## **EXPERIMENT (1)**

## **VOLUMETRIC GLASSWARE AND BALANCES**

| Name: | Group NO.: |
|-------|------------|
|       | ·          |

## III DATA

|                             | Trial 1 | Trial2 | Trial 3 | Trial4 |
|-----------------------------|---------|--------|---------|--------|
| Initial burette reading, mL |         |        |         |        |
| Final burette reading, mL   |         |        |         |        |
| Apparent volume, mL         |         |        |         |        |
| Initial weight of flask, g  |         |        |         |        |
| Final weight of flask, g    |         |        |         |        |
| Weight of water, g          |         |        |         |        |
| Temperature, °C             |         |        |         |        |
| Actual volume, mL           |         |        |         |        |
| Correction, mL              |         |        |         |        |

**Instructor's Signature** 

#### IV. <u>CALCULATION</u>

**Note**: use significant figures and decimal places in the calculations

(Trial No .....)

- 1- Apparent Volume (mL) = Final burette reading Initial burette reading
- 2- Weight of water(g) =
- 3- Actual Volume (mL) =
- 4- Correction (mL) =

#### **ERRORS**

• According to the following rules:

$$z = x + y$$
 or  $z = x - y$   $\Rightarrow$   $\Delta z = \sqrt{\Delta X^2 + \Delta y^2}$ 

$$z = x * y$$
 or  $z = \frac{x}{y}$   $\Rightarrow$   $\Delta z = z * \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2}$ 

Calculate the following errors:

- 1- Initial ( $\Delta R_i$ ) and final ( $\Delta R_f$ ) burette reading errors =
- 2- Apparent volume error  $(\Delta A)$  =
- 3- Initial  $(\Delta W_i)$  and final  $(\Delta W_f)$  weight of the flask errors= Error in the balance =
- 4- Weight of water error  $(\Delta W)$  =
- 5- Temperature error  $(\Delta T)$  =
- 6- Actual volume error( $\Delta Act$ ) =

#### **QUESTIONS**

Q1) A 25 mL pipette was found to deliver 24.876 g of water when calibrated against stainless steel weight at 25 °C. Use the data in Table 2 to calculate the volume delivered by the pipette at this temperature, repeat the calculation at 19 °C.

Q2) Suggest some sources of error in this experiment.

## EXPERIMENT (2)

## SAMPLING AND STATISTICAL HANDLING OF DATA

| Name: | Group NO.: |
|-------|------------|
|       |            |

### a) Homogenous sample

|                          | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 |
|--------------------------|---------|---------|---------|---------|---------|
| Mass of KHP(g)           |         |         |         |         |         |
| Volume of NaOH (mL)      |         |         |         |         |         |
| Molarity of NaOH (M)     |         |         |         |         |         |
| Average molarity of NaOH |         |         |         |         |         |
| Standard deviation (Sa)  |         |         |         |         |         |

## b) Heterogeneous sample

|                          | Trial 1 | Trial 2 | Trial 3 | Trial 4 | Trial 5 |
|--------------------------|---------|---------|---------|---------|---------|
| Mass of mixture(g)       |         |         |         |         |         |
| Volume of NaOH (mL)      |         |         |         |         |         |
| Molarity of NaOH (M)     |         |         |         |         |         |
| Average molarity of NaOH |         |         |         |         |         |
| Standard deviation (St)  |         |         |         |         |         |

- c) Calculation the sampling error (Ss)
- a) Homogeneous sample:
- 1- Molarity of NaOH for trial 1 =
- 2- Average molarity of NaOH (Ave.x) =
- 3- The standard deviation of Homogeneous sample (S<sub>a</sub>):

Standard deviation (S) = 
$$\sqrt{\frac{\sum (x_i - Ave.x)^2}{n-1}}$$
  
Sa =

- b) Heterogeneous sample (HS):
  - 1- Molarity of NaOH for trial 1
  - 2- Average molarity of NaOH =
  - 3- The standard deviation of Heterogeneous sample  $(S_t)$ :

Sampling error (S<sub>s</sub>):

Remember that: 
$$S_t^2 = S_a^2 + S_s^2$$

# EXPERIMENT (3) GRAVIMETRIC DETERMINATION OF CHLORIDE

| Name:                               | Group NO.: |
|-------------------------------------|------------|
| III <u>DATA</u>                     |            |
| Volume of unknown solution used, mL |            |
| Mass of empty crucible, g           |            |
| Mass of crucible + precipitate, g   |            |
| Mass of AgCl precipitate, g         |            |

