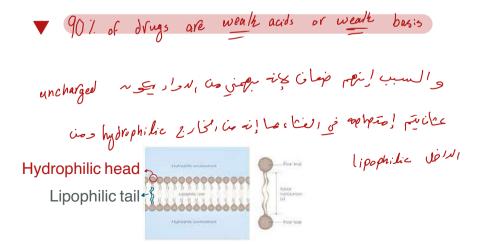


إعداد الصيدلاني/ــة: ياسمين خليل

Drug Absorption

- الفه ألى بنده العمال , 25 را المحارية (إنك أ
- الم. وقع أي مناخذها مد ما بهرامها إمتهاص المرادوي ال


directly distribution of Ly

Presented by Dr. Muna Oqal

Absorption = from the site of administration but mainly from small intestine

Main factors affecting oral absorption:

- I. Physiological factors
- II. Physico-chemical factors
- III. Formulation factors = drug add itives

Physico-Chemical Factors Affecting Oral Absorption

DRUG ABSORPTION: It is defined as the process of movement of unchanged drug from the site of administration to systemic circulation.

```
متهمة ، عامد أعرف و من كازم أو جل لدواد ، وعكر الأدورة الحاصية أكار بدنا نومهما ليقة عامضة عداء يتحسن
A- pH-partition theory
```

- مجمعی تکور انمام مام العارض الحسم د فلال ما جی الحسم ا دورها B- Lipid solubility of drugs الك المنظم ومن الرسم بالي شكال الإمراء ح
- C- Dissolution and pH from large granule to fine granule to fine granule to fine
- D- Drug stability and hydrolysis in GIT
- بعها ي العربية الهين ونها نوني مرعب العربية الهين ونها العربية الهين ونها العربية الهين ونها العربية العربية إحتمالها الولية العربية إحتمالها الولية العربية إحتمالها الولية العربية tetracydine vio 210!
- F- Adsorption

only from the surface

سفوف إنه عنامه يمس إحتمام م) للدواء كازمه يحترم العناء، Where I adsorption to absorption from by when the com عن طريع الطودوم الحابة الإعتراء

- W/8, 2/801 spil ملى الله عليه رسلم .

A. pH - Partition Theory wealth bases I hipid soluble = unionized

فلا المعدة عم عاطماه lipid فالإن الافاد يكوم داراً في الاجوم سام يخترمها

- According to the pH-partition hypothesis, the gastrointestinal epithelia acts as a lipid barrier towards drugs which are absorbed by passive diffusion, and those that are lipid soluble will pass across the barrier.

 no ATP + no carriers
- As most drugs are weak electrolytes, the unionized form of weakly acidic or basic drugs (the lipid-soluble form) will pass across the gastrointestinal epithelia, whereas the gastrointestinal epithelia is impermeable to the ionized (poorly-lipid soluble) form of such drugs.

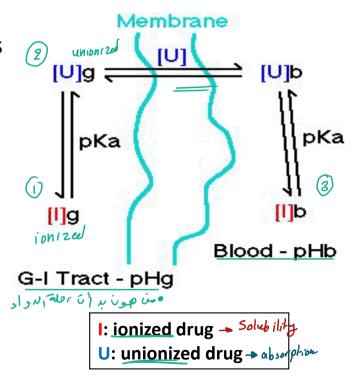
الي رج يحدلي في من إحتما من من الدواء الي د فل الحبسم ، هو عدد جزيرًان الدواء غير المستحونة أكبر [كانه جم الي - Consequently, the absorption of a weak electrolyte will be determined by the

- Consequently, the absorption of a weak electrolyte will be determined by the extent to which the drug exists in its unionized form at the site of absorption.
- The larger the fraction of drug is in the unionized form at a specific absorption site, the faster is the absorption.

A. pH - Partition Theory

drug transfer or drug absorption

الأنعاء د هنية ي بدنا يبي ن له المعنى بي مله المعنى بي المعنى بي المعنى بي المعنى بي المعنى المعنى


- 1. The dissociation constant (pKa) of the drug.
- 2. The lipid solubility of the unionized drug.
- 3. The pH at the absorption site.

Ionization state:

<u>Unionized state</u> is important for passive diffusion through membrane so important for <u>absorption</u>.

· Tapo

lonized state is important for **solubility**.

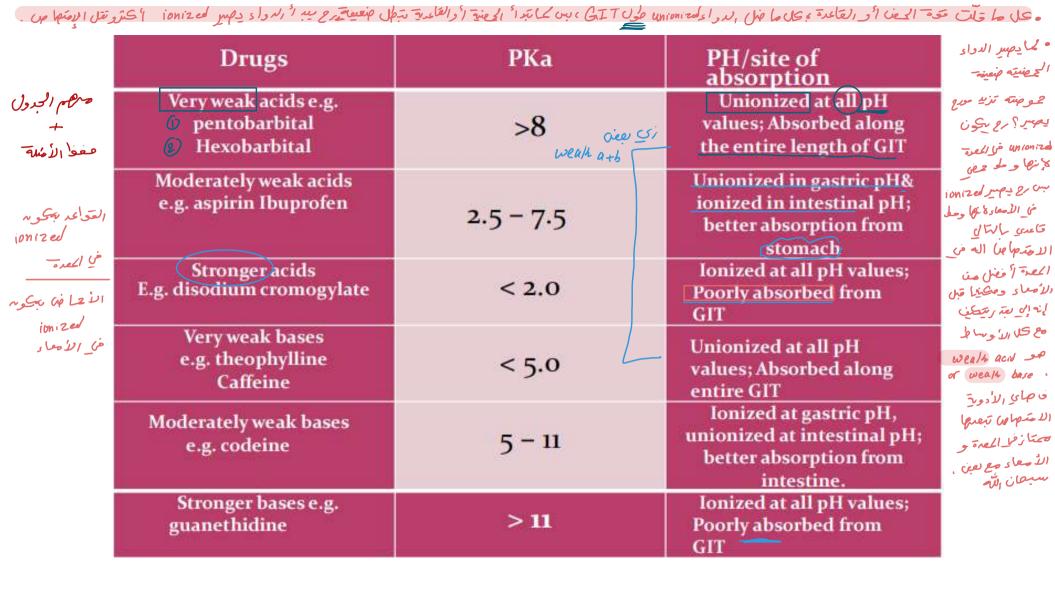
الدواء رع بدخل أول إش على بيئة حالية GIT فبده يجوم المصادة بعد من ينتقل الى الأمعاد وفلا يا

