1/11/2013

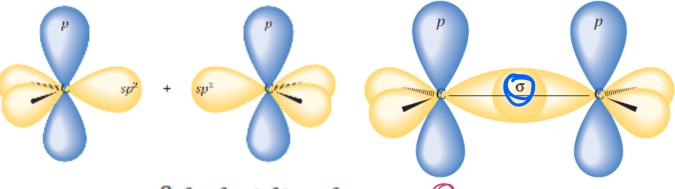
تفريغ عضويه 1

موضوع المحاضرة: (Chapter (2)

رقم المحاضرة :(5

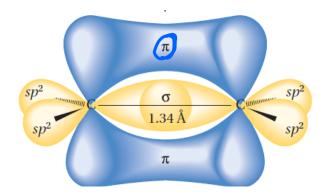
Gufran Khaseeb: إعداد الصيدلانيه

2. ALKENES


The Structure of Alkenes

- Alkenes are hydrocarbons that contain a carbon-carbon double bond.
- Alkenes are also Olefins.
- General formula is C_nH_{2n} (the same of cycloal Kane)

 The simplest members of the Alkenes series are $C_2 \& C_3$ (there is No C_1)


The Structure of Alkenes

- O Hybridization sp² hybridized orbitals
- The angle between them is 120° and bond length C=C (1.34 Å).
- O A trigonal planar.

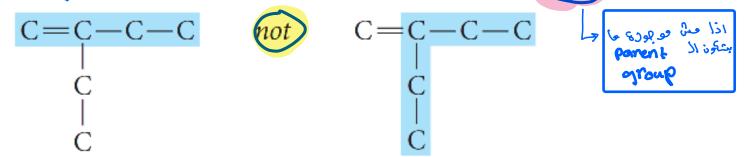
two *sp*²-hybridized carbons with *p* orbitals parallel

the σ bond is formed by two electrons in overlapping sp^2 orbitals

the π bond is formed by two electrons in overlapping parallel p orbitals

Common Names --- more common for the small compounds

The simplest members of the alkene series are frequently referred to by their older common names, ethylene, and propylene.


- Two important groups also have common names; They are the vinyl and allyl
- groups. These groups are used in common names.

Common name: Vinyl cyclohexane IUPAC name: Cyclohexylethene

The IUPAC Rules

The IUPAC rules for naming alkenes are similar to those for <u>alkanes</u>, but a few rules must be added for naming and locating the multiple bonds.

- 1. The ending ene is used to designate a carbon carbon double bond.
- 2. Select the longest chain that includes both carbons of the double bond.

3. Number the chain from the end nearest the double bond so that the carbon atoms in that bond have the lowest possible numbers.

$$\overset{1}{C} - \overset{2}{C} = \overset{3}{C} - \overset{4}{C} - \overset{5}{C}$$
 not $\overset{5}{C} - \overset{4}{C} = \overset{3}{C} - \overset{2}{C} - \overset{1}{C}$

If the multiple bond is equidistant from both ends of the chain, number the chain from the end nearest the first branch point.

becase this side have a branch (substitution)
$$C = C = C - C$$

$$C = C - C$$

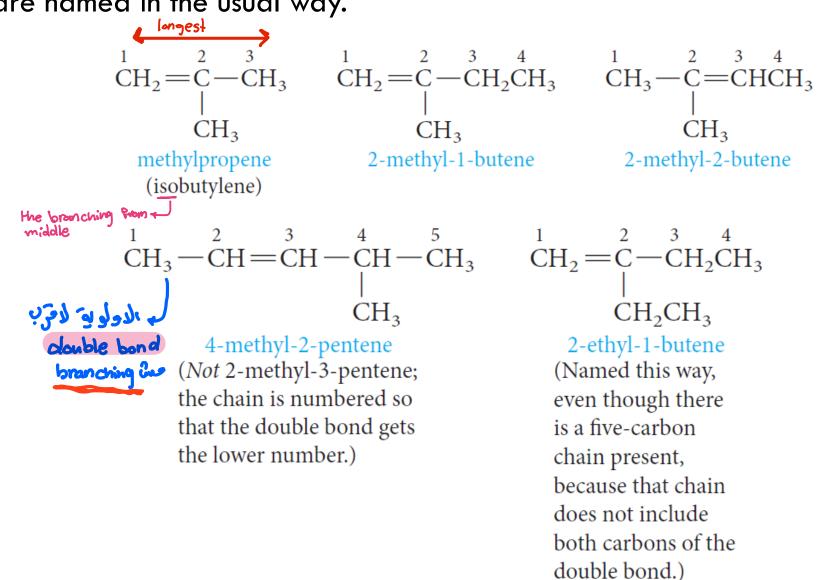
4. Indicate the position of the multiple bond using the <u>lower numbered carbon</u> atom of that bond.

