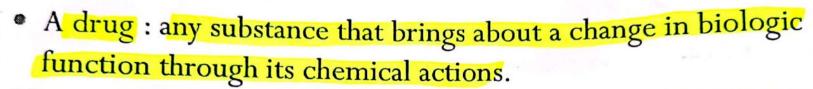

Pharmacology of Pharmacody namic: Science that study the Pharmacody namic: Science that study the Pharmacody namic: Science that study the Pharmacody name of the olivery of Response of our body

The word pharmacology is derived from the Greek words pharmakon (drug) to

and logia (the study of).


Pharmacology can be defined as the study of substances that interact with living systems through chemical processes, especially by binding to regulatory molecules and activating or inhibiting normal body processes.

مدلان وسل لحدث تأش في اكبس .

What is a drug?

• To achieve a beneficial therapeutic effect) on some process within the patient

Or for their toxic effects on regulatory processes in parasites infecting the patient.

Patient.

Patient.

Patient.

Patient.

Patient course infection in body.

Drugs may be synthesized within the body (eg, hormones) or may be chemicals not synthesized in the body (ie, xenobiotics, from the Greek xenos, meaning "stranger")

مادة وكافئة لمواد معنوة وي كلاو analogous و احل أعسامنا (normants)

* مق تعفيذ الدواد Response للذم يرتبط مع معقع محد في الحلية (Receptor)

Drug-receptor interaction

- Drug action is exerted mostly by interaction with receptors. Exceptions: O. Chemical antagonists : interact with molecule whithin the b Osmotic agents : interact with water molecule to execution a drug - receptor excretion out of the body * Response of drug & - inhibition of engine or process - activation of engine or process · Hepanine (negatively charged) · Protamine (Positive) H2 COSO3 H,COSO3 H,COR COO Heparin الم الحم الم Heparin's velous. NH HNSO3 0503 OH منخط المع (١٤٥). R= H or SO3 $R_1 = SO_3 \text{ or } COCH_3$
 - protamine sulfate.

roallmost it is protine in nature.

What is a receptor?

- The component of a cell or organism that interacts with a drug and initiates the chain of events leading to the drug's observed effects.
- · Receptors must be: (Properties to achive function)
- Modifiable, so as to bring a change in function upon ligand binding.
 - to ability to exert the pharmalogical effect.

ی مردی الحصله الحمد العمد الع

وسان تاش على الحبيا .

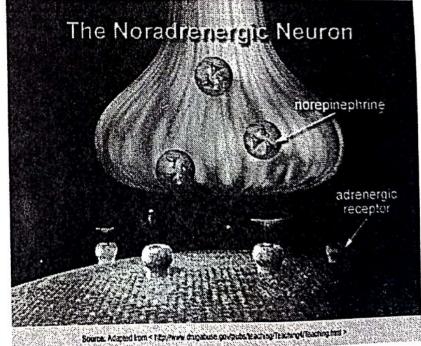
aisside continous pharmatogical de l'effect

- Most receptors are proteins.
- A few are macromolecule other than protein, such as DNA.

 http://www.atdbio.com/content/16/Nucleic-acid-drug-interactions

ن المربط على المربط ع

1. group binders to tow storands in cities with a comminer groups)


-6-3. alkylaters -> alkyl substitution on BNA. 4. Cleaver agents -> cutting of dauple strands.

- Drug receptors could be:
 - Regulatory proteins. eg, G-protein-coupled receptors (GPCR), the receptors for many neurotransmitters.
 - Enzymes. eg, dihydrofolate reductase, the receptor for the antineoplastic drug methotrexate.
 - Transport proteins. eg, Na+/K+-ATPase, the membrane receptor for cardioactive digitalis glycosides. (digoxin)
 - * Structural proteins. eg, tubulin, the receptor for colchicine, in muscles an anti-inflammatory agent.

 (ibo profen).

- Drug receptors could be:
 - Regulatory proteins. eg, G-protein-coupled receptors (GPCR), the receptors for many neurotransmitters. النواقل العصب

* and post-ganglionic neurons.

Macromolecular Nature of Drug Receptors * McMachanahan Convent dihydra falol

• Drug receptors could be: reclucture.