## IV <u>CALCULATION</u>

**1-** Mass of Cl in the volume used, g =

**2-** Mass of Cl in 1L (g/L) =

## V QUESTIONS

| Q1) | What is the effect of the following phenomena on the chloride determination: |
|-----|------------------------------------------------------------------------------|
|     | a) Insufficient amount of AgNO <sub>3</sub> added.                           |
|     | b) Incomplete transfer of the precipitate.                                   |
|     | c) Coprecipitation                                                           |
|     | d) Washing too little                                                        |
|     | e) Washing too much.                                                         |
|     | f) Incomplete drying of precipitate.                                         |
|     | g) Photodecomposition of silver chloride.                                    |
| Q2) | What is digestion of a precipitate? Why is it necessary?                     |
|     |                                                                              |
|     |                                                                              |
|     |                                                                              |
| Q3) | Dilute HNO <sub>3</sub> is used as a wash solvent. Explain?                  |

#### **EXPERIMENT 4**

## GRAVIMETRIC DETERMINATION OF NICKEL AS BIS(DIMETHYLGLOXIMATO)-NICKEL(II) NI(DMG)<sub>2</sub>

| Name:                                       | Group NO.: |
|---------------------------------------------|------------|
| III <u>DATA</u>                             |            |
| Volume of unknown solution used, mL         |            |
| Mass of empty crucible, g                   |            |
| Mass of crucible + Ni(DMG) <sub>2</sub> , g |            |
| Mass of Ni(DMG) <sub>2</sub> precipitate, g |            |

## IV CALCULATION

**1-** Mass of Ni in the volume used, g =

**2-** Mass of Ni in 1L (g/L) =

## **V QUESTIONS**

| Q1) | Why precipitation is carried out in an ammonia solution? |
|-----|----------------------------------------------------------|
| Q2) | Why a large excess of DMG should not be added?           |
| Q3) | Why ethanol is used for washing?                         |

#### **EXPERIMENT 5**

## NEUTRALISATION TITRATION IN AQUEOUS MEDIUM

| Name:                                                        |            |                                      |        |               | Group NO.: |
|--------------------------------------------------------------|------------|--------------------------------------|--------|---------------|------------|
| III <u>DATA</u>                                              |            |                                      |        |               |            |
| d) a) Stand                                                  | dardizatio | n of Sodium l                        | nydro  | oxide_        |            |
| Weight of KHP                                                | (g)        |                                      |        | •             |            |
|                                                              |            | Trial 1                              |        | Trial2        | Trial 3    |
| Volume of KHP                                                | mL         |                                      |        |               |            |
| Volume of NAC                                                | OH, mL     |                                      |        |               |            |
| Average vol. of NaOH Molar Conc. NaOH                        |            |                                      |        |               |            |
| b) Determination                                             | n of Phos  | phoric acid in                       | com    | mercial acid  |            |
|                                                              | Volum      | ne of H <sub>3</sub> PO <sub>4</sub> | V      | olume of NaOH | Indicator  |
| Trial 1                                                      |            |                                      |        |               | BCG        |
| Trial 2                                                      | Trial 2    |                                      |        |               | BCG        |
| Trial 3                                                      |            |                                      |        |               | Phph       |
| Trial 4                                                      |            |                                      |        |               | Phph       |
| Molar conc. H <sub>3</sub> PO <sub>4</sub> Average vol. NaOH |            |                                      | BCG    |               |            |
| Molar conc. H <sub>3</sub> PO <sub>4</sub> Average vol. NaOH |            | Average v                            | vol. N | NaOH          | Phph       |

#### III. CALCULATIONS

- a) .a Standardization of Sodium hydroxide
- The balanced equation for the reaction is:
- Molarity of KHP(mol/L) =
- Molarity of NaOH (mol/L) =
- b) (Determination of Phosphoric acid in commercial acid)
  .b1 (Using BCG indicator)
- The balanced equation for the reaction is:
- Molar Conc. of  $H_3PO_4$  (mol/L) =
- Conc. of  $H_3PO_4(g/L) =$ 
  - b2 (Using Phph. indicator)