wealth acid / base is so love, pisted so mist

Diagram Showing Transfer Across Membrane

• The fraction of drug in solution that exist in the unionized form is a function of both dissociation constant of the drug and the pH of the fluid at the absorption site and it can be determined by Henderson- Hasselbach

```
pH = pKa + log [ionized form]
[Unionized form]


pH = pKa + log [unionized form]
[ionized form]
```

equation: -

For, Acidic drugs الدڪئرة مڪتماره يجمع عليهم السئلة عل For, Basic drugs

Where quantities in square brackets represent the concentrations of the species at equilibrium

- The dissociation constant is often expressed for both acids and bases as pKa (the basic logarithm of the acidic dissociation constant).
- The lower the pKa of an acidic drug, the stronger the acid i.e., greater the proportion of ionized form at a particular pH. The higher the pKa of a basic drug, the stronger the base.

Limitations of the pH-partition Hypothesis

- Despite their high degree of ionization, ionized and unionized forms of weak acids are highly absorbed from the small intestine and this may be هولا به كيلاهين ليم إمدّهما به الماره و شوهم الأسان؟ due to:
- 1. The large surface area that is available for absorption in the small مساعة الطيع الكبيرة للأمعاد + بعباء الدواد فترة كبيرة فيهما • بنعرف أكيد إنه إمتهاما المدوية منعيفة المامية
- To me l'and + 18 l' 1 sec 8 amor desperante 2. A longer small intestine residence time. د ﴿ المواد ومِن فيها فترة على له ما لتاك بنختارالامتمام في الأمعاء
- 3. The unstirred layer (a layer of fluid overlying the surface cells of the mucosa of the small intestine).
- المجانف عوسیر. Iower than that of the luminal pH of the small intestine 4. Microclimate pH, that exists on the surface of intestinal mucosa and is

P جدران الا وعاء الأقل من unionizal form dwy plans فل الحدران الحيرمن الومط

في أدوية عنى يعالة unioni lei 800 hero! lermano

B. Lipid Solubility of Drugs

dissolve - act skf-uils capei facilitate also meens quil's corpies

لوكان دائمة الموادم الماء 50

- >Ideally for optimum absorption, a drug should have sufficient aqueous solubility to dissolve in fluids at absorption site and lipid solubility high enough to facilitate the partitioning of the drug in the lipoidal membrane i.e. drug should have perfect Hydrophilic—lipophilic balance (HLB) for optimum Bioavailability.
- Some drugs are poorly absorbed after oral administration even though they are nonionized in small intestine. Low lipid solubility of them may be the reason.
- The best parameter to correlate between water and lipid solubility is partition coefficient.

Partition coefficient (p) = [L] conc / [W] conc

where, [L] conc is the concentration of the drug in lipid phase.

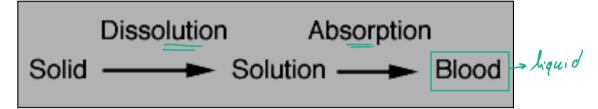
[W] conc is the concentration of the drug in aqueous phase.

لى الماتح أكسم واحد سكير، إذا هو دالم في المعوم الكيرمن الماء وإداكانت المقلمة واحكير إذا العكس

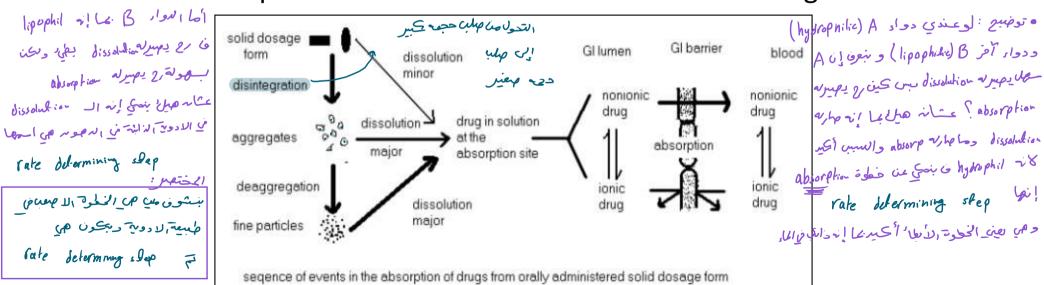
The higher p value, the more absorption is observed

0.52 mgen 52.0

فإن في = م = 0.96


و هي فيه ا ويد من إ

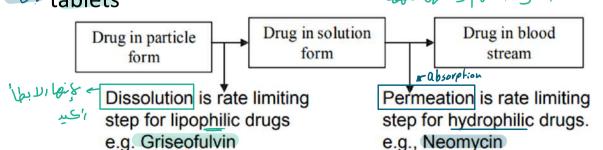
دائبية في المهون عداميكون المنافح 1


مستحیل یومیر مان انه به مان انه به مان انه به مان انه به ینتشر با انه ینتشر با انه

Many drugs are given in solid dosage forms and therefore must dissolve before absorption can take place (dissolution step).

