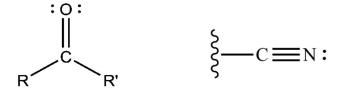
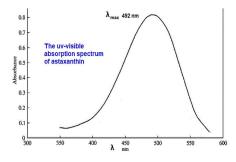
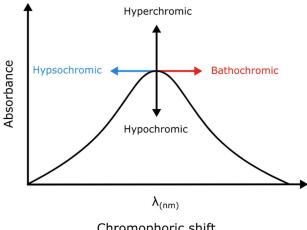
EXPERIMENT 4: Ultraviolet-Visible Spectroscopy - Effect of Solvent on λ_{max}



INTRODUCTION

The part of the molecule that is responsible for imparting color to the to the molecule term chromophore. It is defined as any group which exhibits absorption of electromagnetic radiation in the visible or ultraviolet region.


 \succ Chromophores in which the group is having π electrons undergo $\pi \rightarrow \pi^*$ transitions. Ex: ethylene, acetylenes.


 \triangleright Chromophores having both π electrons and n electrons undergo two types of transitions: $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$. Ex: carbonyl, nitrile.

Chromophore shifts and effect of solvent on λ_{max}

Position of the absorption maximum wavelength (λ_{max}) and intensity of absorption can be modified in different ways by some structural changes or change of solvent. Wavelength change is either **bathochromic** or **hypsochromic**, while absorbance intensity change is either **hyperchromic** or **hypochromic**.

Chromophoric shift

Bathochromic Shift or Red shift

The shift of an absorption maximum towards longer wavelength or lower energy is called bathochromic shift. The red color has a longer wavelength than the other colors in the visible spectrum, therefore this effect is also known as red shift.

o Hypsochromic Shift or Blue Shift

The shift of absorption maximum towards the shorter wavelength or higher energy is called hypsochromic shift. The blue color has a lower wavelength than the other colors in the visible spectrum and hence this effect is also known as blue shift.

Hyperchromic Effect

It is an effect that results in increased absorption intensity. The introduction of an auxochrome usually causes hyperchromic shift.

Hypochromic Effect

An effect that results in decreased absorption intensity is called hypochromic effect. This is caused by a group which distorts the geometry of the molecule.

Structural change effect on λ_{max}

e.g. Acetone which has
$$\lambda_{max} = 279 \text{ nm}$$
 CH₃ and that cyclohexane has $\lambda_{max} = 291 \text{ nm}$.

When double bonds are conjugated in a compound λ_{max} is shifted to longer wavelength.

1,5 - hexadiene has λ_{max} = 178 nm 2,4 - hexadiene has λ_{max} = 227 nm

$$H_2C$$
 CH_2
 H_3C
 CH_3

- 3. Conjugation of C=C and carbonyl group shifts the λ_{max} of both groups to longer wavelength. $H_2C = CH_2$
- e.g. Ethylene has $\lambda_{max} = 171$ nm Acetone has $\lambda_{max} = 279$ nm

Crotonaldehyde has $\lambda_{max} = 290 \text{ nm}$

Auxochrome is a functional group attached to the chromophore which modifies the ability of the chromophore to absorb light, altering the wavelength or intensity of the absorption.

It can also be defined as the functional group with **non-bonding electrons** that does not absorb radiation in near UV region but when attached to a chromophore **alters the wavelength** and intensity of absorption.

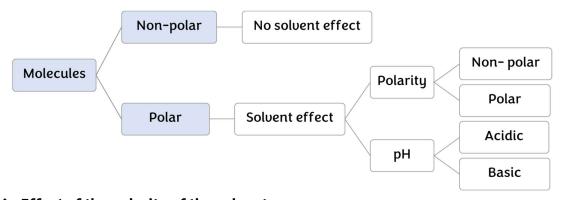
> Examples of auxochromes:

➤ If an auxochrome is introduced to the compound the intensity of absorption increases causing a hyperchromic shift:

Pyridine 2-methyl pyridine
$$\lambda_{max} = 257 \text{ nm}$$
 $\epsilon = 2750$ $\epsilon = 3560$

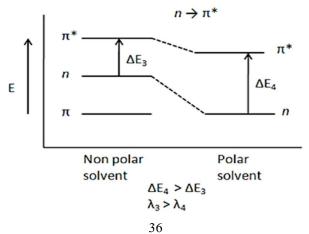
Solvent change effect on λ_{max}

Solvents play an important role in UV spectroscopy and the solvent for a sample should be selected in such a manner that it should neither absorb in the region of absorption nor affect the absorption of the sample. Common solvents used are water, methanol, ethanol, dilute acids and dilute alkalies.