The balanced equation for the reaction is:

- Molar Conc. of  $H_3PO_4$  (mol/L) =
- Conc. of  $H_3PO_4(g/L) =$

# EXPERIMENT 6 The Neutralizing Capacity of Antacid Tablets

| Name:                                    |                  |           | (       | Group NO.:                              |
|------------------------------------------|------------------|-----------|---------|-----------------------------------------|
| III <u>DATA</u>                          |                  |           |         |                                         |
| a) Standardization of NaOH               | solution         |           |         |                                         |
| Weight of KHP (g)                        |                  |           |         |                                         |
|                                          | Trial 1          | Tri       | ial2    | Trial 3                                 |
| Volume of KHP, mL                        |                  |           |         |                                         |
| Volume of NaOH mL                        |                  |           |         |                                         |
| Average vol. of NaOH                     | Mola             | r Conc. N | аОН     | • • • • • • • • • • • • • • • • • • • • |
| o) Standardization of the HC             | Cl solution      |           |         |                                         |
|                                          | Trial 1          | Tri       | ial2    | Trial 3                                 |
| Volume of HCl, mL                        |                  |           |         |                                         |
| Volume of NaOH, mL                       |                  |           |         |                                         |
| Average vol. of NaOH                     | I                | Molar Con | ic. HCl | •••••                                   |
| c) Determination of Neutrali             | zing capacity of | antacid   |         |                                         |
|                                          | Trial            | 1         |         | Trial 2                                 |
| Mass of antacid sample (g)               |                  |           |         |                                         |
| Volume of 0.20M HCl (mL)                 |                  |           |         |                                         |
| Moles of HCl (used to dissolved antacid) | 0                |           |         |                                         |

Volume of NaOH added

#### Calculations:

- a) Standardization of NaOH against KHP:
- The balanced equation for the reaction is:
- Mass of KHP in g =
- Mole of KHP =
- Molarity of KHP (mol/L) =
- Avg. Molarity of NaOH (mol/L) =

- b) Standardization of HCl against NaOH:
- The balanced equation for the reaction is:
- Avg. Molarity of HCl (mol/L) =

| c)<br>- | Determination of Capacity of Antacid: Assume one mole of Antacids reacts with one mole of HCl.   |
|---------|--------------------------------------------------------------------------------------------------|
|         | Calculation for Trial 1:                                                                         |
| 1.      | Total moles of HCl added =                                                                       |
| 2.      | Moles of NaOH needed to neutralize excess HCl =                                                  |
| 3.      | Moles of excess HCl =                                                                            |
| 4.      | Moles of acid needed to neutralize Antacid= (total moles of acid – moles of excess acid)         |
| 5.      | Capacity of Antacid for Trial 1=  (Moles of acid needed to neutralize Antacid / mass of Antacid) |
| >       | Calculation for Trial 2:                                                                         |
|         | Repeat the above calculation to find the Capacity of Antacid for Trial 2.                        |
|         |                                                                                                  |
|         | Capacity of Antacid for Trial 2 =                                                                |

Avg. Capacity of Antacid:

Avg. Capacity of Antacid =

#### Questions:

- 1- Why strong bases like NaOH cannot be used to neutralize the acid in the stomach?
- 2- Why the back titration technique was used in this experiment instead of direct titration?
- 3- A student is given 0.543g sample of antacid to find it's capacity to be 0.00813 mol/g. The sample was dissolved and treated by 40.00 ml of 0.151 M of HCl, then the solution was titrated with 10.20 ml NaOH. Calculate the concentration of NaOH used .