NOTES

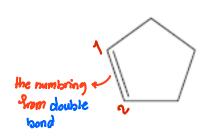
The root of the name (eth- or prop-) tells us the number of carbons, and the ending (-ane, -ene, or -yne) tells us whether the bonds are single, double, or triple.

triple.
No number is necessary in these cases, because in each instance, only one structure is possible. (idenfical)

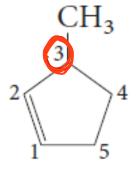
CH₃CH₃
$$CH_2 = CH_2$$
 $HC \equiv CH$ ethane ethene ethyne


CH₃CH₂CH₃ $CH_2 = CHCH_3$ $HC \equiv CCH_3$ propane propane propyne

With four carbons, a number is necessary to locate the double bond.


$$\overset{1}{\text{CH}}_{2} = \overset{2}{\text{CHCH}}_{2} \overset{3}{\text{CH}}_{3} \overset{4}{\text{CH}}_{3} \overset{1}{\text{CH}}_{3} \overset{2}{\text{CHCH}}_{3}$$
1-butene

2-butene


D Branches are named in the usual way.

O With cyclic hydrocarbons, we start numbering the ring with the carbons of the double bond.

cyclopentene
(No number is necessary, because there is only one possible structure.)

3-methylcyclopentene (Start numbering at, and number through the double bond; 5-methylcyclopentene and 1-methyl-2-cyclopentene are incorrect names.)

Example: Write the structural formula of 4-Isopropyl-3,5-dimethyl-2-octene.

1) The parent carbon chain is an Octene.

The double bond is located between the 2^{nd} and 3^{rd} carbons.

2) Two methyl groups are attached on the parent carbon chain, one on carbon 3 and the

other on carbon 5.

CH₃ CH₃

$$C = \frac{1}{C} = \frac{2}{C} = \frac{3}{C} = \frac{4}{C} = \frac{5}{C} = \frac{7}{C} = \frac{8}{C}$$

3) An isopropyl group is attached on carbon 4.

$$^{1}C^{-1}$$

4) Put the missing hydrogens to get the correct structure.

Diene compounds: are alkenes with two π bonds

$$CH_2CH_2CH_2CH_3$$

 CH_2
 $CHCHCH=CH_2$

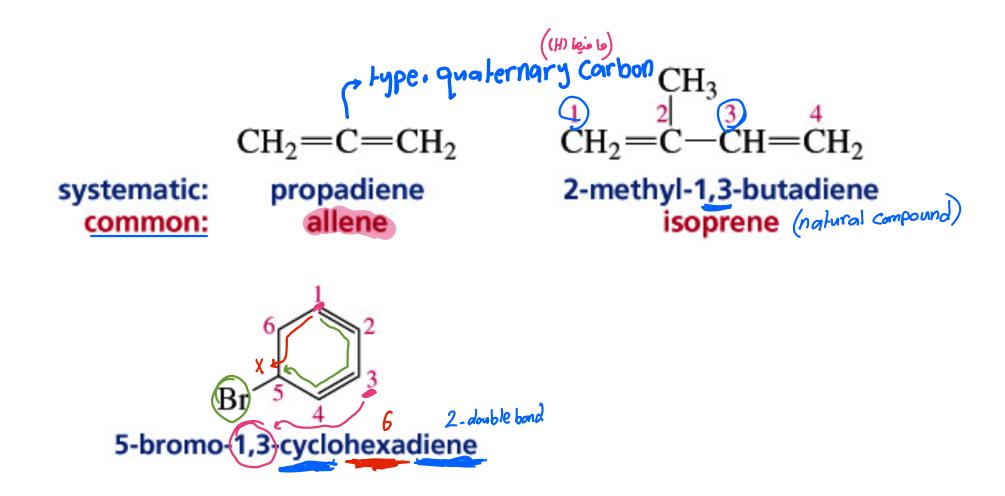
1. Find the longest chain containing both double bonds

3-butyl-1,4-pentadiene

2. Use corresponding alkane name but replace the "ne" ending with "diene"

"pentane" changed to "pentadiene"