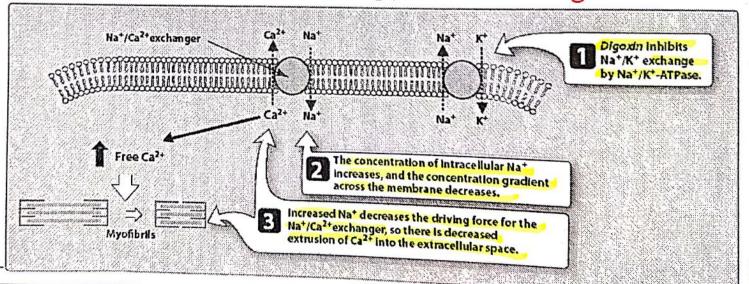
* methotrexate inhibit dihydrofold, exreductase enryme and shop DNA Pormation

• Enzymes. eg, dihydrofolate reductase, the receptor for the antineoplastic drug methotrexate.

Medscapes www.medscape.com Methotrexate cellular pharmacology targets for pharmacogenetic analysis shown in italics

retention

Image shows open bottle of


methotrexate drug - one of the first
chemotherapeutic drugs used in the
early 1950s

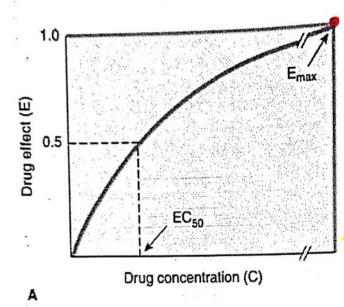
Danti cancer drugs.

Drug receptors could be:

Nat - Dextracellular.

• digoxin من المان ما المان المان من المان الما

- Drug receptors could be:
 - •
 - •


- Structural proteins. eg, tubulin, the receptor for colchicine, an anti-inflammatory agent.
- (o I chicine (gout) مرفی النقرص (gout) موفی النقرص (gout)

Relation between Drug Concentration & Response

1. Graded dose-response curve (concentration-effect curve): a graph of increasing response to increasing drug concentration or dose.

- Dose: related to drug conc.

Graded dose-response curve

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmac www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Presented graphically by a hyperbolic curve

مستمر السّائير بالدردياد مع ادياد الركتر حتى مع نقطة معينة مدالتركو ثم يصوي الزداد السّائير وتسيق طند الرسطة سي The relation between drug concentration and effect is described mathematically by the following equation:

$$E = \frac{E_{max} \times C}{C + EC_{50}}$$

C: drug concentration.

E: the effect observed at concentration C.

E_{max}: the maximal response that can be produced by the drug.

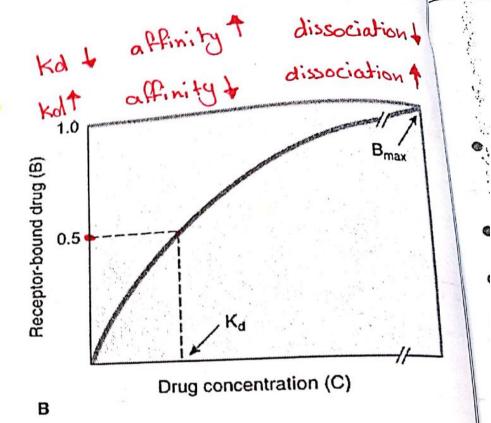
EC₅₀: the concentration of drug that produces 50% of maximal effect.

responses to low doses of a drug usually increase in direct proportion to dose. As doses increase, however, the response increment diminishes; finally, doses may be reached at which no further increase in response can be achieved.

ا عند اذطر . Canc ، ا عثر من التركيز عند به المركا وة في الدواد تبدأ بإصارة التأثيراة البحلية

If the percentage of receptors that bind the drug is blotted against drug concentration, a similar curve will be obtained (because drug effect is due to binding to a receptor).

It is described mathematically by analogous equation:


$$B = \frac{B_{\text{max}} \times C}{C + K_{\text{d}}}$$

C: drug concentration.

B: percentage of bound receptors atconcentration C.

B_{max}: the total concentration of receptor sites (ie, sites bound to the drug at infinitely high concentrations of free drug).

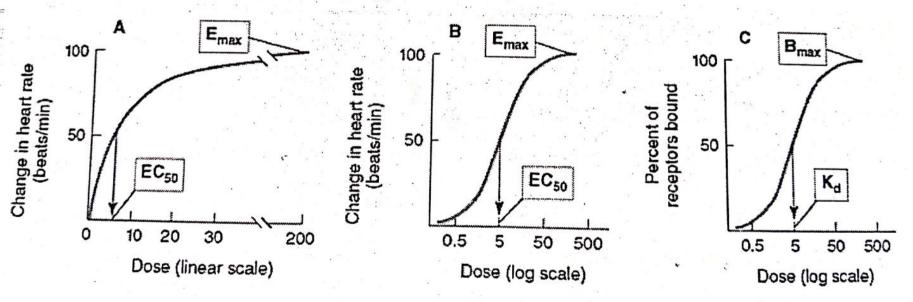
K_d (the equilibrium dissociation constant): the concentration of free drug at which half-maximal binding is observed.

ogy, 12th edition:

When the Kd is low, binding affinity is high, and vice versa.

drug Tiering 2 da visa Receptors. 05/50 &! de vine Kd come pro *

| Hard Tiering 2 da visa place place of the control of the c


Free drug = Receptor- bound drug.

-10-

· Log(conc.) isi certo ne sigmoidalle l'hyperbolic in Curve dis *

- Plotting the drug effect against the *logarithm* of the concentration transforms the hyperbolic curve into a sigmoid curve.
- This expands the scale of the concentration axis at low concentrations (where the effect is changing rapidly) and compresses it at high concentrations (where the effect is changing slowly), which simplifies the mathematical manipulation of the dose-response curve but has no special biologic or pharmacologic significance.

له لا يوجدله محق في انت ش على الحبم. معالق

Source: Trevor AJ, Katzung BG, Kruidering-Hall M. Masters SB: Katzung & Trevor's

Pharmacology: Examination & Board Review, 10th Edition: www.accesspharmacy.com drug ~ Weller justin size did in the McGraw-Hill Companies, Inc. All rights reserved.

Emax inc and

Potency

* الكية الى فتامع ليد ن تأشر من puyb.

a measure of the amount of drug necessary to produce an effect of a given magnitude.

- conc. needed to other half-maximal effect.

Potency is determined by EC50

الم على ماكان السركيز الذي كيامه الجيم سم الوالك Drug with lower EC50 is more potent. للحدث نفي التأثير الذعلى أقل ، كلما ين

*If drug more potent, the dose must be lowered.

· n arrow theraputic index (digoxin), the theraputic dose very close of toxic dose.

wide the raputic index (amoxicillin), the therputic dose very far of boxic dose.

· (more Potent) (fred mom) . 50 Drug A -, Drug B Drug C Log drug concentration EC50 for Drug A Drug B Drug C

Potent than 13 Drugs A18 more effective than C.

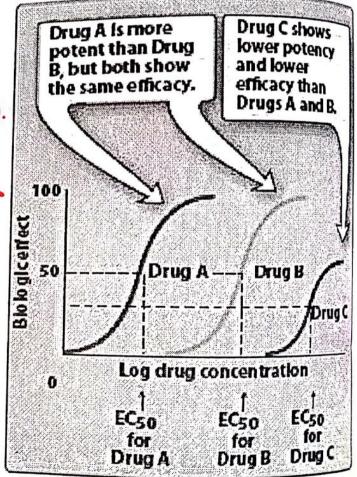
16

* wider theraputic index, more safe drug, and vice versa.

الله الله عن النات عقق هذا التأشر بحققها الدواد للفض النظى عن النات عقق هذا التأشر . يعتم النظى عن النات عقق هذا التأشر . يعتم النظى النات عقق هذا التأشر .

is the ability of a drug to elicit a response when it interacts with a receptor,

Maximal efficacy is determined by Emax.

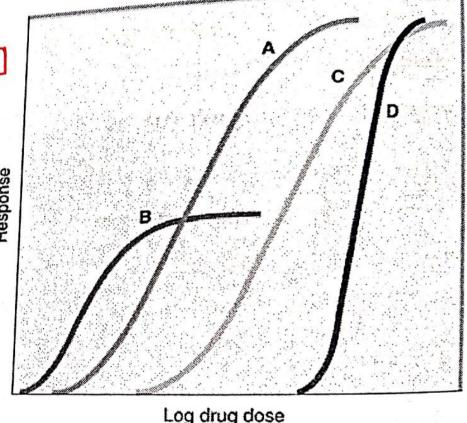

• Efficacy is dependent on: (Factors)

 the number of drug-receptor complexes formed (saturation of receptor by drug molecules).

the efficiency of the coupling of receptor ractivation to cellular responses (receptoreffector coupling). (The land of the coupling of the coupling

> • Efficacy is more important than drug potency. A drug with greater efficacy is more therapeutically beneficial than one that is more potent.

ع الدواء الذكثر محالية (more efficacy) على فا ندة علا مية (move potent) is



Agnd B = Same efficacy. IT

Which drug is....

- the most potent Drug B · effect نفن تعدد من المحدوث على .
- the most efficacy A,C,D Conc. Cine visit view Emax max
- the least potent D.

 the least efficacy B.

Source: Katzung BG, Masters SB, Trevor AJ: Basic & Clinical Pharmacology, 12th edition: www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Artery Academy

Done by Aya Rabbaa