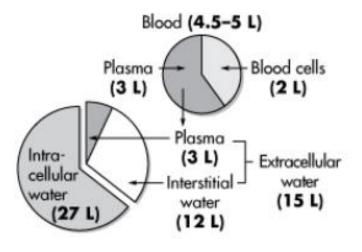

Drug Distribution and Protein Binding

Lecture 7

Distribution


- Distribution of the drug is the reversible transfer of drug from one location to another within the body which determines the concentration of the drug at the site of action (drug action) and other tissues (drug adverse effects)
- Drug also distributes to the eliminating organs (kidney and liver) and non-eliminating tissues such as skin, brain and muscles.
- In pregnancy, it may distribute to the placenta to reach the fetus
- In lactating mother: may be secreted by mammary glands with milk
- May bind to plasma proteins Or may deposit in the fat to be released slowly

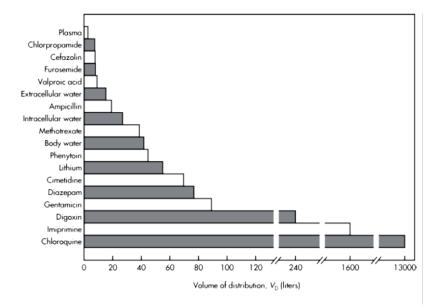
Distribution

Drug distribution in the body depends on:

- Its lipophilicity
- 2. Blood flow
- 3. Protein/tissue binding.
- Low plasma binding, high tissue binding, high blood flow or high lipophilicity usually means an extensive tissue distribution.
- ➤ In pharmacokinetics, the distribution is described by the parameter V, the apparent volume of distribution.
- ➤ At equilibrium, V will theoretically not be lower than 7 L in a 70-kg person, but it has no upper limit.
- The extent to which a drug distributes affects the half-life of the drug and the fluctuation of the concentration at steady state.

Major water volumes (L) in average 70 kg human.

The pattern of drug distribution can be one of the four following types:

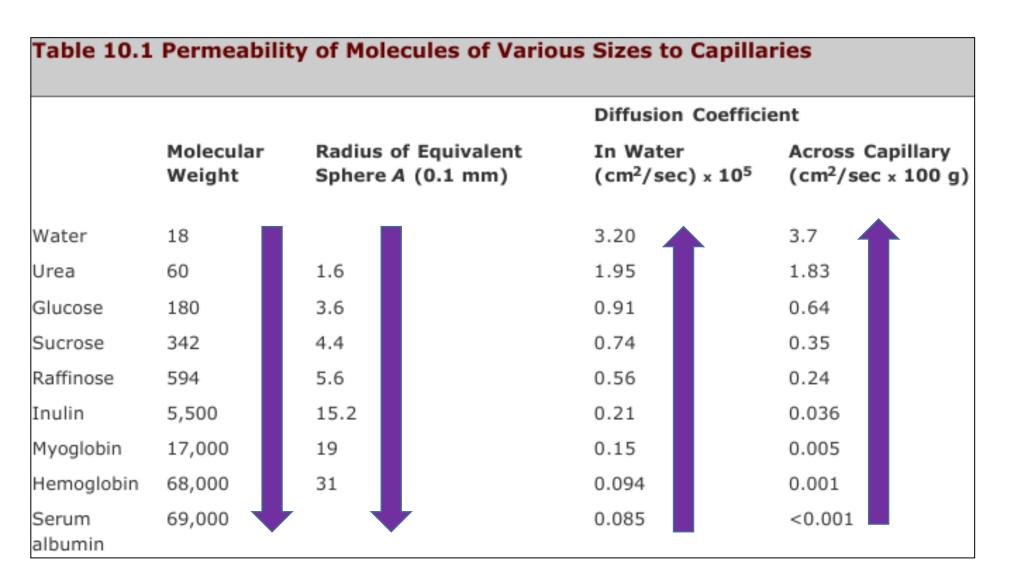

- 1. The drug may remain largely within the vascular system. Mannitol and plasma substitutes such as dextran are examples of this type, but drugs which are strongly bound to plasma protein may also approach this pattern.
- 2. Some low molecular weight water soluble compounds such as ethanol and a few sulfonamides become uniformly distributed throughout the body water.
- 3. Most drugs exhibit a non-uniform distribution in the body with variations that are largely determined by the ability to pass through membranes and their lipid/water solubility.

- 4. A few drugs are concentrated specifically in one or more tissues that may or may not be the site of action.
- **▶lodine** is concentrated by the thyroid gland.
- The antimalarial drug **chloroquine** may be present in the liver at concentrations 1000 times those present in plasma.
- ➤ **Tetracycline** is almost irreversibly bound to bone and developing teeth, consequently tetracyclines should only be given to young children or infants in extreme conditions as it can cause discoloration and mottling of the developing second set of teeth.
- Another type of specific concentration may occur with highly lipid soluble compounds which distribute into fat tissue.
- Note that, the highest concentrations are often present in the kidney, liver, and intestine usually reflecting the amount of drug being excreted.

Other examples

- Flutamide, antiandrogen drug, is highly concentrated in prostate (20 times that of plasma)
- Digoxin is highly bound to the myocardial tissue leading to long distribution half life.
- The chlorinated hydrocarbon, DTT (dichlorophenyltrichloroethane), is highly lipid soluble and remains in fat tissue for years.
- Phenothiazine, used in chronic schizophrenia, is bound to melanin in skin and eye after long term of administration.
- Purine and pyrimidine analogues that treat cancer binds irreversibly to macromolecules and cause destruction of the cell.

- Apparent volume of distribution (V) is a useful indicator of the type of pattern that characterizes a particular drug.
- A value of V in the region of 3-5 liter (in an adult) would be compatible with pattern 1. This is approximately the volume of plasma.
- Pattern 2 would be expected to produce a V value of 30 to 50 liter, corresponding to total body water.
- Agents or drugs exhibiting pattern 3 would exhibit very large values of V. Chloroquine has a V value of approximately 115 L/kg.
- Drugs following pattern 4 may have a V value within a wide range of values.


Volumes of body	/ fluids
Fluid substances	Volume (liter)

Extracellular Fluid	19
Plasma	3
Interstitial fluids	16
Intracellular fluids	23
Total body water	42

Factors Affecti	ng Distribution
A- Rate of distribution	B- Extent of Distribution
Membrane permeability Blood perfusion	 Lipid Solubility pH – pKa Plasma protein binding Tissue drug binding

- Permeability of the drug through the capillary membrane which depends on two factors:
- ➤ Passive diffusion: described by Fick's law of diffusion
- ➤ Hydrostatic pressure: presents by the pressure gradient between arterial and venous capillaries
- Permeability of drug can be affected by:
- Diffusional factor: as membrane thickness, diffusion coefficient of the drug and concentration gradient across the capillary membrane which is affected by some diseases as inflammation (increase permeability).
- ➤ Blood flow: and this can be affected by some diseases as CHF

Permeability through capillaries

A. Rate of distribution

1. Membrane permeability:

- >Cell membranes vary in their permeability characteristics, depending on the tissue.
- For example, capillary membranes in the liver and kidneys are more permeable to transmembrane drug movement than capillaries in the brain. The sinusoidal capillaries of the liver are very permeable and allow the passage of large-molecular-weight molecules.
- In the brain and spinal cord, the capillary endothelial cells are surrounded by a layer of glial cells, which have tight intercellular junctions. This added layer of cells around the capillary membranes acts effectively to slow the rate of drug diffusion into the brain by acting as a thicker lipid barrier.
- This lipid barrier, which slows the diffusion and penetration of water-soluble and polar drugs into the brain and spinal cord, is called the blood brain barrier (BBB).