# EXPERIMENT (7) PRECIPITATION TITRATIONS (ARGENTIMETRY)

| Name:                       |       |                   | Group No.: |                               |         |  |  |  |  |
|-----------------------------|-------|-------------------|------------|-------------------------------|---------|--|--|--|--|
| III <u>DATA</u>             |       |                   |            |                               |         |  |  |  |  |
| Standardization of          | silv  | <u>er nitrate</u> |            |                               |         |  |  |  |  |
|                             | 1     | Weight of NaCl.   |            | g                             |         |  |  |  |  |
| a) Mohr's Method            |       | Trial 1           |            | Trial 2                       | Trial 3 |  |  |  |  |
| Volume of NaCl              |       |                   |            |                               |         |  |  |  |  |
| Volume of AgNO <sub>3</sub> |       |                   |            |                               |         |  |  |  |  |
| Average vol. of AgN         | $O_3$ | mL                | Mo         | lar conc. AgNO <sub>3</sub> . |         |  |  |  |  |
| b) Fajan's Method           |       | Trial 1           |            | Trial 2                       | Trial 3 |  |  |  |  |
| Volume of NaCl              |       |                   |            |                               |         |  |  |  |  |
| Volume of AgNO <sub>3</sub> |       |                   |            |                               |         |  |  |  |  |
| Average vol. of AgN         | $O_3$ | mL                | Mo         | lar conc. AgNO <sub>3</sub> . |         |  |  |  |  |
| Standardization of          | pot   | assium thiocyai   | nate       |                               |         |  |  |  |  |
| c) Volhard's Method         | d     | Trial 1           |            | Trial 2                       | Trial 3 |  |  |  |  |
| Volume of AgNO <sub>3</sub> |       |                   |            |                               |         |  |  |  |  |
| Volume of KSCN              |       |                   |            |                               |         |  |  |  |  |
| Average vol. of KSC         | N.    | mL                | M          | olar conc. KSCN.              |         |  |  |  |  |
| <b>Determination of a</b>   | mi    | xture of halides  | (Na        | Cl + KCl)                     |         |  |  |  |  |
| a) Mohr's Method            |       | Trial 1           |            | Trial 2                       | Trial 3 |  |  |  |  |
| Volume of unknown           | L     |                   |            |                               |         |  |  |  |  |
| Volume of AgNO <sub>3</sub> |       |                   |            |                               |         |  |  |  |  |
| Average vol. of AgN         | $O_3$ | mL                | <u> </u>   |                               |         |  |  |  |  |
| b) Volhard's Method         | d     |                   | Vo         | olume of AgNO <sub>3</sub> .  |         |  |  |  |  |
|                             |       | Trial 1           |            | Trial 2                       | Trial 3 |  |  |  |  |
| Volume of unknown           |       |                   |            |                               |         |  |  |  |  |
| Volume of KSCN              |       |                   |            |                               |         |  |  |  |  |
| Average vol. of KSC         | 'N    | mL                |            |                               |         |  |  |  |  |

#### IV CALCULATIONS

#### • Part A. (Mohr's method)

- Molarity of NaCl (mol/L) =
- Molar Conc. of AgNO<sub>3</sub> (mol/L) =

- Weight of AgNO<sub>3</sub> (g/L) =

### • Part B. (Fajan's method)

- Molar Conc. of  $AgNO_3$  (mol/L) =

- Weight of AgNO<sub>3</sub> (g/L) =
- Part C. (Volhard's method) (Use the concentration of AgNO<sub>3</sub> from part B)
  - Molar Conc. of KSCN (mol/L) =
  - Weight of KSCN (g/L) =

#### • Part D. (Mixture of halides NaCl and KCl)

- Weight of mixture in one liter = 6.50 g
- Weight of mixture in 10 mL (W<sub>1</sub>) = 0.0650 g
- o Part D.1 (Mohr's Method) (Use the concentration of AgNO<sub>3</sub> from part A)
- Moles of the unknown =
- Weight of NaCl (x) and KCl (y) =
- Concentration of NaCl and KCl (g/L)=
- o Part D.2 (Volhard's Methods) (Use the concentration of AgNO<sub>3</sub> from part B)
- Moles of AgNO<sub>3</sub> added =
- Moles of KSCN =
- Moles of Unknown =
- Weight of NaCl (x) and KCl (y) =
- Concentration of NaCl and KCl (g/L)=

## V QUESTIONS

| Q1) | Why precipitation titrations by the Mohr's method require a neutral solution?                           |
|-----|---------------------------------------------------------------------------------------------------------|
| Q2) | What is the effect of using acidic solution in the Fajan's method?                                      |
| Q3) | What is the effect of using $K_2Cr_2O_7$ instead of $K_2CrO_4$ as an indicator on the titration result? |
| Q4) | What is the effect of using basic solution on the results in precipitation titration?                   |
| Q5) | Why nitrobenzene is added in case of titration of Cl <sup>-</sup> by Volhard's method?                  |
|     |                                                                                                         |