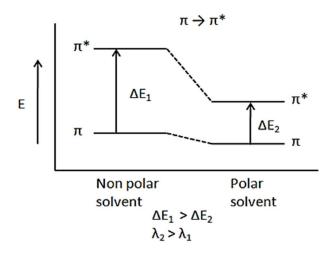

The solvent exerts a profound influence on the quality and shape of spectrum. The absorption spectrum of pharmaceutical substance depends practically upon the solvent that has been employed to solubilize the substance.

A drug may absorb a maximum radiation energy at particular wavelength in one solvent but shall absorb partially at the same wavelength in another solvent.

> Examples:


Bromophenol blue in HCL $\to \lambda_{max}$ at 437 nm Bromophenol blue in distilled water $\to \lambda_{max}$ at 591 nm

Effect of solvent can be summarized in the following chart:


* Effect of the polarity of the solvent

Polarity causes a pronounced effect on the position and intensity of absorption bands. This increase is due to the $n\to \pi^*$ and $\pi\to \pi^*$ transitions. In the presence of polar hydrolytic solvent (i.e., water) hydrogen bonds form with the lone pair of electrons of auxochrome. As a result, the auxochrome's energy lowers to an equal amount of the bond formation energy, and hence the energy gap between n and π^* increases, so, a hypsochromic shift is observed for $n\to \pi^*$ transition.

	Solvent	Absorption wavelength	
$n \rightarrow \pi^*$ Transitions	Hexane	279 nm	
	Methanol	270 nm	
	Water	264 nm	

While for $\pi \to \pi^*$ transition the π^* orbital is more polar than π orbital therefore it is stabilized to a greater extent in the presence of a polar solvent. This will cause a bathochromic shift because the energy gap between $\pi \to \pi^*$ is reduced due to the stability of the π^* orbital.

$\pi ightarrow \pi^*$	Solvent	Absorption wavelength	
Transitions	Hexane	230 nm	
	Water	243 nm	

Effect of solvent on the electronic transition

Solvent	$\pi \rightarrow \pi^*$		$n \rightarrow \pi^*$	
Joilvenit	λ_{max}	ε	λ_{max}	ε
Hexane	230	12,600	327	98
Ethanol	237	12,600	315	78
Water	245	10,000	305	60

Effect of the solvent pH

The pH of the sample solution can also have a significant effect on absorption spectra. The absorption spectra of certain aromatic compounds such as phenols and anilines change on changing the pH of the solution.

Phenols and substituted phenols are acidic and display sudden changes in their absorption's maxima upon the addition of a base. After the removal of the phenolic proton, we get phenoxide ion. In the phenoxide ion lone pairs on the oxygen is delocalized over the π -system of the aromatic ring and increases the conjugation of the same.

Extended conjugation leads to a decrease in the energy difference between $\pi \rightarrow \pi^*$ orbitals, which results in red or bathochromic shift (to longer wavelength), along with an increase in the intensity of the absorption.

> Examples:

In alkaline medium, **p-nitrophenol** shows red shift. Because negatively charged oxygen delocalizes more effectively than the unshared pair of electrons.

$$OH$$

OH

Alkaline

medium

p-nitrophenol

 $\lambda_{max} = 255 \text{ nm}$
 $\lambda_{max} = 265 \text{ nm}$

- \gt Similarly, an aromatic amine gets protonated in an acidic medium which disturbs the conjugation between the lone pair on nitrogen atom and the aromatic π -system. As a result, blue shift or hypsochromic shift (to shorter
- > wavelength) is observed along with a decrease in intensity.