A. Rate of distribution

1. Membrane permeability

- Under certain pathophysiologic conditions, the permeability of cell membranes, including capillary cell membranes, may be altered.
- For example, burns will alter the permeability of skin and allow drugs and larger molecules to permeate inward or outward.
- In meningitis, which involves inflammation of the membranes of the spinal cord or brain, drug uptake into the brain will be enhanced.
- The diameters of the capillaries are very small and the capillary membranes are very thin. The high blood flow within a capillary allows for intimate contact of the drug molecules with the cell membrane, providing for rapid drug diffusion.
- For capillaries that perfuse the brain and spinal cord, the layer of glial cells functions effectively to increase the thickness, thereby slowing the diffusion and penetration of water-soluble and polar drugs into the brain and spinal cord.

A. Rate of distribution

1. Membrane permeability:

- Capillary walls are quite permeable.
- Lipid soluble drugs pass through very rapidly.
- Water soluble compounds penetrate more slowly at a rate more dependent on their size.
- Low molecular weight drugs pass through by simple diffusion. For compounds with molecular diameter above 100 Å transfer is slow.
- For drugs which can be ionized the drug's pKa and the pH of the blood will have a large effect on the transfer rate across the capillary membrane.
- On the other hand, brain capillaries seem to have impermeable walls restricting the transfer of molecules from blood to brain tissue.
- Lipid soluble compounds can be readily transferred but the transfer of polar substances is severely restricted.
- This is the basis of the "blood-brain" barrier.

Distribution to the tissues

2. Depends on the blood flow, tissue size and tissue storage.

- The rate at which a drug reaches different organs and tissues will depend on the blood flow to those regions.
- ➤ Equilibration is rapidly achieved with heart, lungs, liver, kidneys and brain where blood flow is high.
- Skin, bone, and depot fat equilibrate much more slowly.

Table 10.2 Blood Flow to Human Tissues				
Tissue	Percent Body Weight	Percent Cardiac Output	Blood Flow (mL/100 g tissue/min)	
Adrenals	0.02	1	550	
Kidneys	0.4	24	450	
Thyroid	0.04	2	400	
Liver				
Hepatic	2.0	5	20	
Portal		20	75	
Portal-drained viscera	2.0	20	75	
Heart (basal)	0.4	4	70	
Brain	2.0	15	55	
Skin	7.0	5	5	
Muscle (basal)	40.0	15	3	
Connective tissue	7.0	1	1	
Fat	15.0	2	1	

B. Extent of Distribution

1.Lipid Solubility:

- ➤ Lipid solubility will affect the ability of the drug to bind to plasma proteins and to cross lipid membrane barriers.
- ➤ Very high lipid solubility can result in a drug partitioning into highly vascular lipid-rich areas. Subsequently these drugs slowly redistribute into body fat where they may remain for long periods of time.

2. Effects of pH:

- The rate of movement of a drug out of circulation will depend on its degree of ionization and therefore its pKa.
- Changes in pH occurring in disease may also affect drug distribution. For example, blood becomes more acidic if respiration is inadequate.

3. Plasma protein binding:

- Extensive plasma protein binding will cause more drug to stay in the central blood compartment. Therefore drugs which bind strongly to plasma protein tend to have lower volumes of distribution. (\uparrow protein binding = \downarrow V)
- \triangleright Albumin comprises 50 % of the total proteins binds the widest range of drugs. Acidic drugs commonly bind to albumin, while basic drugs often bind to $\alpha 1$ -acid glycoproteins and lipoproteins.
- The functional groups on the protein molecules that are responsible for **electrostatic interactions** with drugs include:
 - NH3+ of lysine, N- terminal amino acids, NH2+ of histidine, S- of cysteine, and COO- of aspartic and glutamic acid residues.

> Forces involved:

In order to achieve stable complexes, the initial electrostatic attraction is reinforced by van der Waal's forces and hydrogen bonding.

- What is the effect of protein binding on drug action?
- A. Extensive plasma protein binding will decrease the amount of absorbed drug (decrease peak plasma level).
- B. Elimination of a highly bound drug may be delayed. Since the concentration of free drug is low, drug elimination by metabolism and excretion may be delayed. This effect is responsible for prolonging the effect of the drug digoxin.

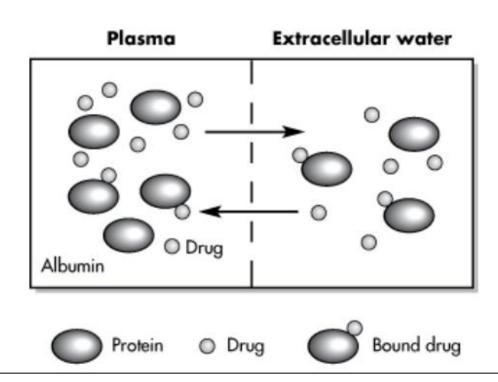


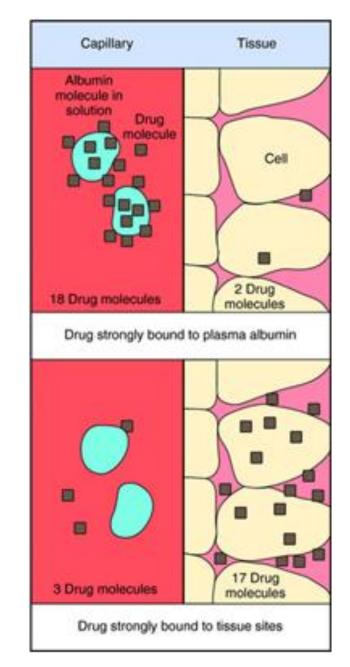
Diagram showing that bound drugs will not diffuse across membrane but free drug will diffuse freely between the plasma and extracellular water.

C. Changes in the concentration of plasma proteins will influence the effect of a highly bound drug.

- A low plasma protein level may occur in: old age, malnutrition, illness such as liver disease (remember that most plasma proteins are made in the liver), or chronic renal failure where there is excessive excretion of albumin.
- ➤In each case the result is a smaller proportion of drug in bound form and more free drug in the plasma. The greater amount of free drug is able to produce a greater therapeutic effect and reduced drug dosages may be indicated in these cases.

D. There may be competition between drugs.

In which agents that are bound very tightly, such as coumarin anticoagulants, are able to displace less tightly bound compounds from their binding sites.


• In general, plasma protein binding is reversible and obeys the law of mass action, where respectively. (free drug) + (albumin) $k_1 \over k_2$ (drug-albumin complex) rate constants,

• At equilibrium:
$$K_{\overline{D}} = \frac{k_2}{k_1} = \frac{[free drug] x [albumin]}{[drug-albumin complex]}$$

- Where K_D is the equilibrium dissociation constant. It is a measure of the affinity of the drug for albumin:
- ➤ The lower the KD the higher the affinity
- ➤ The higher the KD ——— the lower the affinity
- As the concentration of drug increases in plasma, the percent that is bound will decrease.

4. Tissue drug binding (tissue localization of drugs):

- In addition to plasma protein binding, drugs may bind to intracellular molecules.
- The affinity of a tissue for a drug may be due to: binding to tissue proteins or to nucleic acids, or in the case of adipose tissue, dissolution in the lipid material.
- e.g. The concentration of **chloroquine** in the liver is due to the binding of the drug to DNA.
- e.g. **Barbiturates** distribute extensively into adipose tissue, primarily because of their high lipid solubility.
- e.g. **Tetracyclines** bind to bone thus should be avoided in young children or discoloration of permanent teeth may occur.

Other distribution considerations

- Weight considerations:
- A. Body composition of the very young and the very old may be quite different from 'normal', that is the average subject in whom the parameter values may have been originally determined.
- B. Another group of patients in which body composition may be greatly altered from 'normal' is the obese. These patients have a higher proportion of adipose tissue and lower percentage of water.
- Thus for drugs which are relatively polar, volume of distribution values may be lower than normal.
- ➤ For example the apparent volume of distribution of antipyrine is 0.62 l/kg in normal weight subjects but 0.46 l/kg in obese patients.
- ➤ Other drugs such as digoxin and gentamicin are also quite polar and tend to distribute into water rather than adipose tissue.

The rewards for hard-working is success; never lose focus, good luck on your coming exam