عشاء سم إمتما به

Dissolution is the process of solubilization of a substance in a given solvent.



C. Drug Dissolution المتحل من جلب إلى سائل مع تشبيت عوامل عدة، وهي :

Drug dissolution rate is the amount of drug that goes into solution per unit time under the standard conditions of temperature, pH, solvent composition and constant **Y**solid surface area.

نى ما مكمنا خوص إن الأبطأ هوالى يحدوب به-

- If dissolution is the slow, it will be the rate determining step (the step controlling the overall rate of absorption) then factors affecting dissolution will control the overall هاي طبعة حا نية حول بدواد والـ process. كالمان عبية على بدواد والـ
- Drug dissolution is considered to be diffusion controlled process through a stagnant layer surrounding each solid particle.
- particle. المائع معلقات في المبارة معلقات على المائع معلقات على المائع معلقات على المائع معلقات المائع الم عفط الترتي مهم وسهل مهم tablets

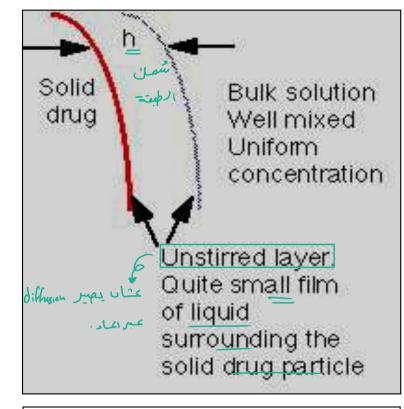
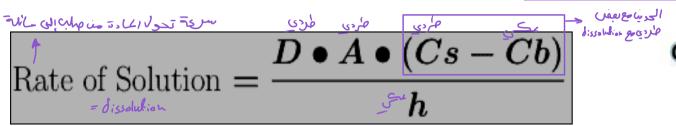
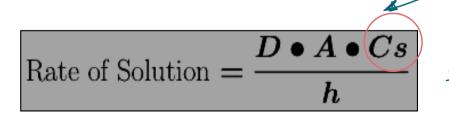
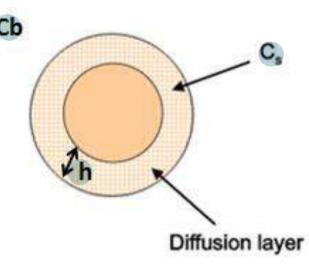




Diagram Representing Diffusion through the Stagnant Layer


- The dissolution of drugs can be described by the **Noyes-Whitney equation**:

- Where D: is the diffusion coefficient
- A: the surface area
- Cs: the solubility of the drug
- Cb: the concentration of drug in the bulk solution
- h: the thickness of the stagnant layer.
- If Cb is much smaller than Cs then we have so-called "Sink Conditions" and the equation reduces to C_5

ا لفيناها كاه كايكون كندى تركيرالدواد بالدافل كبير وبالمارج ومع بالتالي ها اسها تأنير


```
lipid + size + viscosity : céntres

solubility drug of media
```

Where D: is the diffusion coefficient

مساعة العلي الموف بأنه إلى الأوب نبها [كل ما كان عبم الدواء المعفر كل العلي المعادية المعالى علي علي ما كانت ما حة عليه أنكي]

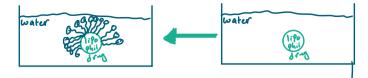
دَانْهِةَ الدواديم، سواء تَمَ ذَا نَبْرَةَ المِحَوَانَ اله عنه مُعَمَّ وَلَيْ تَلُوهُ اللهِ عنه الدواء عنه الدواء) the solubility of the drug دَانْهِةَ الدعن المحمدة الدواء)

Cb: the concentration of drug in the bulk solution مواده و ملك من عنا الملكة عنا الملكة المرواد على المرواد ا

If Cb is much smaller than Cs then we have so-called "Sink Conditions" and the equation reduces to

Factors affecting drug dissolution in the GIT:

- Physiological factors affecting the dissolution rate of drugs:
- The environment of the GIT can affect the parameters of the Noyes-Whitney equation and hence the dissolution rate of a drug.


A- Diffusion coefficient, D:

- Presence of food in the GIT increase the viscosity of the gastrointestinal fluids reducing the rate of diffusion of the drug molecules away from the

diffusion layer surrounding each undissolved drug particles (UD)

decrease in dissolution rate of a drug.

high viscosity - low diffusion - low dissolution

B- Drug surface area, A:

Surfactants in gastric juice and bile salts ———— increase the wettability of the drug so this would increase the drug solubility via micellization. عليه المواد يمل المام وموادا

الماني مَرَبَهِ المِهُ آلِمِهِ إلَهُ وَالدَّادِ وَالمَائِيةَ بَهُمِلُ عَارِجِ عَمَامُ عِلِمَا لِمُوادِ الدَّهِن بَصِيرِ قَادَر يَضِلُ عَلَى الْمَاءُ عَادَيَ عَمَامٍ C. The thickness of diffusion layer, h:

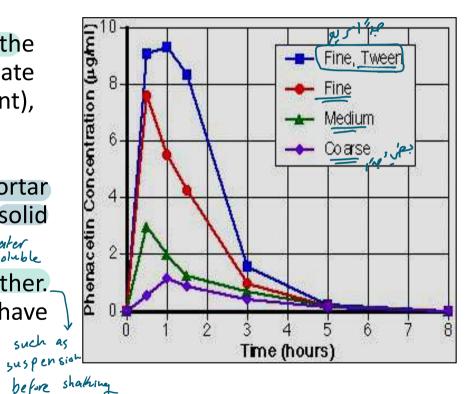
An increase in gastric and/or intestinal motility decrease the thickness of diffusion layer around each drug particle ——— increase the dissolution rate of a drug.

حسب لدوادياله لهلعتا وراحت للماد

D. The concentration, C, of drug in solution in the bulk of the gastrointestinal fluids:

Increasing the rate of removal of dissolved drug by absorption through the gastrointestinal-blood barrier and increasing the intake of fluid in the diet will decrease in C rapid dissolution of the drug. توجون راح يظهرها المحادات المحادا

الدواء في الماد أقل من صعة لدواد ع) وقبل المالية كالماد أقل من صعة لدواد ع) وقبل


بتحصا الدواد وليين الحيسم

II. Physicochemical factors affecting the dissolution rate of drugs:

A- Surface area, A: dissolution rate < Us 2 de and a par as a los appendientes des

■ The smaller the particle size — the greater the effective surface area of drug particle (More intimate contact between solid surface and aqueous solvent), the higher the dissolution rate.

- Methods of particle size reduction include: mortar and pestle, mechanical grinders, mills, solid dispersions in readily soluble materials (PEG's). water soluble
- However very small particles can clump together. Therefore a wetting agent such as Tween 80 can have a beneficial effect on the overall absorption.

رح نتصنع طبات/ادواد إرجاعية عِدًا مِنَ إِنَّهَا نَهْعَ عَا، مَعِيْنَ و تَعِيلُ : ي كُتِلَةً

B-Diffusion coefficient, D:→

medium.

The value of D depends on the size of the molecule and the viscosity of the dissolution

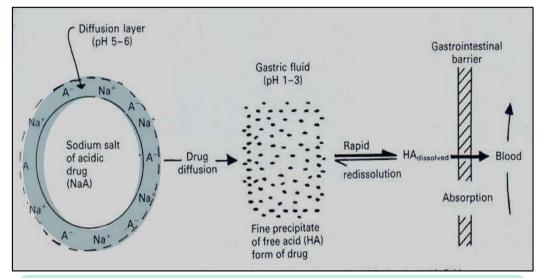
في المحمول بع صبة لدواد

ع مان الدوار عليمن جبي الدوار المنارج لازم سي معنه و ذالبية من المصر الم

3 lipid solubility of

gruey (4,26)

C-Solubility in the diffusion layer, C.

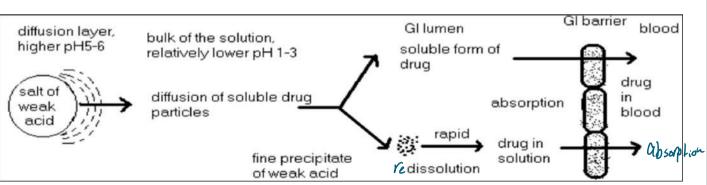

- The dissolution rate of a drug is directly proportional to its intrinsic solubility in the diffusion Tails and is one is 19, let I be is elps active componed, acc layer surrounding each dissolving drug particle.

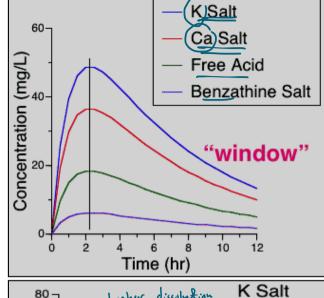
increases dissolution rate

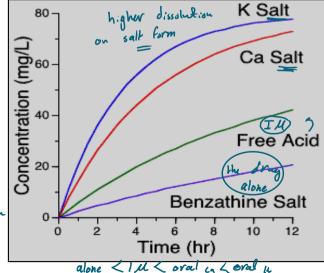
D-Salt forms of the drugs:

- Salts of weak acids and weak bases generally have much higher aqueous solubility than the free acid or base. unionized lei 8
- The dissolution rate of a weakly acidic drug in gastric fluid (pH 1-3.5) will be relatively low.
- If the pH in the diffusion layer increased, the solubility, C_s of the acidic drug in this layer, and hence its dissolution rate in gastric fluids would be increased.

- The pH of the diffusion layer would be increased if the chemical nature of the weakly acidic drug was changed from that of the free acid to a basic salt (the sodium or potassium form of the free acid).
- The pH of the diffusion layer would be higher (5-6) than the low bulk pH (1-3.5) of the gastric fluids because of the neutralizing action of the strong (Na+, K+) ions present in the diffusion layer.
- The drug particles will dissolve at a faster rate and diffuse out of the diffusion layer into the bulk of the gastric fluid, where a lower bulk pH.
- Thus the free acid form of the drug in solution, will precipitate out, leaving a saturated solution of free acid in gastric fluid.


Dissolution process of a salt form of a weakly acidic drug in gastric fluid.


This precipitated free acid will be in the form of:


- very fine, non-ionized, wetted particles which have a very large surface area in contact with gastric fluids, facilitating rapid re-dissolution when additional gastric fluid is available.

■ Salt form of drug: At given pH, the solubility of drug, whether acidic/basic or its salt, is a constant. While considering the salt form of drug, pH of the diffusion layer is important not the pH of the bulk of the solution.

- One example for the effect of salt form on the dissolution rate of drug is the dissolution and bioavailability profiles of Penicillin V with various salts.
- These results might support the use of the benzathine or procaine salts for IM depot use and the potassium salt for better absorption orally.

[]: drug partides 1: water

Crystalline

tien , beli m

E- Crystal form:

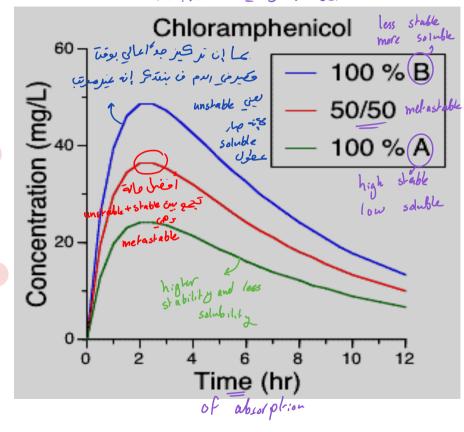
1- Polymorphism:

- Some drugs exist in a number of crystal forms or polymorphs. These different forms may different physical properties include solubility properties and thus different dissolution characteristics.
- Chloramphenicol palmitate is one example which exists in three crystalline forms A, B and

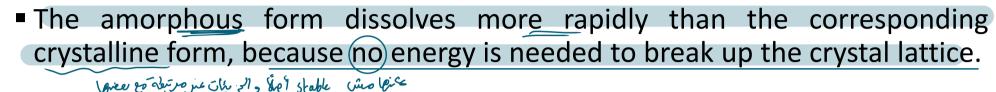
is the stable polymorph

is the metastable polymorph (more soluble) - lower biow

is the unstable polymorph - higher bioav


most soluble

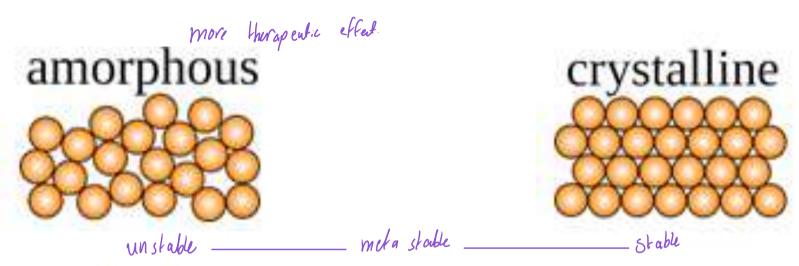
كل مارادت الغراعات بين عن غات الدواء جار مهار مها تعرف المرجلية والماد وتعزب إلمالي هي أقل عامه الحدا إنه الماد amorphas - more soluble ve along love sion


کیا بدی افزن الدواد ومیکون عفر صعرف المفارون این تخربه ؛ رح الخاله عماله الماله المعالی المع

هل صكنا جدول الخاصين يحتمعوا من دواد والدع كا

- The plasma profiles of chloramphenicol from oral suspensions containing different proportions of polymorphic forms A and B were investigated.
- The extent of absorption of Chloramphenicol increases as the proportion of the polymorphic form B is increased in each suspension.
- This is attributed to the more rapid dissolution of the metastable polymorphic form (B)
- Shelf-life could be a problem as the more soluble (less stable) form may transform into the less soluble form (more stable). صسروم على الم أويه

2- Amorphous solid: dissolve faster than crystalline



■ The more soluble and rapidly dissolving amorphous form of novobiocin antibiotic was readily absorbed following oral administration of an aqueous suspension to humans. However, the less soluble and slower-dissolving crystalline form of novobiocin was not absorbed (therapeutically ineffective).

متتدول الى عاد الما عن عربيه الطون مثل حاد ، حواد ، مطعات ، .. و حكينا كانه ميما فراغان مالما لي عن عربيه الطون المحكون المح مستال

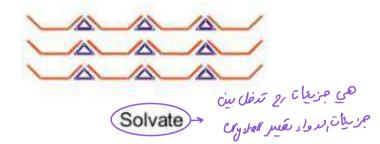
■ The amorphous form of novobiocin slowly converts to the more stable crystalline form, with loss of therapeutic effectiveness.

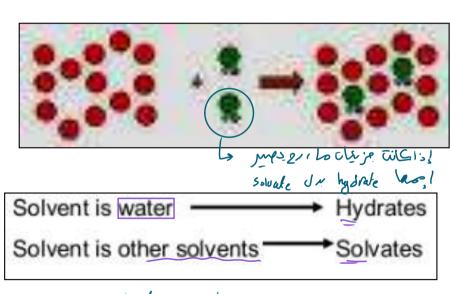
Lause it converts into crystalline Crystalline crystalline crystalline

Amorphous form

More soluble Rapidly dissolving Readily absorbed

Crystalline form

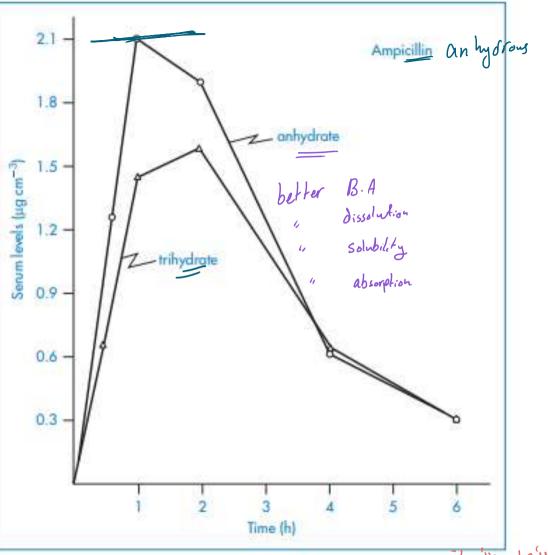

Less soluble Slower dissolving Not absorbed to significant extent


crystal zer 21 28 solubition de l'îl ûs soluble e more stable estable estable

C. Drug Dissolution

3- Solvates and hydrates:

