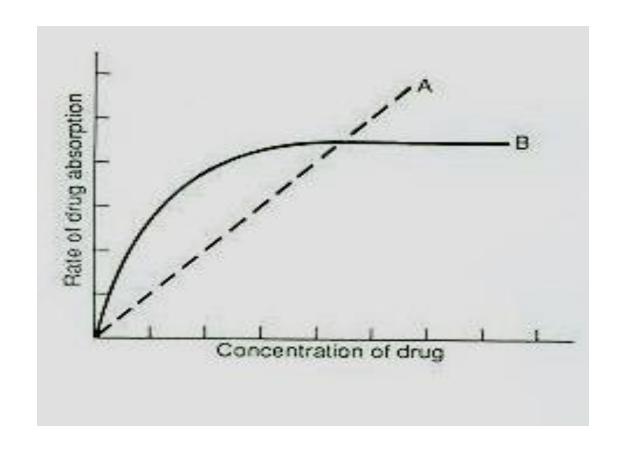
**D: diffusion coefficient.** This parameter is related to the size and lipid solubility of the drug and the viscosity of the diffusion medium.

As lipid solubility increases or molecular size decreases then D increases and thus dM/dt also increases.

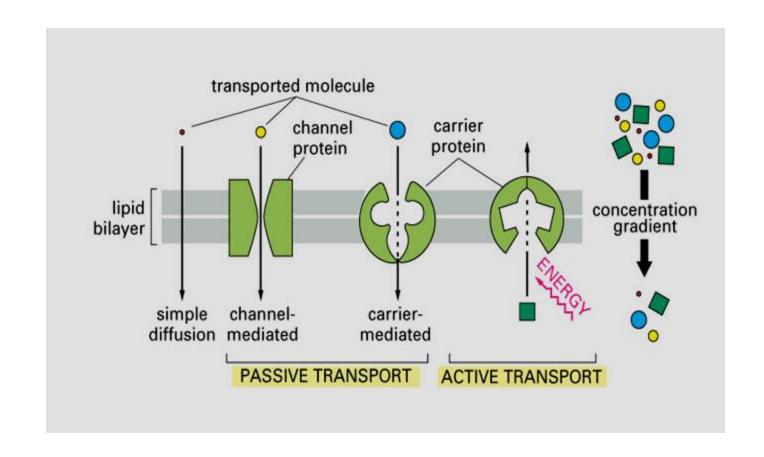
A: surface area. As the surface area increases the rate of diffusion also increase.

The surface of the intestinal lining (with villae and microvillae) is much larger than the stomach. This is one reason absorption is generally faster from the intestine compared with absorption from the stomach.

x: membrane thickness. The smaller the membrane thickness the quicker the diffusion process. As one example, the membrane in the lung is quite thin thus inhalation absorption can be quite rapid.


رق م

#### (Ch -Cl): concentration difference.


The drug concentration in blood or plasma will be quite low compared with the concentration in the GI tract. It is this concentration gradient which allows the rapid complete absorption of many drug substances.

Normally Cl << Ch then:-</li>

$$rac{dM}{dt} = -rac{Dullet Aullet Ch}{x}$$
constant, ka



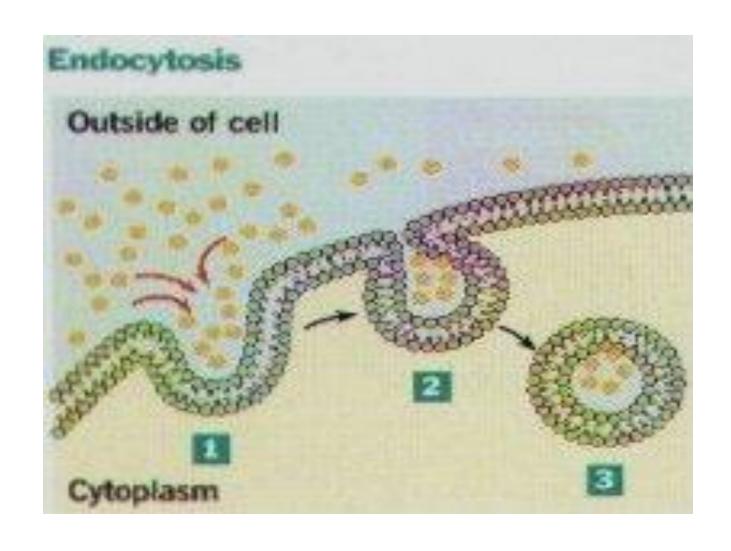
Relationship between drug concentration and absorption rate For a passive process (Curve A) and for a carrier-mediated Process (Curve B).



