
## **Routes of Drug Administration**



## **Routes of Drug Administration**

- A route of administration is the path by which a drug, fluid, poison or other substance is brought into contact with the body
- Drugs come in many different forms:
  - designed by pharmaceutical scientists for administration or application
- Many factors determine the choice of route of administration

#### **Ease of Administration**

- Prescribers assess characteristics to determine route of administration
  - some patients are unable to swallow
  - very young or older adult patients might have difficulty in swallowing
    - avoid solid, oral dose forms in favor of liquid dose forms or nonoral routes of administration
  - oral route of administration is inadvisable for a patient experiencing nausea and vomiting

#### Site of Action

- Choice of route of administration is influenced by desired site of action
- The term *local use* refers to site-specific applications of drugs
- The term systemic use refers to the application of a drug to the site of action by absorption into the blood and subsequent transportation throughout the body
  - even drugs meant for systemic administration are usually targeted to a specific site of action

#### **Onset of Action**

Onset rate varies with route of administration:

- Oral medications for systemic use must proceed through a series of steps before they exert their therapeutic effect (desired pharmaceutical action on the body)
- Liquid solutions or suspensions work faster than oral tablets or capsules
  - medication is more readily available for absorption

#### **Onset of Action**

- Tablets placed under tongue or between cheek and gums work quickly
  - medication bypasses stomach and liver, goes directly into bloodstream
- Drugs injected/infused directly into bloodstream are carried immediately throughout the body
- Topical medications work quickly
  - localized therapeutic effects, especially those
    - applied to the skin
    - inhaled into the lungs
    - **■**instilled into the eye

#### **Duration of Action**

- The duration of action is the length of time a drug gives the desired response or is at the therapeutic level
- Controlled-/extended-release tablet may last for 12 to 24 hours compared with 4 to 6 hours for same drug in immediate-release formulation
- Transdermal patches deliver small amounts of a drug steadily over many hours or even days
- Sustained-duration effect can be achieved by means of intravenous (IV) infusion
- Injections into the muscle and skin last longer than injections directly into the bloodstream

## **Quantity of Drug**

- Sometimes route of administration is chosen because of the amount of a drug
  - a tablet containing a lot of filler (diluent) might be preferred for a drug containing a very small amount of active ingredient
- IV infusion is an excellent method for systemic delivery of large quantities of material
  - rapidly diluted in the bloodstream
- IV injections and infusions can deliver a higher dose of medication to the target site
  - important in serious illnesses

# Metabolism by the Liver or Excretion by the Kidney

- Liver metabolism breaks down active drug to inactive metabolites for elimination and to prevent drug accumulation
- The first-pass effect is the extent to which a drug is metabolized by the liver before reaching systemic circulation
  - influences activity of several drugs
  - such drugs have to be given in large oral doses or by another route of administration to bypass or overcome metabolism by the liver

# Metabolism by the Liver or Excretion by the Kidney

- Age-related or disease-related changes in liver or kidney function can cause:
  - drug accumulation
  - **→** toxicity
- Older patients are often prescribed lower doses of medication
- If patients are on multiple potent prescription drugs, there is a risk of a drug-drug interaction
  - drug accumulation
  - toxic blood levels increases

## **Toxicity**

- **►** *Toxicology* is the study of toxic effects of drugs or other substances on the body
- Physicians must weigh therapeutic benefit against the risk of toxicity
- Some drugs have a narrow therapeutic-toxic index called the "therapeutic window"
  - very little difference exists in the therapeutic versus toxic blood level
  - laboratory drug levels are ordered if the physician suspects toxicity
- Toxicity of a drug may affect route of administration

## **Summary**

Factors that may influence the choice of a route of administration for a drug:

Ease of administration, site of therapeutic action, desired onset and duration of action, quantity of drug to be administered, characteristics of metabolism and excretion, and toxicity.