# EXPERIMENT (8) REDOX TITRATIONS (DICHROMATE TITRATIONS)

Name:

| III <u>DATA</u>                                                         |                                  |        |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------|--------|--|--|--|--|--|--|--|--|--|
| (b) Determination of Fe <sup>2+</sup> and Fe <sup>3+</sup> in a mixture |                                  |        |  |  |  |  |  |  |  |  |  |
| Molarity of K2Cr2O7                                                     |                                  |        |  |  |  |  |  |  |  |  |  |
| b.1) Determination of Fe <sup>2+</sup> in the                           | e mixture                        |        |  |  |  |  |  |  |  |  |  |
|                                                                         | Trial 1                          | Trial2 |  |  |  |  |  |  |  |  |  |
| Volume of unknown                                                       |                                  |        |  |  |  |  |  |  |  |  |  |
| Volume of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                 |                                  |        |  |  |  |  |  |  |  |  |  |
| Average vol. of K2Cr2O7                                                 |                                  |        |  |  |  |  |  |  |  |  |  |
| b.2) Determination of Fe <sup>3+</sup> in the                           | e mixture                        |        |  |  |  |  |  |  |  |  |  |
| Volume of unknown                                                       |                                  |        |  |  |  |  |  |  |  |  |  |
| Volume of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                 |                                  |        |  |  |  |  |  |  |  |  |  |
| Weight of Fe <sup>2+</sup>                                              | g / L Weight of Fe <sup>3+</sup> | g / L  |  |  |  |  |  |  |  |  |  |

**Instructor's Signature** 

**Group NO.:** 

### IV. CALCULATIONS

- b. Determination of Fe<sup>2+</sup> and Fe<sup>3+</sup> in a mixture
  - b.1 Determination of Fe<sup>2+</sup> in the mixture
    - Molar conc. of  $Fe^{2+}$  (mol/L) =

- Weight of  $Fe^{2+}(g/L) =$
- b.2 Determination of Fe<sup>3+</sup> in the mixture
  - Moles of  $Fe^{2+}$  in the mixture =
  - Moles of  $Fe^{2+}$  and  $Fe^{3+}$  in the mixture =
  - Moles of  $Fe^{3+}$  in the mixture =
  - Molar conc. of  $Fe^{3+}$  (mol/L) =

Weight of  $Fe^{3+}$  (g/L) =

## **V. QUESTIONS**

Q1) What is the role of  $H_3PO_4$  in determination of  $Fe^{2^+}$  by titration with  $K_2Cr_2O_7$ ?

Q2) Can you determine iron ores using K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>?

# EXPERIMENT (9) COMPLEXOMETRIC TITRATIONS (TITRATIONS WITH EDTA)

Name:

**Group NO.:** 

| III <u>DATA</u>        |                                    |                 |                   |                |                    |  |
|------------------------|------------------------------------|-----------------|-------------------|----------------|--------------------|--|
| <u>Standardization</u> | on of abou                         | t 0.01M ED      | TA                |                |                    |  |
| Weight of ZnS          | O <sub>4</sub> .7H <sub>2</sub> O  |                 | • • • • • • • • • | g              |                    |  |
|                        |                                    | Trial           | 1                 | Trial 2        | Trial 3            |  |
| Volume of ZnS          | SO <sub>4</sub> .7H <sub>2</sub> O |                 |                   |                |                    |  |
| Volume of ED           | ТА                                 |                 |                   |                |                    |  |
| Average vol. or        | f EDTA                             | n               | nL Mol            | ar conc. EDTA  | mol/L              |  |
| <b>Determination</b>   | of water                           | <u>hardness</u> |                   |                |                    |  |
|                        | Volum                              |                 | Volu              | ime of EDTA    | Note               |  |
| Trial 1 (V1)           | Trial 1 (V1)                       |                 |                   |                |                    |  |
| Trial 2 (V1)           |                                    |                 |                   |                | 1                  |  |
| Trial 1 (V2)           |                                    |                 |                   |                |                    |  |
| Trial 2 (V2)           |                                    |                 |                   |                | In present of NaOH |  |
| Average V1 =           |                                    |                 | Avera             | ige V2 =       |                    |  |
| Conc. of CaCC          | )3                                 |                 | n                 | ng/L           |                    |  |
| <b>Determination</b>   | of the co                          | ncentration     | of Ca             | and Mg in an u | ınknown solution   |  |
|                        | Volume o                           | of unknown      | Volu              | ime of EDTA    | Note               |  |
| Trial 1 (V1)           |                                    |                 |                   |                |                    |  |
| Trial 2 (V1)           |                                    |                 |                   |                |                    |  |
| Trial 1 (V2)           |                                    |                 |                   |                |                    |  |
| Trial 2 (V2)           |                                    |                 |                   |                | In present of NaOH |  |
| Average V1 =           |                                    |                 | Avera             | ige V2 =       |                    |  |
| ppm Ca                 |                                    |                 | . pp              | m Mg           |                    |  |

