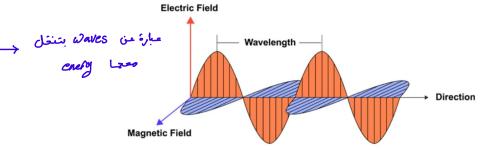
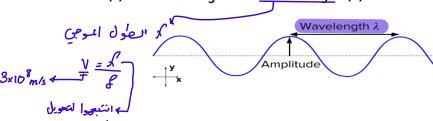
تفريغ لاب تحليل آلي


اللهم سهل لي مطلبي و يسر لي مقصدي و ارزقني بتسخير منك لهدفي و اجعل خطواتي مباركة، اللهم إن كان ما أدعي به مستحيلاً فأنت القادر سبحانك لا يعجزك شيء في الأرض ولا في السماء و إن كان شراً فاجعله خير و ارزقني به يالله"

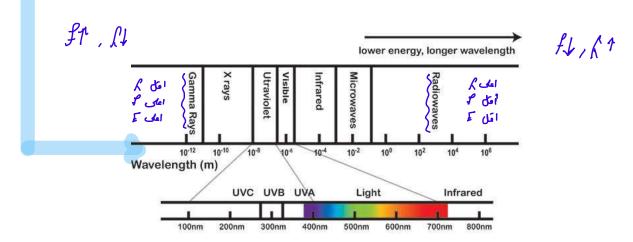
EXPERIMENT3: Ultraviolet-Visible Spectroscopy - Qualitative Analysis


INTRODUCTION

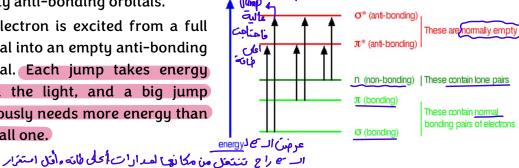
<u>Electromagnetic</u> radiation is a form of energy, made up of electric and magnetic fields that move at right angles to each other. It exhibits wave-like behavior as it travels through space.

The electromagnetic radiation is classified according to the frequency of its wave

(f) or according to the <u>wavelength</u> (λ).



The frequencies and wavelengths of electromagnetic waves are related by the equation:


$$\lambda = rac{v}{f}$$

Where λ (lambda) is the wavelength in (m), f is the frequency in (Hz) or (s⁻¹), and v is the velocity of the wave in (m/s).

The electromagnetic spectrum, in order of increasing frequency and decreasing wavelength, consists of radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.

- * Spectroscopy is the study of the interaction between matter and radiated energy.
- ❖ When light passes through the compound, energy from the light is used to promote an electron from a bonding or non-bonding orbital into one of the Poir of e-Jump 4 empty anti-bonding orbitals.
- * An electron is excited from a full orbital into an empty anti-bonding orbital. Each jump takes energy from the light, and a big jump obviously needs more energy than a small one.

- * Each wavelength of light has a particular energy associated with it. Electrons in atoms and molecules can change energy levels by emitting or absorbing a photon (light) whose energy must be exactly equal to the energy difference between the two levels. The larger the energy jump, the lower the wavelength of the light absorbed.
- ❖ Some jumps age more important than others for absorption spectrometry including jumps from pi bonding orbitals to pi anti-bonding orbitals, jumps from non-bonding orbitals to pi anti-bonding orbitals, and from non-bonding orbitals to sigma anti-bonding orbitals.

Hence, in order to absorb light in the region of Ultraviolet-visible spectroscopy الا نتقال ببلش (UV= 200-400 nm, visible= 400-800 nm), the molecule must contain either pi bonds or atoms with non-bonding orbitals. Remember that a non-bonding orbital فَ كَارَمُ يِكُونَ فِيَ is a lone pair on, say, oxygen, nitrogen, or a halogen and groups in a molecule which absorb light are known as *chromophores*.

> Spectrophotometry is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength.

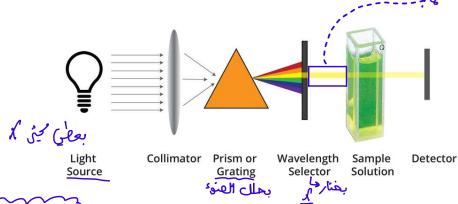
> Spectrophotometer consists of two instruments, namely a spectrometer for producing light of any selected wavelength, and a photometer for measuring the

> > most common

Spectio.

The important jumps are:

- ✓ from non-bonding orbitals to pi anti-bonding orbitals; ¬¬¬¬
- √ from non-bonding orbitals to sigma anti-bonding orbitals.
 ¬
 →
 →


وبعملي الركر الي

intensity of light. The instruments are arranged so that liquid (sample or blank) in a cuvette can be placed between the spectrometer beam and the photometer. The amount of light passing through the tube is measured by the photometer. The photometer delivers a voltage signal to a display device. The signal changes as the amount of light absorbed by the liquid changes.