#### Parenteral Routes of Administration

- Parenteral administration is injection or infusion by means of a needle or catheter inserted into the body
- Parenteral forms deserve special attention
  - complexity
  - widespread use
  - potential for therapeutic benefit and danger
- The term *parenteral* comes from Greek words
  - para, meaning outside
  - enteron, meaning the intestine
- This route of administration bypasses the alimentary canal

- Parenteral preparations must be sterile
  - free of microorganisms
- To ensure sterility, parenterals are prepared using
  - aseptic techniques
  - special clothing (gowns, masks, hair net, gloves)
  - laminar flow hoods placed in special rooms

- **■** IV route
  - directly into a vein
- Prepared in hospitals and home healthcare pharmacies
  - antibiotics
  - chemotherapy
  - nutrition
  - critical care medications

- Intramuscular (IM) injections
  - into a muscle

- Subcutaneous injections
  - under the skin

- Intradermal (ID) injections
  - into the skin

- Disposable syringes and needles are used to administer drugs by injection
- Different sizes are available depending on the type of medication and injection needed



#### **IV** Route

- The IV route is the fastest method for delivering systemic drugs
  - preferred administration in an emergency situation
- It can provide fluids, electrolytes, and nutrition
  - patients who cannot take food or have serious problems with the GI tract
- It provides higher concentration of drug to bloodstream or tissues
  - advantageous in serious bacterial infection
- IV infusion provides a continuous amount of needed medication
  - without fluctuation in blood levels of other routes
- Infusion rate can be adjusted
  - to provide more or less medication as the situation dictates

## Disadvantages of the IV Route

- Traumatic injury from the insertion of needle
- Potential for introducing:
  - **■** toxic agents
  - **■** microbes
  - pyrogens
- Impossible to retrieve if adverse reaction occurs
  - injected directly into the body

#### The IM Route

- Intramuscular (IM) and subcutaneous routes of administration are convenient ways to deliver medications
- Compared with the IV route:
  - onset of response of the medication is slower
  - duration of action is much longer
- Practical for use outside the hospital
- Used for drugs which are not active orally

#### The IM Route

- For intramuscular (IM) and subcutaneous routes of administration, the injection site needs to be "prepped"
  - using alcohol wipe
- Correct syringe, needle, and technique must be used
- Rotation of injection sites with long-term use
  - prevents scarring and other skin changes
  - can influence drug absorption

#### The ID Route

- The intradermal (ID) route of administration is used for diagnostic and allergy skin testing
  - patient may experience a severe local reaction if allergic or has prior exposure to a testing antigen

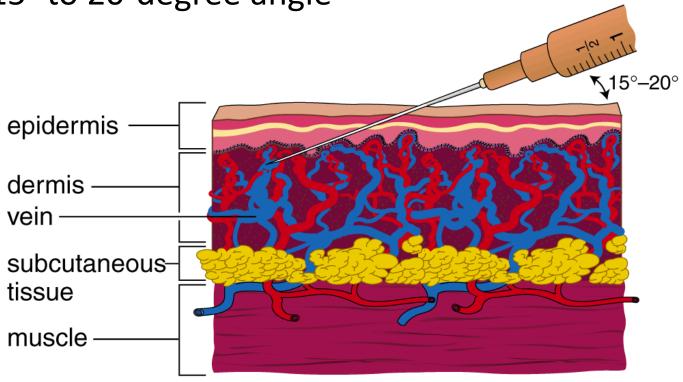
## Dispensing and Administering Parenteral Medications

- Most parenteral preparations are made up of ingredients in a sterile-water medium
  - the body is primarily an aqueous (water-containing) vehicle

- Parenteral preparations are usually:
  - **→** solutions
  - suspensions

## Dispensing and Administering Parenteral Medications

- IV injections and infusions are introduced directly into the bloodstream
  - must be free of air bubbles and particulate matter
  - introduction of air or particles might cause embolism, blockage in a vessel, or severe painful reaction at the injection site


