Experiment 3 Ultraviolet-Visible Spectroscopy – Quantitative Analysis

Section number	er: Group number:
Objective:	
(The purpose	of the experiment)
Method:	
• The max	imum wavelength ($\lambda_{\sf max}$) measured for paracetamol is
• The blan	k/reference used in this experiment is
• The mole	ecular weight for paracetamol is
• Calculate	the following and show your detailed calculation:
	concentration in (mg/ml) of paracetamol stock solution 1 is
	molar concentration (M or mol/L) of paracetamol stock solution 1 is
	concentration in (mg/ml) of paracetamol stock solution 2 is
	molar concentration (M or mol/L) of paracetamol stock solution 2 is

Results:

Data Table (1)

Label	Concentration (mg/ml)	Concentration (M) or (mol/L)	Absorbance
Standard solution 4			
Standard solution 3			
Standard solution 2			
Standard solution 1			

Unknown data:

Unknown ID number:	Unknown Absorbance:

• Show an example of your calculation of the concentration for one of the above standard solutions in data table (1) in mg/ml and in M.

Graph Plotting (concentration vs. Absorbance):

You are required to attach TWO plots to this report in external graph papers showing full graph information (graph label, axis label, R², and the linear equation) regarding the following:

1. Calibration curve 1:

A plot of the observed values in the data table (1) above. Setting the X-axis for the concentration in (mg/ml) and the Y-axis for the absorbance. Displaying the linear equation and R² on the graph (Attach the graph paper to the report sheet)

2. Calibration curve 2:

A plot of the observed values in the data table (1) above. Setting the X-axis for the concentration in (M) and the Y-axis for the absorbance. Displaying the linear equation and R² on the graph (Attach the graph paper to the report sheet)

Discussion

	Answer the following questions:	(show '	your detailed	calculation 8	& use the	correct un	nit)
--	---------------------------------	---------	---------------	---------------	----------------------	------------	------

> Part 1:

1. Calculate the concentration of your unknown using the equation of calibration curve 1.

2. Calculate the paracetamol molar absorptivity (ε) using the equation of calibration curve 2.

3. Calculate the concentration of your unknown using Beer's law.

≻ Part 2:

Assume that we did the paracetamol tablet assay procedure as describe in the recorded video and the following results was obtained:

- If solution C Absorbance: 0.751
- Weight of 20 tablet: 13.35 g
- Weight of the powder taken: 0.200 g

Answer the following questions:

1.	Explain by using calculation how did we find the required weight of powder "0.200 g" ?
2.	Calculate the percentage of stated content? "Using Beer's low OR calibration curve 1 equation."

Experiment Report Workload Distribution Table (2 marks)

Coordinator for Current Experiment¹:

Section ²	Student Name ³	Percentage of the Performed workload ⁴
		186

¹Mention the name of the student/ group member who did arrange the work related to the current experiment group report/work management.

²Section or part of the group report

³Mention the name of student/the group member who took responsibility of the specified group report section.

⁴Relative to the whole workload used to prepare the current group report.