## **Instructor's Signature**

## IV. CALCULATIONS

| o Part II.A. (Standardization of about 0.01M EDTA solution)                            |
|----------------------------------------------------------------------------------------|
| - Molar conc. of Zn <sup>2+</sup> (mol / L)                                            |
|                                                                                        |
|                                                                                        |
| - Molar Conc. of EDTA (mol / L)                                                        |
|                                                                                        |
| o Part II.B. ( <u>Determination of water hardness</u> )                                |
| - Conc. of Ca (ppm)                                                                    |
|                                                                                        |
|                                                                                        |
| - Conc. of Mg (ppm)                                                                    |
|                                                                                        |
| - Total water hardness, as mg CaCO <sub>3</sub> /L                                     |
|                                                                                        |
| o Part II.C. ( <u>Determination of the conc. of Ca and Mg in an unknown solution</u> ) |
| - Conc. of Ca (ppm)                                                                    |
|                                                                                        |
| - Conc. of Mg (ppm)                                                                    |
|                                                                                        |

## EXPERIMENT (10) <u>DETERMINATION OF UNKNOWN BASES BY STANDARDIZED HCI</u>

Name:

| II <u>DATA</u>                                     |              |             |          |      |             |        |           |         |  |  |  |
|----------------------------------------------------|--------------|-------------|----------|------|-------------|--------|-----------|---------|--|--|--|
| a) Standardization                                 | of hydroc    | hloric acid | d agains | t so | dium carb   | onat   | <u>te</u> |         |  |  |  |
|                                                    |              | Trial       | 1        |      | Trial2      |        | Т         | rial 3  |  |  |  |
| Weight of Na <sub>2</sub> CO <sub>2</sub>          | 3, g         |             |          |      |             |        |           |         |  |  |  |
| Volume of HCl, n                                   | ıL           |             |          |      |             |        |           |         |  |  |  |
| Molar Conc. HCl,                                   | mol/L        |             |          |      |             |        |           |         |  |  |  |
| Average molar conc. of HCl                         |              |             |          |      |             |        |           |         |  |  |  |
| b) Determination of the composition of the unknown |              |             |          |      |             |        |           |         |  |  |  |
|                                                    |              | Phph        |          |      | BCG         |        |           |         |  |  |  |
|                                                    | Trial 1      | Trial2      | Avera    | ge   | Trial 1     | Trial2 |           | Average |  |  |  |
| Volume, mL                                         |              |             |          |      |             |        |           |         |  |  |  |
| Wt. of unknown                                     |              |             |          |      |             |        |           |         |  |  |  |
| The first compone                                  | ent of the u | nknown is   | ·        |      | and its per | rcen   | tage      | %       |  |  |  |
| The second compo                                   | onent of th  | e unknowi   | n is     |      | and its pe  | rcei   | ntage     | %       |  |  |  |

### **Instructor's Signature**

**Group NO.:** 

## III. CALCULATIONS

- Molar conc. of HCl (mol / L)

- Percentage of the first component

- Percentage of the second component

### - IV. **QUESTIONS**

Q1) If a basic unknown solution was titrated with Phenolphthalein and need 20ml and when it titrated with bromocresol green needs 40ml, the unknown will consist of which type of basic material?