Spectrophotometers are divided into:

Single Beam Spectrophotometers

Here a single beam of light is passed through a single sample container and the resulting light is detected by a detector. Single Beam Spectrophotometers are of the simplest in design hence have lower capital and maintenance prices than other spectrophotometer types. الفوة طلح من هون وهو شعلي ب. واحد

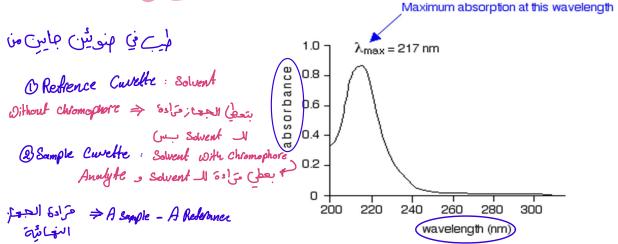
Double Beam Spectrophotometers (will be used in this experiment)

Here the light leaving the monochromator is split, using a beam splitter, into a sample beam and a reference beam. After each beam of light is passed through its respective sample/reference (blank) container, each beam is then detected by its own detector. The sample and reference are simultaneously measured/scanned, saving time, and providing for optimum accuracy. These

devices ensure that any fluctuations in the light emitted from the lamp are applied equally to both the sample and the reference beams.

(المتحربة الحيات المتحربة ا Monochromator Reference Slit **Light Source** Photodetector Sample The light source should be continuous, and it can be: 22

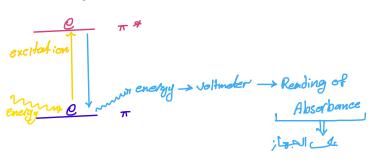
- > Deuterium lamp for uv radiation,
- > Tungsten/halogen lamp for visible radiation, or
- Xenon lamp for uv and visible radiation.

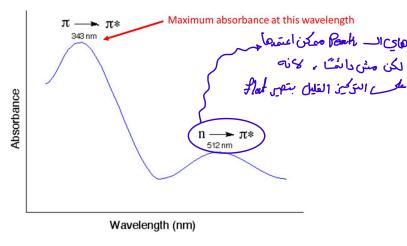

The sample cell (cuvette) should be transparent, and it can be:

- إذا كان العينة شفا فا Quartz for UV and visible regions ~
- بتى استحدمها لعاملكين ﴿ ـ Glass and plastic only for the visible region بعدا معاملات العينة حلونة

UV-Vis absorption spectrum

It is a plot relating the amount of light absorbed (absorbance) by a molecule at UV-Vis range of wavelengths and each compound has a characteristic UV-Vis spectrum. Sample scans over the UV-Visible wavelength range (200-400 and 400-800) nm respectively can be done using spectrophotometers,


The wavelength of maximum absorbance (λ_{max}) is a characteristic value, which is useful for the identification of a particular substance and is usually not affected by the concentration used.



Many organic compounds give more than one maximum peak when their UV-Vis spectra are analyzed. Each peak corresponds to an electron transition from a

ground state to an excited state, and more than one عثمان يعتموالسك ينتعل من transition (with different energy, therefore, different سسارسن wavelength) are allowed.

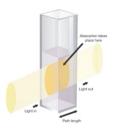
فكلما يغيى كم ستغير الطافة وستغير الغرادة

23

PRACTICAL PART

GLASSWARE	CHEMICALS
Volumetric flask 100 ml	Potassium permanganate
Volumetric flask 250 ml	Distilled water
Volumetric flask 25 ml	
Volumetric pipette10 ml	
Beakers	
Plastic cuvette	
INSTRUMENT	
Reference Sample	

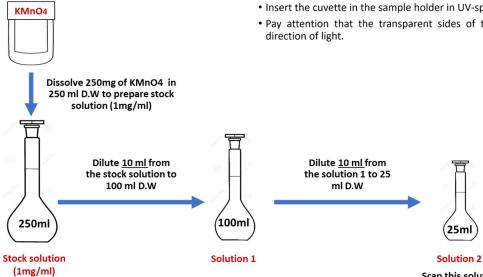
PROCEDURE


- 1. Prepare a stock solution of Potassium permanganate (1mg/ml).
- 2. Take 10ml of the above solution and dilute to 100ml with distilled water to prepare solution 1
- 3. Now take 10ml of the above solution (solution 1) and dilute to 25 ml with distilled water to prepare solution 2.
- 4. With the help of your instructor:
 - a. Switch on the spectrophotometer and allow it to stabilize for 15 minutes.
 - b. Set the absorbance at zero by using distilled water as the blank in each cuvette.
 - c. Select baseline option by using distilled water as the blank in each cuvette.
 - d. Carry out a full scan over the range of (400 700) nm using solution 2.
 - e. Select peak pick option to display a table of peak and valley.
 - f. Fill in the report sheet for the results and graph plotting.

Reminder: you should bring with you at least 1 pair of gloves, permeant marker and clean tissue paper.

Note to take in consideration

➤Where to put your sample?


- In UV spectroscopy the liquid sample is held in cuvette.
- Cuvetteis sealed at one end, and made of a clear, transparent material such as plastic, glass, or fused quartz..

Note to take in consideration

➤In order to insert your sample in the UV-spectrophotometer for measurement do the followings:

- Clean the cuvette
- Place your liquid sample in the clean cuvette "Don't overfill the cuvette".
- Clean the transparent sides of your cuvette with a damp paper towel to remove finger prints.
- Insert the cuvette in the sample holder in UV-spectrophotometer.
- Pay attention that the transparent sides of the cuvette are facing the

Scan this solution using UV-Vis spectrophotometer at 400-700 nm wavelengths range

Note to take in consideration

PROCEDURE DIAGRAM

- The Double beam UV-Vis spectrophotometer have two cuvette holders one for the reference and one for sample.
- Red arrow shows cuvette holder for reference and blue arrow shows cuvette holder for sample.