3. Number in the direction that gives the lowest number to a double bond


$$\overset{\bullet}{C}H_2 = \overset{\bullet}{C}H\overset{\bullet}{C}H_2\overset{\bullet}{C}H_2\overset{\bullet}{C}H = \overset{\bullet}{C}H\overset{\bullet}{C}H^{\dagger}_1$$
1,5-heptadiene
$$\overset{\bullet}{\text{not}} 2,6\text{-heptadiene}$$

4. List substituents in alphabetical order

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2\text{CH}_3 \\ \text{CH}_3\text{C} = \text{CHCH} = \text{CCH}_2\text{CH}_3 \\ \text{CH}_3\text{C} = \text{CHCH} = \text{CCH}_2\text{CH}_3 \\ \text{CH}_3\text{C} = \text{CH}_2\text{CH}_3 \\ \text{CH}_3\text{C} = \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{C} = \text{CH}_3\text{C} = \text{CH}_3\text{C} \\ \text{CH}_3\text{C} \\ \text{CH}_3\text{C} = \text{CH}_3\text{C} \\ \text{CH}_3\text{C} \\ \text{CH}_3\text{C} = \text{CH}_3\text{C} \\ \text{CH}$$

5. Place numbers indicating the double bond positions either in front of the parent compound or in the middle of the name immediately before the *diene* suffix

Example:

Types of Dienes

When double bonds are separated by at least one sp³ carbon,
 isolated diene

• When double bonds are separated by only one single bond (i.e. four sp^2 carbons in a row), conjugated diene (rish in electrons)

 When both sets of double bonds emanate from the same carbon, cumulated diene

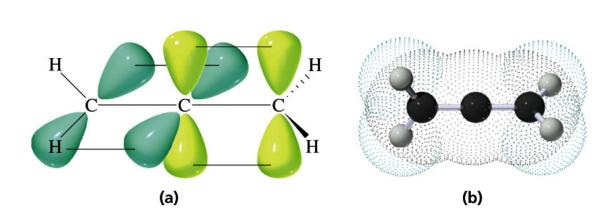
Relative Stabilities of Dienes

most stable

- Conjugated dienes are more stable than isolated dienes because
 - An sp^2-sp^2 single bond is shorter and stronger than a sp^3-sp^2 single bond

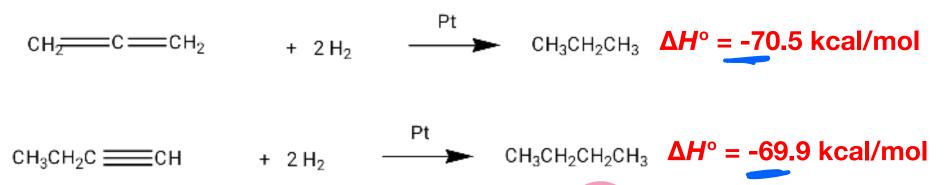
single bond formed by
$$sp^2-sp^2$$
 overlap

 $CH_2=CH-CH=CH_2$
1,3-butadiene


single bonds formed by sp^3-sp^2 overlap

 $CH_2=CH-CH=CH_2$
1,4-pentadiene

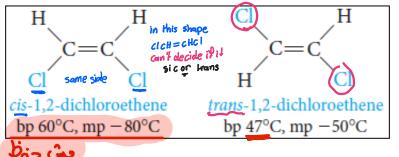
Resonance also stabilizes the conjugated diene

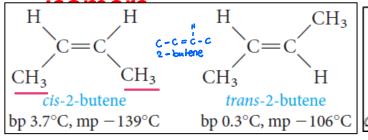

Relative Stabilities of Dienes

- Doubly-bonded carbons in isolated and conjugated dienes all are sp² hybridized
- The central carbon in a cumulated diene is sp hybridized

it become a liner compound

Relative Stabilities of Dienes




- The heat of hydrogenation of allene is similar to that of 1butyne; both have at least one sp carbon
- Additional reactivity of cumulated dienes will not be considered in this course

Geometric Isomerism in Alkenes

O In alkenes, geometric isomerism is due to restricted rotation about the carbon - carbon double bond.

A) when W differs from X and Y from Z, Alkenes exist as geometric

- o cis isomer; when two similar groups are on the same side of the double bond.
- *o trans* isomer; when two similar groups are on the opposite sides of the double bond.
- O They have different physical properties and can be separated by fractional crystallization or distillation.