Q2) where you can find the mix of these basic materials in the environments?

| 1A                     | 2A              |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 | 3A                 | 4A              | 5A                | 6A              | 7A                | 8A                      |
|------------------------|-----------------|-------------------------|--------------------|-----------------|-----------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|-------------------|-----------------|-------------------|-------------------------|
| 1<br><b>H</b><br>1.008 |                 |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 |                    |                 |                   |                 |                   | 2<br><b>He</b><br>4.003 |
| 3                      | 4               |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 | 5                  | 6               | 7                 | 8               | 9                 | 10                      |
| <b>Li</b><br>6.941     | <b>Be</b> 9.012 |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 | <b>B</b> 10.81     | <b>C</b> 12.01  | <b>N</b><br>14.01 | <b>O</b> 16.00  | <b>F</b><br>19.00 | Ne<br>20.18             |
| 11                     | 12              |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 | 13                 | 14              | 15                | 16              | 17                | 18                      |
| <b>Na</b> 22.99        | <b>Mg</b> 24.31 |                         |                    |                 |                 |                 |                    |                 |                 |                 |                 | <b>Al</b> 26.98    | <b>Si</b> 28.09 | <b>P</b> 30.97    | <b>S</b> 32.07  | <b>Cl</b> 35.45   | <b>Ar</b> 39.95         |
| 19                     | 20              | 21                      | 22                 | 23              | 24              | 25              | 26                 | 27              | 28              | 29              | 30              | 31                 | 32              | 33                | 34              | 35                | 36                      |
| <b>K</b> 39.10         | <b>Ca</b> 40.08 | <b>Sc</b> 44.96         | <b>Ti</b><br>47.88 | <b>V</b> 50.94  | <b>Cr</b> 52.00 | <b>Mn</b> 54.94 | <b>Fe</b> 55.85    | <b>Co</b> 58.93 | <b>Ni</b> 58.69 | <b>Cu</b> 63.55 | <b>Zn</b> 65.38 | <b>Ga</b> 69.72    | <b>Ge</b> 72.59 | <b>As</b> 74.92   | <b>Se</b> 78.96 | <b>Br</b> 79.90   | <b>Kr</b> 83.80         |
| 37                     | 38              | 39                      | 40                 | 41              | 42              | 43              | 44                 | 45              | 46              | 47              | 48              | 49                 | 50              | 51                | 52              | 53                | 54                      |
| <b>Rb</b> 85.47        | <b>Sr</b> 87.62 | <b>Y</b><br>88.91       | <b>Zr</b> 91.22    | <b>Nb</b> 92.91 | <b>Mo</b> 95.94 | <b>Tc</b> (98)  | <b>Ru</b><br>101.1 | <b>Rh</b> 102.9 | <b>Pd</b> 106.4 | <b>Ag</b> 107.9 | <b>Cd</b> 112.4 | <b>In</b><br>114.8 | <b>Sn</b> 118.7 | <b>Sb</b> 121.8   | <b>Te</b> 127.6 | I<br>126.9        | <b>Xe</b> 131.3         |
| 55                     | 56              | 57                      | 72                 | 73              | 74              | 75              | 76                 | 77              | 78              | 79              | 80              | 81                 | 82              | 83                | 84              | 85                | 86                      |
| <b>Cs</b> 132.9        | <b>Ba</b> 137.3 | <b>La*</b> 138.9        | <b>Hf</b> 178.5    | <b>Ta</b> 180.9 | <b>W</b> 183.9  | <b>Re</b> 186.2 | <b>Os</b> 190.2    | <b>Ir</b> 192.2 | <b>Pt</b> 195.1 | <b>Au</b> 197.0 | <b>Hg</b> 200.6 | <b>Tl</b> 204.4    | <b>Pb</b> 207.2 | <b>Bi</b> 209.0   | <b>Po</b> (209) | <b>At</b> (210)   | <b>Rn</b> (222)         |
| 87                     | 88              | 89                      |                    |                 |                 |                 |                    |                 |                 |                 |                 |                    |                 |                   | . /             |                   |                         |
| Fr                     | Ra              | $\mathbf{Ac}^{\dagger}$ |                    |                 |                 |                 |                    |                 |                 |                 |                 |                    |                 |                   |                 |                   |                         |

\*Lanthanides

†Actinides

| ſ | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3 | Ce    | Pr    | Nd    | Pm    | Sm    | Eu    | Gd    | Tb    | Dy    | Ho    | Er    | Tm    | Yb    | Lu    |
| l | 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |
| ľ | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |
| l | Th    | Pa    | U     | Np    | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |
|   | 232.0 | (231) | 238.0 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |