

Drug distribution

الدوا ما بتستفيد منو اذا ضل جوا الدم (الا اذا كان موجه للدم) لازم يروح لل Site of action في اماكن محددة في الجسم

Distribution

Drug distribution: means the reversible transfer of drug from one location to another within the body.

- The distribution of drugs in the body depends on:
- 1- their lipophilicity

2- protein binding.

Low plasma binding or high tissue binding or high lipophilicity usually means an extensive tissue distribution.

اذا كان عالي بضل بالدم

لانو في حال كان ارتباطوا بالبلازما قليل بكون في جزأ free اكثر

-الدوا بتوزع داخل الدم والخلايا

وكمان بنتقل بأتجاهين من الدم إلى الخلايا والعكس عشان يصيرالوا execritio

-يمكن الدوا ما يوصل ل target cell بوصل لخلايا ثانية لا اما ما بعطي تأثير او بعطي adverse غير مرغوب)

-فى جزأ من الدوا مرتبط بالبروتين (bind) وجزأ لاء (Free) الي برتبط هو الي بعطي تأثير

Distribution

-In pharmacokinetics, the distribution is described by the parameter V, the apparent volume of distribution.

- At equilibrium, V will theoretically not be lower than 7 L in a 70-kg person, but it has no upper limit.

ظاهري وليس حقيقي (للجسم) theoritical

The extent to which a drug distributes affects the half-life of the drug and the fluctuation of the concentration at steady state.

<u>Distribution can be thought of as following one of four types of patterns:</u>

1-The drug may remain largely within the vascular system. Mannitol and plasma substitutes such as dextran are examples of this type, but drugs which are strongly bound to plasma protein may also approach this pattern.

the half-life:

احد وسائل تحدید ال elemination

بعد 7 أو half life 6 بطلع الدوا من الجسم مهما كانت جرعته (الها دخل بال proten binding)

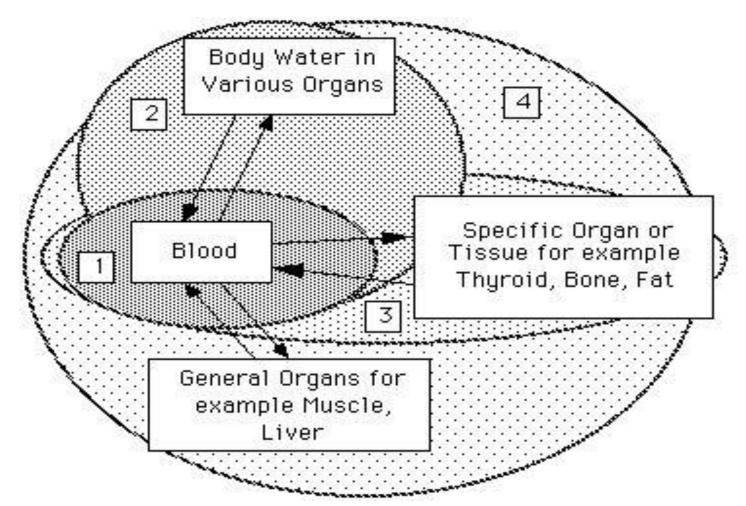


Diagram Representing Various Volumes
Distribution Patterns

2- Some low molecular weight water soluble compounds such as ethanol and a few sulfonamides become uniformly distributed throughout the body water.

الدوا بتوزع على طول ال body water and fluids

3- A few drugs are concentrated specifically in one or more tissues that may or may not be the site of action.

Iodine is concentrated by the thyroid gland.

للتصوير الاشعاعي ولعلاج سرطان الغدة الدرقية

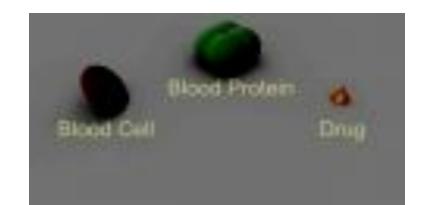
The antimalarial drug chloroquine may be present in the liver at concentrations 1000 times those present in plasma.

بهاذ النمط الدوا بتوزع على خلايا معينة inteded site

Tetracycline is almost irreversibly bound to bone and developing teeth.

Consequently tetracyclines should only be given to young children or infants in extreme conditions as it can cause discoloration and mottling of the developing second set of teeth.

Another type of specific concentration may occur with highly lipid soluble compounds which distribute into fat tissue.

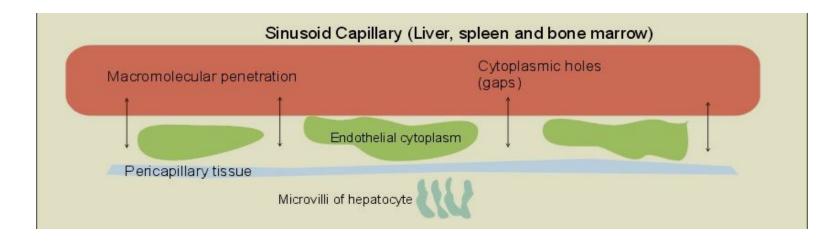

4- Most drugs exhibit a non-uniform distribution in the body with variations that are largely determined by the ability to pass through membranes and their lipid/water solubility.

The highest concentrations are often present in the kidney, liver, and intestine usually reflecting the amount of drug being excreted.

- Apparent volume of distribution (V) is a useful indicator of the type of pattern that characterizes a particular drug.
- A value of V in the region of 3-5 liter (in an adult) would be compatible with pattern 1. This is approximately the volume of plasma.
- Pattern two would be expected to produce a V value of 30 to 50 liter, corresponding to total body water.
- Agents or drugs exhibiting pattern 3 would exhibit very large values of V.
 Chloroquine has a V value of approximately 115 L/ kg.
- Drugs following pattern 4 may have a V value within a wide range of values.

Volumes of body fluids		
Fluid substances	Volume (liter)	
Extracellular Fluid	19	
Plasma	3	
Interstitial fluids	16	
Intracellular fluids	23	
Total body water	42	

Factors Affecting Distribution		
A- Rate of distribution	B- Extent of Distribution	
 Membrane permeability Blood perfusion 	 Lipid Solubility pH – pKa Plasma protein binding Tissue drug binding 	


A. Rate of distribution

1. Membrane permeability:

- Capillary walls are quite permeable.
 - Lipid soluble drugs pass through very rapidly.
 - Water soluble compounds penetrate more slowly at a rate more dependent on their size.
 - Low molecular weight drugs pass through by simple diffusion. For compounds with molecular diameter above 100 Å transfer is slow.
 - For drugs which can be ionized the drug's pKa and the pH of the blood will have a large effect on the transfer rate across the capillary membrane.

- There are two deviations to the typical capillary structure which result in variation from normal drug tissue permeability.
- i) Permeability is greatly increased in the renal capillaries by pores in the membrane of the endothelial cells, and in specialized hepatic capillaries, known as sinusoids which may lack a complete lining. This results in more extension distribution of many drugs out of the capillary bed.


الدوا بمر بسهولة من غير صعوبات

II) On the other hand, brain capillaries seem to have impermeable walls restricting the transfer of molecules from blood to brain tissue.

Lipid soluble compounds can be readily transferred but the transfer of polar substances is severely restricted.

This is the basis of the "blood-brain" barrier.