**Illustration of Different Transport Mechanisms** 

3- Vesicular transport:

- It is the process of engulfing particles or dissolved materials by the cell.


- Pinocytosis and phagocytosis are forms of vesicular transport that differ by the type of material ingested.

Pinocytosis: refers to the engulfment of small molecules or fluid.

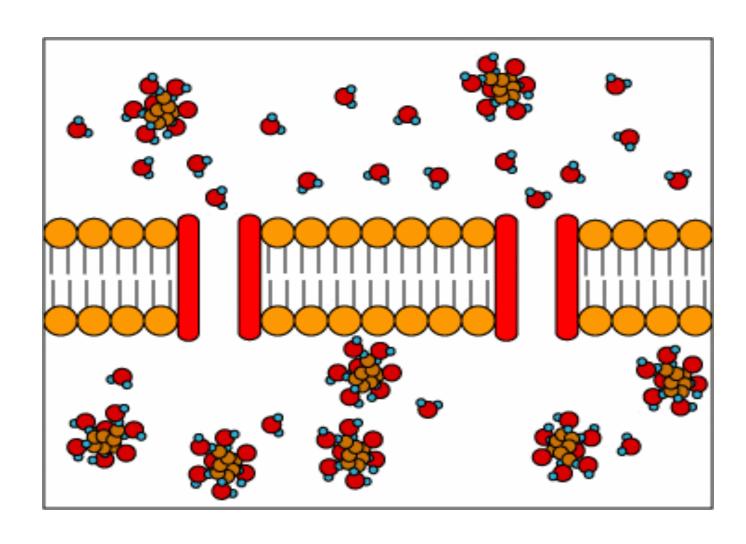
Phagocytosis: refers to the engulfment of larger particles or macromolecules.

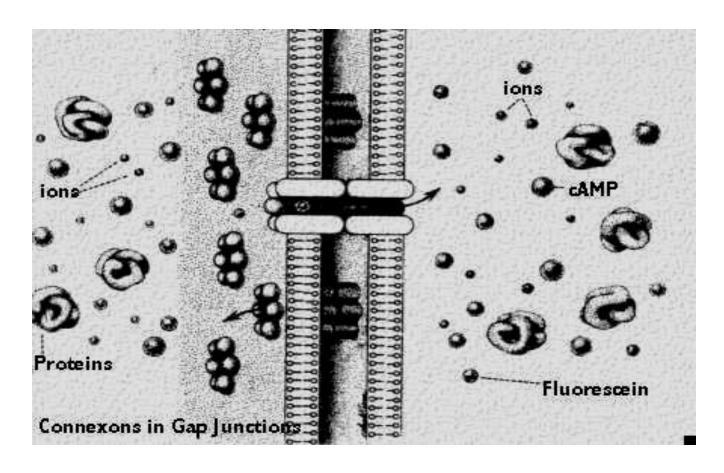
- During pinocytosis or phagocytosis, the cell membrane invaginates to surround the material, and then engulfs the material into the cell. Subsequently, the cell membrane containing the material forms a vesicle or vacuole within the cell.

- Vesicular transport is the proposed process for the absorption of Vitamin A, D, E, and K, peptides in new born.  $\triangleright \triangleright \vdash \nvdash A$ 



#### 4- Pore (convective) transport:





- A certain type of protein called transport protein may form an open channel \*\*across the lipid membrane of the cell.
- Very small molecules, such as urea, water and sugars are able to rapidly cross the cell membrane through these pores.

#### 5- Ion pair formation:

- Strong electrolyte drugs are highly ionized or charged molecules, such as quaternary nitrogen compounds.
- These drugs penetrate membranes poorly. When linked up with an oppositely charged ion, an ion pair is formed in which the overall charge of the pair is neutral. This neutral complex diffuses more easily across the membrane.
  - e.g. the formation of an ion pair for propranolol (basic drug) with oleic acid.

# Transport of Substances Across a Membrane by Channel Proteins





Mechanism of ion pair transport of drugs