## Intravenous Injections or Infusions

- Fast-acting route because the drug goes directly into the bloodstream
  - often used in the emergency department and in critical care areas

- Commonly used
  - for fluid and electrolyte replacement
  - to provide necessary nutrition to the patient who is critically ill

## Intravenous Injections or Infusions

 Intravenous (IV) injections are administered at a 15- to 20-degree angle



## Intramuscular Injections

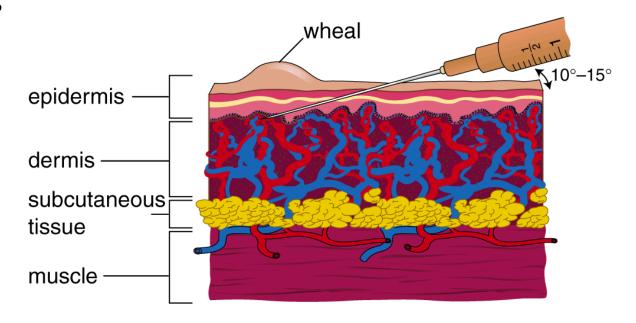
Care must be taken with deep IM injections to avoid hitting a vein, artery, or nerve

- In adults, IM injections are given into upper, outer portion of the gluteus maximus
  - large muscle on either side of the buttocks

■ For children and some adults, IM injections are given into the deltoid muscles of the shoulders

## Intramuscular Injections

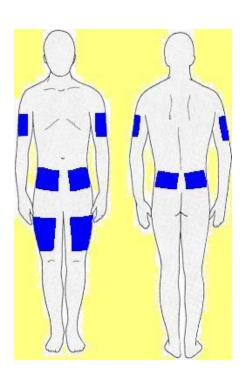



- Typical needle is 22- to 25gauge ½- to 1-inch needle
- Intramuscular (IM) injections are administered at a 90degree angle
  - volume limited to less than 3mL

## Intramuscular Injections

- Used to administer
  - antibiotics
  - vitamins
  - iron
  - vaccines
- Absorption of drug by IM route is unpredictable
  - not recommended for patients who are unconscious or in a shocklike state

## **Intradermal Injections**


- Given into capillary-rich layer just below epidermis for
  - local anesthesia
  - diagnostic tests
  - immunizations



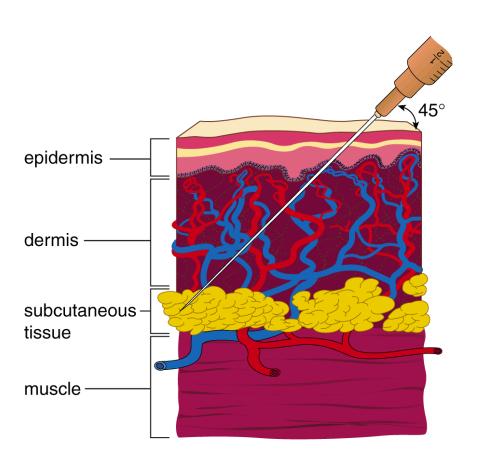
## **Intradermal Injections**

- Examples of ID injections include
  - skin test for tuberculosis (TB) or fungal infections
    - typical site is the upper forearm, below the area where IV injections are given
  - allergy skin testing
    - small amounts of various allergens are administered to detect allergies
    - usually on the back

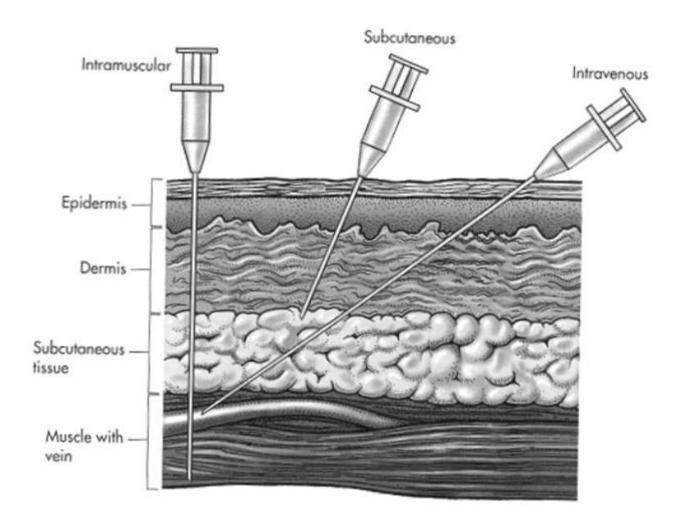
- Administer medications below the skin into the subcutaneous fat
  - outside of the upper arm
  - top of the thigh
  - lower portion of each side of the abdomen
  - not into grossly adipose, hardened, inflamed, or swollen tissue
- Often have a longer onset of action and a longer duration of action
  - compared with IM or IV injection

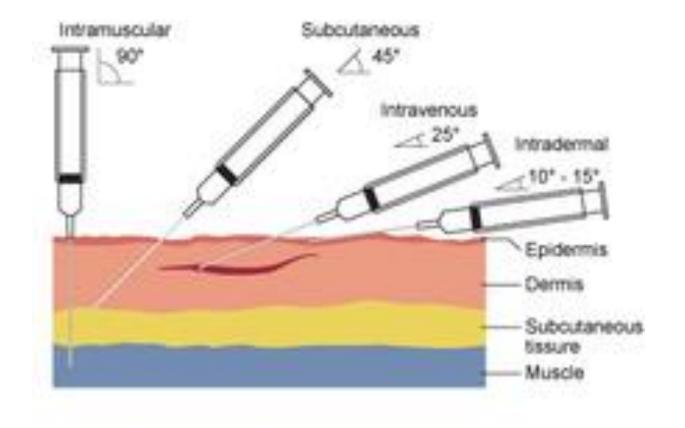


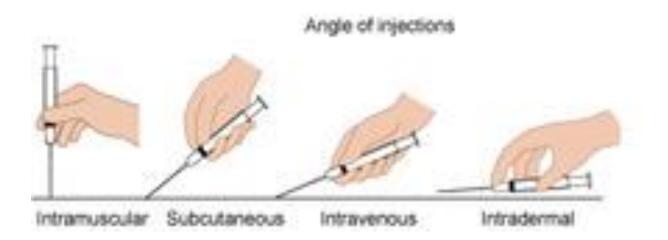
- Insulin is given using 28- to 30-gauge short needles
  - in special syringe that measures in units
- Insulin is administered following a plan for site rotation
  - to avoid or minimize local skin reactions
- Absorption may vary depending on
  - **→** site of administration
  - activity level of the patient




- Keep insulin refrigerated
- Check expiration dates frequently
  - opened vials should be discarded after one month
- A vial of insulin is agitated and warmed by rolling between the hands and should never be shaken
- The rubber stopper should be wiped with an alcohol wipe


- When administering insulin, air is injected into vial
  - equal to the amount of insulin to be withdrawn
- Air is gently pushed from syringe with the plunger
- Patient should plan meals, exercise, and insulin administration
  - to gain the best advantage of the medication
  - avoid chances of creating hypoglycemia


- Medications administered by this route include:
  - epinephrine (or adrenaline)
    - for emergency asthmatic attacks or allergic reactions
  - heparin or low molecular-weight heparins
    - ■to prevent blood clots
  - **■** sumatriptan or Imitrex
    - **■**for migraines
  - many vaccines


- Normally given with the syringe held at a 45-degree angle
  - in lean older patients with less tissue and obese patients with more tissue, the syringe should be held at more of a 90-degree angle
- Correct length of needle is determined by a skin pinch in the injection area
  - proper length is one half the thickness of the pinch



- Given at a 45-degree angle
  - 25- or 26-gauge needle,3/8 to 5/8 inch length
- No more then 1.5 mL should be injected into the site
  - to avoid pressure on sensory nerves causing pain and discomfort