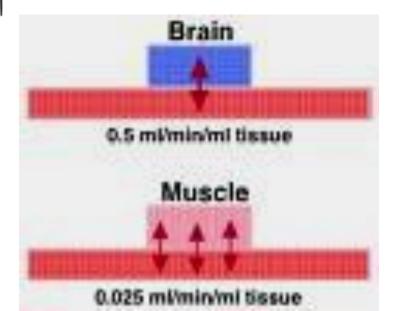
هسا هون بالدماغ بكون عنا صعوبة بمرور الدوا عشان الشعيرات capillaries بتحتوي على :

Tight junction
Endothelial cell
Basement membrane

التروية :

كمية

مرور


الدم

لأعضاء

لجسم

2. Blood perfusion rate:

 The rate at which blood perfuses to different organs varies widely:

Blood Perfusion Rate		
Orgar	Perfusion Rate (mL/min/mL of tissue)	Percent of cardiac output (CO)
Bone	0.02	5
Brain	<u>0.55 - 0.5</u>	<u>15 - 14</u>
Fat	0.03 - 0.01	4 - 2
Heart	<u>0.7 - 0.6</u>	4
Kidneys	<u>4.5 - 4.0</u>	<u>24 - 22</u>
Liver	<u>0.95 - 0.8</u>	<u>27 - 25</u>
Muscle	0.030 - 0.025	<u>15</u>
Skin	0.05 - 0.04	6 - 5

- The rate at which a drug reaches different organs and tissues will depend on the blood flow to those regions.

- Equilibration is rapidly achieved with heart, lungs, liver, kidneys and brain where blood flow is high.

- Skin, bone, and depot fat equilibrate much more slowly.

B. Extent of Distribution کمیة

1.Lipid Solubility:

- Lipid solubility will affect the ability of the drug to bind to plasma proteins and to cross lipid membrane barriers.

اذا زادت بزيد التوزع والامتصاص (انو برتبط اكثر مع البروتين)

- Very high lipid solubility can result in a drug partitioning into highly vascular lipid-rich areas. Subsequently these drugs slowly redistribute into body fat where they may remain for long periods of time.

اذا كانت المادة high lipid solubile بتذوب ب: lipid rich vascular areas Like fat and adipose tissue

بکون الها High Volume of distribution in fat

بس مقارنة مع باقي الاماكن يعتبر قليل

فألي بصير انو الدوا بستقر هناك ولما نتخلص منو بخرج بصعوبة بالدم(يمكن ما توصل) فبضل اطول بالجسم (ففي احتمالية للسمية) الحل لهاي المشكلة انو بقلل تركيز الدوا (زي حالة الناس الـ obes عنهم fat كثير)

2. Effects of pH:

- The rate of movement of a drug out of circulation will depend on its degree of ionization and therefore its pKa.

(ph بأثر على التأين وال

مه

عسان الامتصاص - Changes in pH occurring in disease may also affect drug distribution. For example, blood becomes more acidic if respiration is inadequate.

(acidoses & alkalosis)

3. Plasma protein binding:

- Extensive plasma protein binding will cause more drug to stay in the central blood compartment. Therefore drugs which bind strongly to plasma protein tend to have lower volumes of distribution. (\uparrow protein binding = \downarrow V)

لتوضيح تأثير ال ph:

pka عالی ph عالی أکثر acide أکثر توزيع قليل

> plasma protein binding (لازم یکون اقل ما یمکن عشان التوزیع یکون عالي)

plasma proten bind قلیل Free part اعلی distribution

اما للأنسجة لازم يكون عالي لأنو موجه لألها مش للدم

- Albumin comprises 50 % of the total proteins binds the widest range of drugs. Acidic drugs commonly bind to albumin, while basic drugs often bind to α 1-acid glycoproteins and lipoproteins.
- Forces involved:
- Groups on the protein molecules that are responsible for **electrostatic interactions** with drugs include:
 - NH3+ of lysine
 - N- terminal amino acids
 - NH2+ of histidine
 - S- of cysteine
 - COO- of aspartic and glutamic acid residues.

القوى مسؤولة عن ارتباط البروتين مع الدوا:

van der Waal's forces hydrogen bonding Electrostatic interaction

الارتباط بين الأمينو اسيد للبروتين مع الدم

- In order to achieve stable complexes, the initial electrostatic attraction is reinforced by van der Waal's forces and hydrogen bonding.

What is the effect of protein binding on drug action?

1. Extensive plasma protein binding will decrease the amount of absorbed drug (decrease peak plasma level).

يحدث للجزء ال free من الدوا 2. Elimination of a highly bound drug may be delayed. Since the concentration of free drug is low, drug elimination by metabolism and excretion may be delayed. This effect is responsible for prolonging the effect of the drug digoxin.

3. Changes in the concentration of plasma proteins will influence the effect of a highly bound drug.

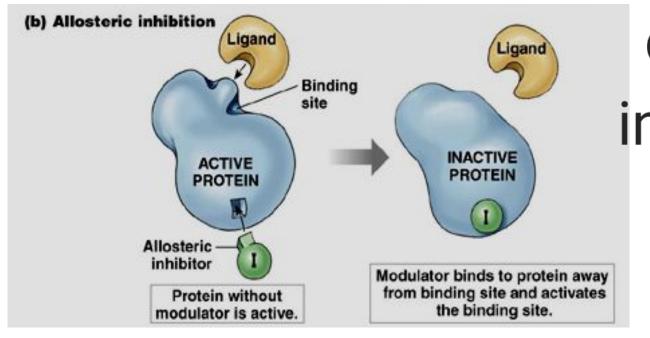
A low plasma protein level may occur in:

قليل

- old age

bind

- malnutrition سوء تغذیة


عالي

free

- illness such as liver disease (remember that most plasma proteins are made in the liver), or chronic renal failure where there is excessive excretion of albumin.

In each case the result is a smaller proportion of drug in bound form and more free drug in the plasma. The greater amount of free drug is able to produce a greater therapeutic effect and reduced drug dosages may be indicated in these cases.

بتنافسوا على الأرتباط بنفس المستقبل

drug-drag interaction

زي ما اخذنا بالبيو **4.**There may be competition between drugs, in which agents that are bound very tightly, such as coumarin anticoagulants, are able to displace less tightly bound compounds from their binding sites.

کیم

In general, plasma protein binding is reversible and obeys the law of mass action:

الدوا (free drug) + (albumin) k albumin (drug-albumin complex

where k1 and k2 are the association and dissociation rate constants, respectively.

At equilibrium:
$$K_{\mathbf{p}} = \frac{k_2}{k_1} = \frac{[\text{free drug}] \times [\text{albumin}]}{[\text{drug-albumin complex}]}$$

• where KD is the equilibrium dissociation constant. It is a measure of the affinity of the drug for albumin:

- •The lower the KD the higher the affinity.
- The higher the KD ———the lower the affinity.

• As the concentration of drug increases in plasma, the percent that is bound will decrease.

4. Tissue drug binding (tissue localization of drugs):

- In addition to plasma protein binding, drugs may bind to intracellular molecules.
- The affinity of a tissue for a drug may be due to: binding to tissue proteins or to nucleic acids, or in the case of adipose tissue, dissolution in the lipid material.

- e.g. The concentration of **chloroquine** in the liver is due to the binding of the drug to DNA.
- e.g. **Barbiturates** distribute extensively into adipose tissue, primarily because of their high lipid solubility.
- e.g. **Tetracyclines** bind to bone thus should be avoided in young children or discoloration of permanent teeth may occur.

Other distribution considerations

intra cellular تركيز السوائل في ال extra cellular اكثر من الثلاث في الفي الأطفال وكبار السن بكون العكس

1. Weight considerations:

- A- Body composition of the very young and the very old may be quite different from 'normal', that is the average subject in whom the parameter values may have been originally determined.
- B- Another group of patients in which body composition may be greatly altered from `normal' is the obese. These patients have a higher proportion of adipose tissue and lower percentage of water.
- Thus for drugs which are relatively polar, volume of distribution values may be lower than normal.
- For example the apparent volume of distribution of antipyrine is 0.62 l/kg in normal weight subjects but 0.46 l/kg in obese patients.
- Other drugs such as digoxin and gentamicin are also quite polar and tend to distribute into water rather than adipose tissue.

آخر سلاید بالمحاضرة + آخر محاضرة داخلة بأمتحان الفیرست

بالتوفيق