

تفريغ عضويه 1

aldehydes and Ketones includes appear

رقم المحاضرة : 1- Final

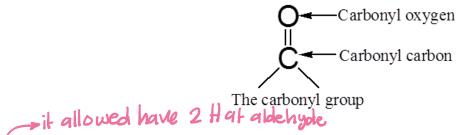
Pharmaceutical Organic Chemistry-1

Chapter-5: Aldehydes & Ketones

Aldehydes & Ketones

Common Classes of Carbonyl Compounds

Class	General Formula	Class	General Formula	
Ketones	R R'	Aldehydes	O C H or H	
Carboxylic acids	R OH له دائ اطرونه	Acid Chlorides the most used halide: Cl because good leaving group	R C CI	
Esters	R O R'	Amides	R NH ₂	

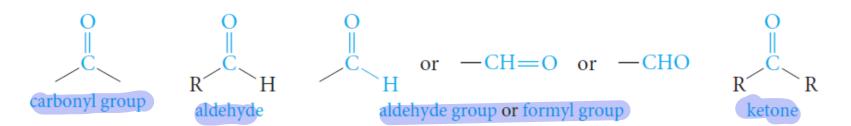

Aldehydes & Ketones

- O Carbon is *sp*² hybridized.
- C=O bond is shorter, stronger, and more polar than C=C bond in alkenes.

		length	energy
R	ketone C=O bond	1.23 Å	178 kcal/mol (745 kJ/mol)
R 120°	alkene C=C bond	1.34 Å	146 kcal/mol (611 kJ/mol)

Structure of Aldehydes and Ketones

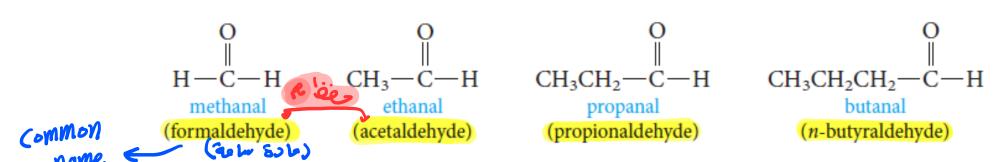
O Aldehydes and ketones are characterized by the presence of the carbonyl group.



O Aldehydes have at least one hydrogen atom attached to the carbonyl carbon atom.

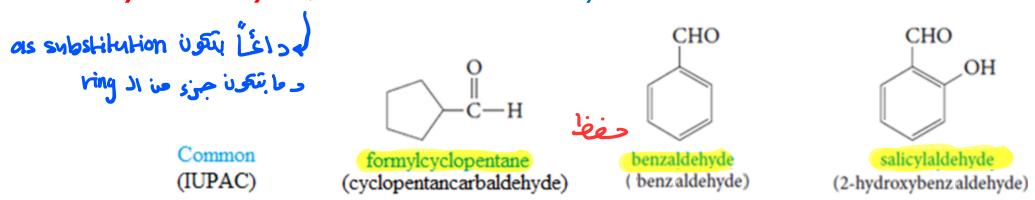
The remaining group may be another hydrogen atom or any aliphatic or aromatic organic group.

The -CH=O group characteristic of aldehydes is often called a formyl group.


O In ketones, the carbonyl carbon atom is connected to two other carbon atoms.

IUPAC System

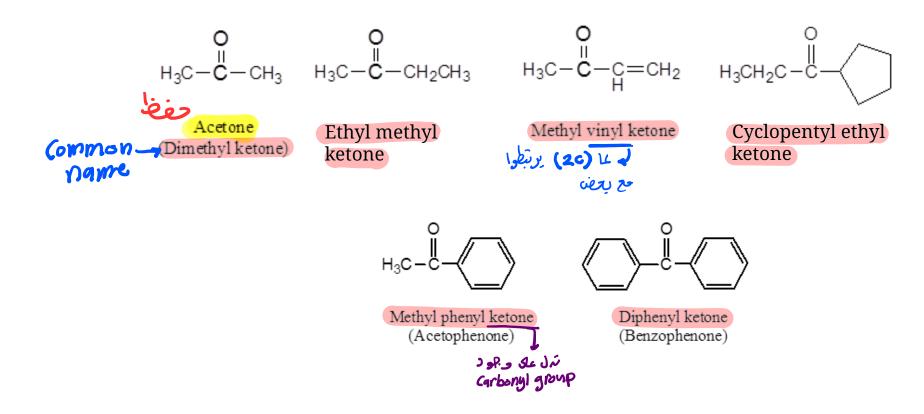
O Aliphatic aldehydes are named by dropping the suffix -e from the name of the hydrocarbon that has the same carbon skeleton as the aldehyde and replacing it with the suffix -al.


Alkane -e+al = Alkanal

IUPAC System

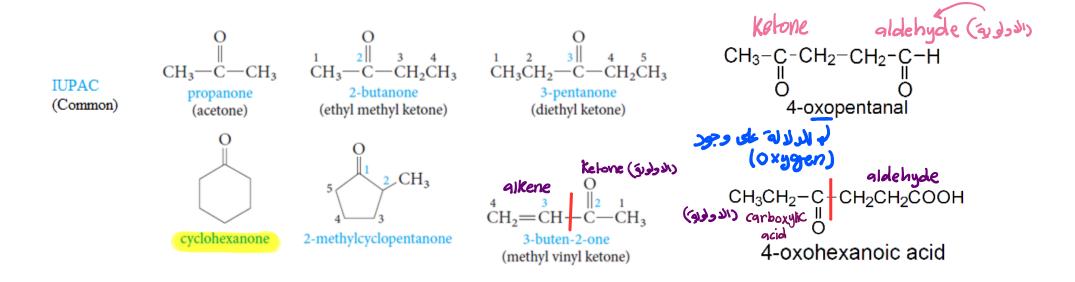
- O Substituted aldehydes, we number the chain starting with the aldehyde carbon.
 - -CH=O group is assigned the number 1 position.
 - Aldehyde group has priority over a double bond or hydroxyl group.

O Cyclic aldehydes, the suffix -carbaldehyde is used.


IUPAC System

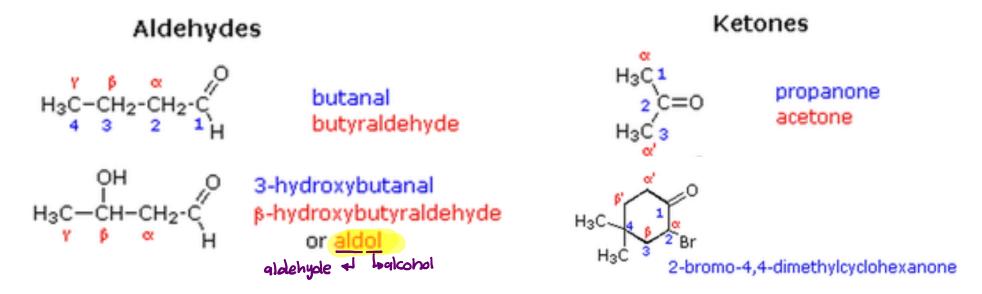
O Aromatic aldehydes are usually designated as derivatives of the simplest aromatic aldehyde, benzaldehyde.

Nomenclature of Ketone


Common Names

- O Common names of ketones are formed by adding the word *ketone* to the names of the alkyl or aryl groups attached to the carbonyl carbon. Alkyl ketone.
- O In still other cases, traditional names are used.

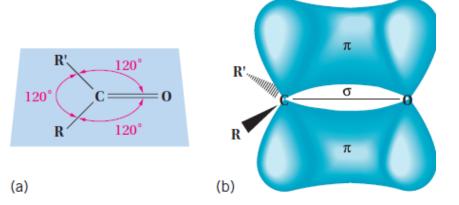
IUPAC System


- O In the IUPAC system, the ending for ketones is -one.
- O The chain is numbered so that the carbonyl carbon has the lowest possible number.
- O For cyclic ketones, numbering always starts from the C=O group.
- O The prefix "oxo" is used when the ketone is not the principal functional group.

Nomenclature of Aldehydes Ketones

NOTES

- O In common names carbon atoms near the carbonyl group are often designated by Greek letters.
- The atom adjacent to the function is alpha (α), the next removed is beta (β) and so on. Since ketones have two sets of neighboring atoms, one set is labeled α , β etc., and the other α' , β' etc.



O The functional group priority order in nomenclature system is as following:

Acid and derivatives >aldehyde> ketone> alcohol > amine > alkene > alkyne > ether

The Carbonyl Group

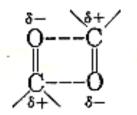
- O The structure and properties of the carbonyl group.
 - ☐ The carbon—oxygen double bond consists of a sigma bond and a pi bond.
 - ☐ The carbon atom is sp²-hybridized. The three atoms attached to the carbonyl carbon lie in a plane with bond angles of 120°.
 - \Box The pi bond is formed by overlap of a p orbital on carbon with an oxygen p orbital.
 - ☐ There are also two unshared electron pairs on the oxygen atom.
 - □ The C=O bond distance is 1.24A, shorter than the C-O distance in alcohols and ethers (1.43A).

The Carbonyl Group

O Oxygen is much more electronegative than carbon. Therefore, the electrons in the C=O bond are attracted to the oxygen, producing a highly polarized bond.

O As a consequence of this polarization, most carbonyl reactions involve nucleophilic attack at the carbonyl carbon, often accompanied by addition of a proton to the oxygen (electron rich).

attack here by a
$$\longrightarrow$$
 $C=O$ \longleftarrow may react with a proton


Physical Properties of Aldehydes and Ketones

Boiling Points

alcohols7 Carbony) > hydrocarbons

Carbonyl compounds boil at higher temperatures than hydrocarbons, but at lower temperatures than alcohols of comparable molecular weight.

This is due to the intermolecular forces of attraction, called <u>dipole-dipole</u> interactions, which is stronger than van der Waals attractions but not as strong as hydrogen bonds.

Dipole-dipole attractions among carbonyl compounds

Physical Properties of Aldehydes and Ketones

Solubility

- O Carbonyl compounds as aldehydes and ketones have a C=O bond, but no O-H bond, cannot form hydrogen bonds with themselves.
- O The polarity of the carbonyl group also affects the solubility properties of aldehydes and ketones.
- O Carbonyl compounds with low molecular weights are soluble in water as they can form hydrogen bonds with O-H or N-H compounds.

$$C = O : \cdots H - O$$

1) Oxidation of Primary and Secondary Alcohols

O Oxidation of secondary alcohols yields ketones.

2) Hydration of Alkynes

O Hydration of acetylene yields acetaldehyde (catalyzed by acid and mercuric).

HC
$$\equiv$$
CH + H₂O $\xrightarrow{\text{HgSO}_4, \text{H}^+}$ $\begin{bmatrix} OH \\ H-C=CH \\ H \end{bmatrix}$ $\xrightarrow{\text{H}_3\text{C}-C-H}$ $\begin{bmatrix} OH \\ H-C=CH \\ H \end{bmatrix}$ $\xrightarrow{\text{H}_3\text{C}-C-H}$ $\xrightarrow{\text{H}_3\text{C}-C-H}$ $\xrightarrow{\text{Vinyl alcohol}}$ $\xrightarrow{\text{Acetaldehyde}}$ (keto form, stable) unstable) (<1%) (>99%)

2) Hydration of Alkynes

O Hydration of terminal alkynes EXCEPT acetylene yields ketones (catalyzed by acid and mercuric).

$$CH_3(CH_2)_5$$
 C $=$ C H^+ , H_2O $CH_3(CH_2)_5$ C $=$ C H_3 1-octyne CH_3 C $=$ C $=$

Product (aldehyde or ketone) depends on the structure of alkene.

4) Friedel-Crafts Acylation

Preparing ketones that contain an aromatic ring.

A) Reduction of Carbonyl Compounds

- O Aldehydes and ketones are easily reduced to primary and secondary alcohols, respectively.
- O The most common metal hydrides used to reduce carbonyl compounds are lithium aluminum hydride (LiAlH₄) and sodium borohydride (NaBH₄).

$$O-AlH_3$$
 $C=O$
 H
 AlH_3
 Alh_3

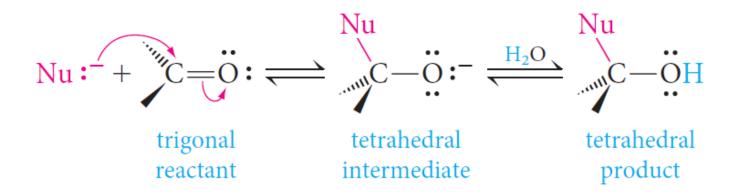
O Example:

B) Oxidation of Carbonyl Compounds

O Oxidation of aldehydes gives a carboxylic acid with the same number of carbon atoms.

O Because the reaction occurs easily, many oxidizing agents, such as KMnO₄, CrO₃, Ag₂O and peracids (such as, <u>perchloric acid</u> HClO4, and <u>permanganic acid</u> HMnO4). will work.

$$\begin{array}{c|c}
C & \text{oxidizing} \\
R - C - H & \xrightarrow{\text{agent}} & R - C - OH \\
\text{aldehyde} & \text{acid}
\end{array}$$


O Example:

$$CH_{3}(CH_{2})_{5}CH = O \xrightarrow{CrO_{3}, H^{+}} CH_{3}(CH_{2})_{5}CO_{2}H$$

$$CHO \xrightarrow{Ag_{2}O} CO_{2}H$$

C) Nucleophilic Addition Reactions

- O Nucleophiles attack the carbon atom of a carbon-oxygen double bond because that carbon has a partial positive charge.
- O The overall reaction involves addition of a nucleophile and a proton across the pi bond of the carbonyl group (when carried out in alcohol or water).

Reactions of

Aldehydes and Ketones

C) Nucleophilic Addition Reactions

(زطادة فيا عدد ع)

1) Addition of Grignard Reagents: Formation of Alcohols

- O Grignard reagents act as carbon nucleophiles toward carbonyl compounds.
- O The reaction of a Grignard reagent with a carbonyl compound provides a useful route to alcohols.

The type of carbonyl compound chosen determines the class of alcohol produced.

C) Nucleophilic Addition Reactions

1) Addition of Grignard Reagents: Formation of Alcohols

Formaldehyde gives primary alcohols.

$$R-MgX + H-C-H \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH$$
formaldehyde

Other aldehydes give secondary alcohols

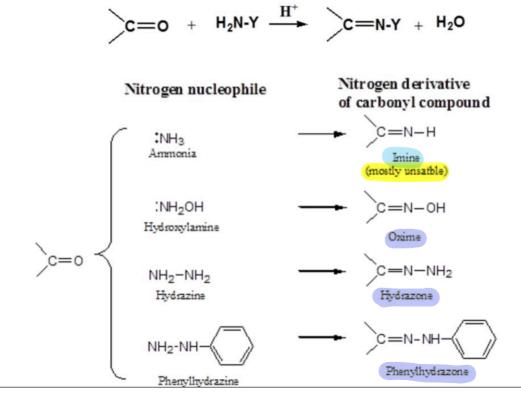
Ketones give tertiary alcohols.

C) Nucleophilic Addition Reactions

2) Addition of Hydrogen Cyanide: Formation of Cyanohydrins

O Hydrogen cyanide adds to the carbonyl group of aldehydes and ketones to form cyanohydrins, compounds with a hydroxyl and a cyano group attached to the same carbon.

C=O + HCN KOH


(9cod nucleophile)

$$\begin{array}{c} O \\ CH_{3}-C-CH_{3} + HCN \\ \hline \end{array} \begin{array}{c} OH \\ KOH \\ CH_{3}-C-CH_{3} \\ \hline \end{array}$$

C) Nucleophilic Addition Reactions

3) Addition of Ammonia and Ammonia Derivatives

The addition of nitrogen nucleophile, such as ammonia (NH_3) and substituted ammonia (NH_2-Y) .