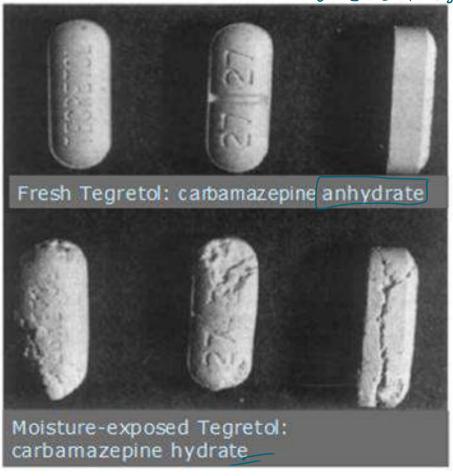
- Solvates: If the drug is able to associate with solvent molecules to produce crystalline forms known as solvates.
- The solvent trapped is known as solvent of crystallization.
- The solvates may exists in varying crystalline forms known as pseudopolymorphs and the phenomenon is known as pseudopolymorphism.
- **Hydrates**: drug associates with water molecules.
- The greater the solvation of the crystal, the lower are the solubility and dissolution rate in a solvent identical to the solvation molecules.

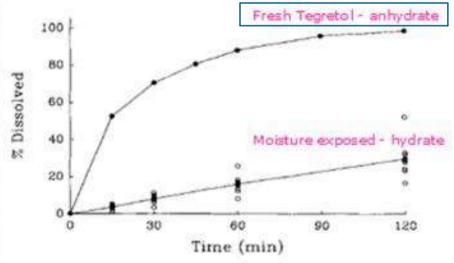

more solvation = less soluble = more stable

- high B.A ما المتمله المتمله المارة على المتمله المارة على المتمله المارة على المتمله المارة على المتمله 4-Anhydrous: Drug is not associated with water
- The anhydrous forms have higher energy states, higher aqueous solubilities, dissolves at faster rate and hence exhibit higher bioavailability. م في م ماد عالمه الح ومارزي الم سيال مع الماد

Ex: anhydrous ampicillin more soluble than their hydrous form

- Monohydrate and Dihydrated: drug is associated with one and mono is less stable than bi, so it'll has higher more water molecules respectively.
- The faster-dissolving anhydrous form of ampicillin was absorbed to a greater extent from both hard gelatin capsules and an aqueous suspension than was the slower-dissolving trihydrate form.


an hydrous Mono D; Tri-


اللهم اعفرني ولوالدي والمسلمين وللسلال الأجاء والاسوات

C. Drug Dissolution

: اللق عاعام (ت الله بج نيس من النولا على ت النولا على الله بج

o Hydrates may reduce () o solubility 2,0 dissolution rate

جزیدات ایماء حربته ، راهیه.

D- Drug Stability and Hydrolysis in GIT

- Drugs that are susceptible to acidic or enzymatic hydrolysis in the GIT, suffer from reduced bioavailability. مم مه تحسن مسا سه الدوارمن إنزعان الوحل
- How to protect drugs (erythromycin) from degradation in gastric fluid ??

sles & July he such Took Low I -a Le

1) Preparing enteric coated tablets containing the free base of erythromycin. The enteric coating resists gastric fluid but disrupts or dissolves at the less acid pH range of the small العبة الحبة في الأصاء وهيل intestine.

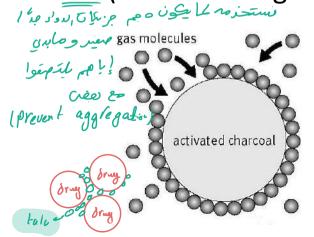
Coating us bains up resin

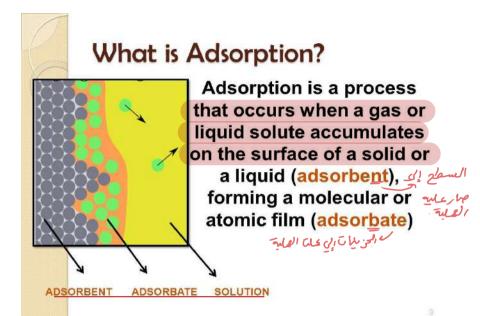
the small intestine to be absorbed.

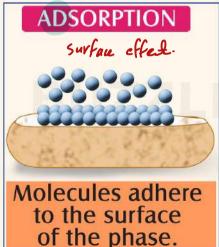
(erythromycin stearate) exhibit limited solubility in gastric fluid, but liberate the drug in ع ا ية من الإنزعان

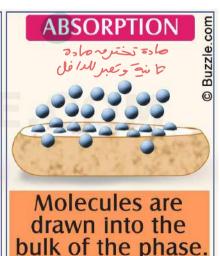
ا على من الاوتقام وهكن هستاه إذا كالدرائيس وهك الاواد الحسم الدوي على الاوتمالان على الاوتمالان على الاوتمالان المنظمالان المنظمالا

Complexation of a drug may occur within the dosage form and/or in the gastrointestinal fluids, and can be beneficial or detrimental to absorption.

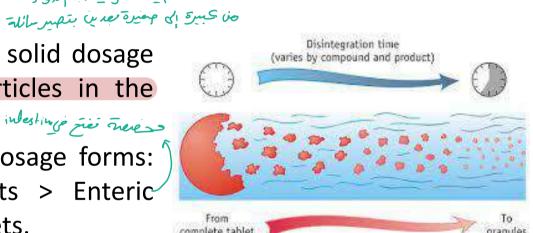

1- Intestinal mucosa (mucin) + Streptomycin = poorly absorbed complex

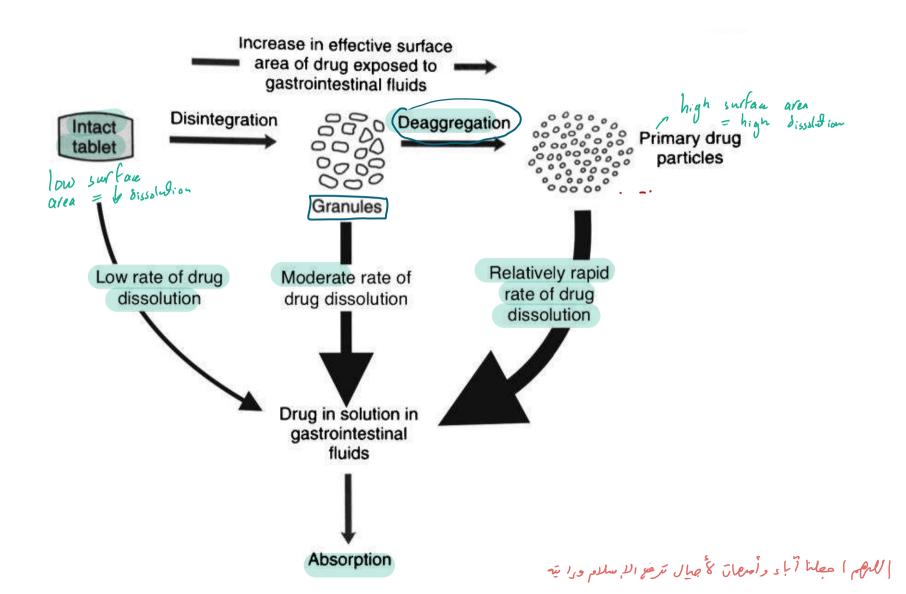

- 2- Calcium + Tetracycline = poorly absorbed complex (Food-drug interaction)
- 3- Carboxyl methylcellulose (CMC) + Amphetamine = poorly absorbed complex (tablet additive drug interaction)
- 4- Lipid soluble drug + water soluble complexing agent = well-absorbed water soluble complex (cyclodextrin)


F-Adsorption absorption is the


- Certain insoluble substances may adsorbed co-administrated drugs leading to poor absorption.
- Charcoal (antidote in drug intoxication).

 و ين المام الم
- | Kaolin (antidiarrheal mixtures)
- Talc (in tablets as glidant)


Main factors affecting oral absorption:


- I. Physiological factors
- II. Physico-chemical factors
- **III. Formulation factors**

The role of the drug formulation in the delivery of drug to the site of action should not be ignored.

1. Disintegration time (DT):

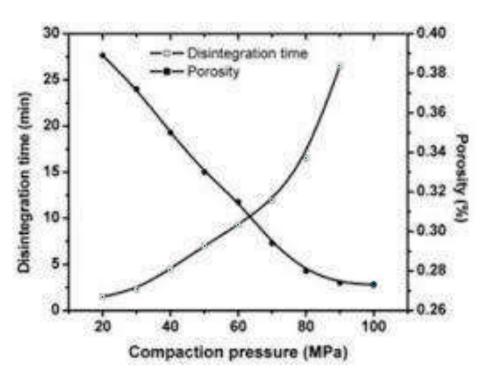
- It is defined as the time taken by the solid dosage form to breakdown into smaller particles in the body after their ingestion.
- Order of disintegration of the solid dosage forms: 'Capsules > Tablets > Coated tablets > Enteric coated tablets > sustained release tablets.
- It Harder the tablet, greater is its disintegration time.
- Disintegration of solid dosage forms can be enhanced by incorporating appropriate amounts of هي إلى بتمايي المعاديق عن المحاديات المحاديات عن المحدد عن ا

2. Manufacturing variables:

ineo solvent - silip / was icapes our our

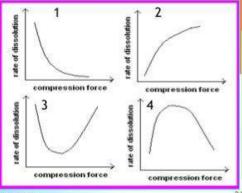
a) Method of granulation:

Wet granulation: enhance the dissolution rate of insoluble drugs by selecting a suitable granulating liquid.


b) Compression force: Sing solubility (8

- Direct compression: dissolution rate of tablets prepared by this method are higher than the wet granulation method.
- The effect of compression force should be thoroughly studied on each formulation:
- Increasing compression force yields a tablet with greater hardness and reduced wettability & hence have a long disintegration time (D.T).
- ➤ Whereas, using higher compression force cause crushing or fracturing of drug particles into smaller ones or convert the spherical granule into a disc-shaped particle with higher effective surface area, which result in decreasing in D.T, and increasing the dissolution rate of the tablet.

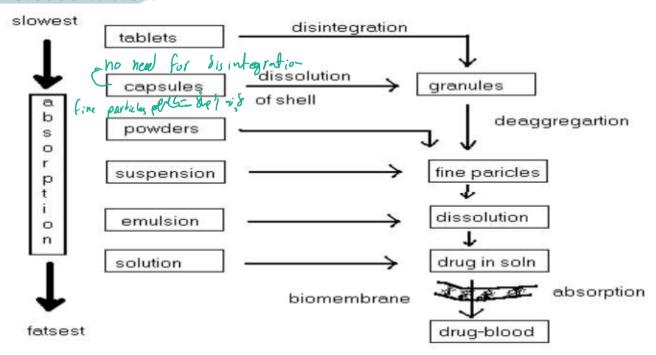
Method of granulation:


C) Dry granulation 25 15 min and 1216 16 is

- Dry granulation is typically used in the manufacture of tablets if the formulation ingredients are too fluffy or too susceptible to flowability problems for direct compression or too susceptible to degradation from heat and/or moisture for wet granulation.
- The process is sometimes chosen as an alternative to wet granulation when direct compression is not feasible not because wet granulation is not feasible but because the manufacturer is more experienced with dry granulation or to reduce processing time and/or equipment requirements to reduce costs.
- The manufacture of tablets by dry granulation method eliminates a number of unit operations but still include milling of drugs, weighing, mixing, slugging, dry screening, lubrication, and compression of granules into tablets.
- For successful manufacture of tablets using dry granulation, either the active ingredient or the diluent must have sufficient inherent binding or cohesive properties.

2. Compression force

- The compression process <u>influence density</u>, <u>porosity</u>, hardness, disintegration time & dissolution of tablet.
- The curve obtained by plotting <u>compression force versus</u> rate of dissolution can take one of the 4 possible shapes


- 1. tighter bonding increases hardness
- higher compression force cause deformation crushing or fracture of drug particle or convert a spherical granules into disc Shaped particle
- 3.& 4. both condition

Dissolution

29

3. Nature and type of dosage form

- Depending upon the nature and type of dosage form, the absorption pattern of a drug decreases in the following order
- Solutions > Emulsions > Suspensions > Capsules > Tablets Coated tablets > Enteric coated tablets > Sustained release tablets

السنفغ الله العظيم وأنعه إليه

III Formulation Factors Affecting Oral Absorption

A. Solution dosage form no need for dissolution (while)

- In most cases absorption from an oral solution is rapid and complete, compared with administration in any other oral dosage form.
- Some drugs which are poorly soluble in water may be:
- صادة ذا في تر المعوم (الما در الما در الما در الما در الما در الما در الما الما در ا
- 1. Dissolved in mixed water/alcohol or glycerol solvents (cosolvency)
- 2. Given in the form of a salt (in case of acidic drugs).
- 3. An oily emulsion or soft gelatin capsules have been used for some compounds with lower aqueous solubility to produce improved bioavailability.

Solution + emulsion re

B. Suspension dosage forms:

- A well formulated suspension is second to a solution in terms of superior bioavailability.
- A suspension of a finely divided powder will maximize the potential for rapid dissolution.

- A good correlation can be seen for particle size and absorption rate.
- The addition of a surface active agent (surfactant) will improve the absorption of very fine particle size suspensions.

me, Il lose i los illen

III Formulation Factors Affecting Oral Absorption Sudden releas Jose Sumping

C. Capsule dosage forms:

■ The hard gelatin shell should disrupt rapidly and allow the contents to be mixed with the GI tract contents.

ree so reput light ou of seif

■ If a drug is hydrophobic a dispersing agent should be added to the capsule formulation. These diluents will work to disperse the powder, minimize aggregation and maximize the surface area of the powder. التمامه ع: عات المواء عيام نزيد منا ولامتهام

Tightly packed capsules may have reduced dissolution bioavailability. می یادا جفطن رسی بسول ترمس العالی میات هی التا ی خلات B.A

D. Tablet dosage forms:

- The tablet is the most commonly used oral dosage form.
- It is also quite complex in nature.

4. Pharmaceutical ingredients (excipients)

- Excipients (eg. Lubricants, granulating agent, etc.) are added to a formulation to enhance functional properties to the drug and dosage form such as:
- > Improve the compressibility of the active drug.
- > Stabilize the drug against degradation.
- Decrease gastric irritation, etc.
- Excipients should be pharmacodynamically inert
- As more the no. of excipients being added in the dosage form, as more complexation and greater the potential for absorption and bioavailability problems. من اعرون عن المنفي على

الدواء كيس suris de di المتعالية معوية المتعالم عير! بيها مع نقل خائدتها الدراعة

Formulation Factors

4. Pharmaceutical ingredients (excipients)

a) Vehicle:

- Vehicles are used in parenteral and oral liquids preparations.
- Rate of absorption depends on its miscibility with biological fluid.
- Miscible solvents-rapid absorption of drug.
- Immiscible solvent-slow absorption of drug.

b) Diluents

Diluents are added to increase the bulk of the dosage form, especially in tablets and capsules.

Hydrophilic diluents-form the hydrophilic coat around hydrophobic drug particles — thus promotes dissolution and absorption of poorly soluble hydrophobic drug.

c) Binding Agents

- Although binders are incorporated to produce cohesive bonding between granules during the process of compaction of tablets.
- Hydrophilic binders are for enhancing the dissolution rate of poorly soluble drug. e.g. starch, gelatin,polyvinylpyrrolidone (PVP).
- More amount of binder increases hardness of tablet and decrease dissolution & disintegration rate.

d) Disintegrating Agents

- They are added to the tablet to disrupts the cohesive forces between the granules, thereby causing the breakdown of the tablet to attain faster dissolution.
- Mostly hydrophilic in nature, increase in disintegration increase the bioavailability.
- e.g.: Guar gum, Starch, Microcrystalline
 cellulose

disingration + binding agent

e) Lubricating Agents

- These agents when added to a tablet formulation to decrease the friction between the granules and die wall of the tablet press.
- Commonly hydrophobic in nature therefore inhibits penetration of water into tablet and thus dissolution and disintegration.

g) Complexing Agents

They increase the absorption rate of other drugs due to

- Formation of soluble complexes which enhances the dissolution.
- Increased the lipophilicity which enhances membrane permeability

f) Surfactants bile salf

They are commonly used in the formulations as solubilizers, emulsifiers, wetting agents etc.

At lower concentrations, they increase the rate of absorption of poorly water soluble drugs.

Physiologic surfactants like bile salts they promotes absorption

e.g.: Griseofulvin, steroids

h) Colorants

Water-soluble dyes even in least concentrations get adsorbed on the crystal faces and delay their dissolution rate.

e.g.: Brilliant blue retards dissolution of sulfathiazole.

5. Product age and storage Conditions:

Alterations in storage conditions and prolonged duration of storage of drug products may modify their physicochemical properties resulting in altered drug absorption patterns.

التربي لفترة على المراء بعربيا فترة على الموية ومنزها. والسب إنه الدراء بعربها فترة على العرب الموية ومنزها.