NeutralAcidic
$$\lambda_{max} = 230 (8600)$$
 $\lambda_{max} = 203 (7500)$ 280 (1430)254 (169)

PRACTICAL PART

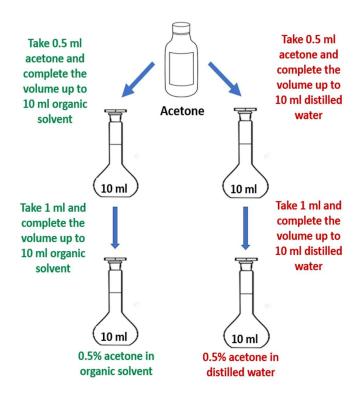
GLASSWARE	CHEMICALS
Volumetric flasks 50 & 10 ml	Paracetamol stock solution 1mg/ml
Beakers	Distilled water
Quartz cuvette	Acetone
Volumetric pipette 1, 8 5 ml	Cyclohexane, heptane, or decan
Graduated pipette	O.1 M HCl
	O.1 M NaOH

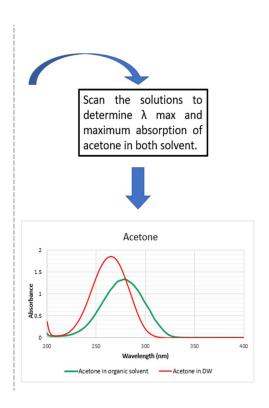
AIM OF THIE EXPERIMENT

• To Study the effect of solvent polarity and pH on the UV spectrum in term of λ_{max} and absorption intensity and explain the results by electronic transition.

PROCEDURE

Part 1: Effect of solvent polarity on the λ_{max} of Acetone:

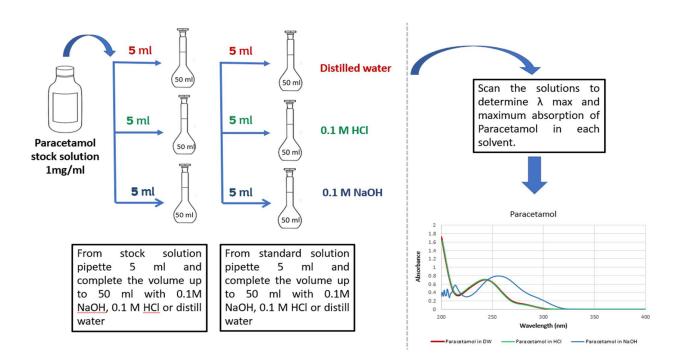

> Prepare the


- following solutions:
- · Acetone in H2O (0.5% u/u)
 - 1. Take 0.5 ml of acetone into 10 ml volumetric flask and complete the volume up to the mark with distilled water.
 - 2. Put 1 ml of the above solution into a 10 ml volumetric flask and complete the volume up to the mark with distilled water.

· Acetone in an organic solvent "cyclohexane, heptane or decan" (0.5% v/v)

- 1. Take 0.5 ml of acetone into 10 ml volumetric flask and complete the volume up to the mark with the chosen organic solvent.
- 2. Take 1 ml of the above solution into a 10 ml volumetric flask and complete the volume up to the mark with the same organic solvent.
- > Scan (obtain UV spectrum) for each solution between 200-400nm.

PART 1 ROCEDURE DIAGRAM



Part 2: Effect of solvent pH on the λ_{max} of Paracetamol:

- 1. Dissolve 50 mg paracetamol powder in a 50ml distilled.
- 2. Take 5ml of the above solution into 50ml volumetric flask and dilute up to volume with 0.1M NaOH.
- 3. Take 2.5 ml of the above solution into 25 ml volumetric flask and complete the volume up to the mark with 0.1M NaOH.
- 4. In the same way, prepare paracetamol solution in water and 0.1M HCl and record the weights in the report sheet.
- 5. Take each prepared solution, of the final concentration, and measure the absorbance at different wavelengths against the blank by scanning over the range (200 400) nm and record λ max and the absorbance value in the report sheet.

PART 2 ROCEDURE DIAGRAM

What happens with Paracetamol in different pH medium?