
27/10/2023

تفريغ عضويه 1

Chapter (1) opening good

رقم المحاضرة : (4 + 3

Gufran Khaseeb: إعداد الصيدلانية

Nomenclature

- O Most organic compounds are known by two or more names:
 - ☐ The older unsystematic names, (Common→🎺 🗀
 - names).
 The IUPAC names.

 Before

International Union of Pure & Applied Chemistry

Nomenclature

The IUPAC Rules

1 Select the parent structure >=

the longest continuous chain

ضایفینوا علیه(منکتبه قبله)

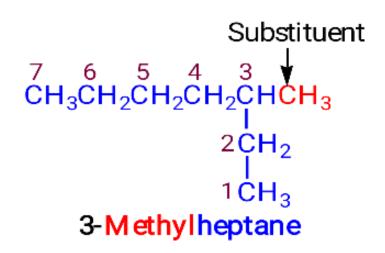
The longest continuous chain is not necessarily straight. - reason-the bond used (sigma) have free rotation.

Nomenclature

The IUPAC Rules

(2) Number the carbons in the parent chain

starting from the end which gives the lowest number for the


3-Ethyl hexane

Nomenclature

The IUPAC Rules

Number the carbons in the parent chain

2-Methylhexane

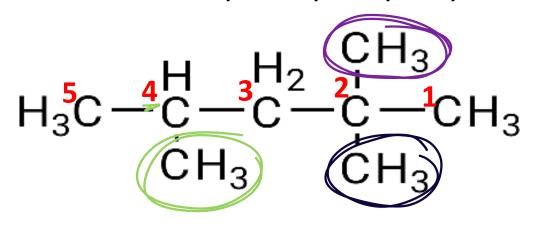
Nomenclature

The IUPAC Rules

To name the compound;

- 1) The position of the substituent on the parent carbon chain by a number.
- 2) The number is followed by a hyphen (-).
- 3) The combined name of the substituent (ethyl).
- 4) The parent carbon chain (hexane)

Nomenclature

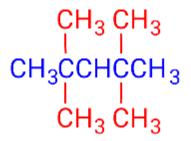

The IUPAC Rules

If the same alkyl substituent occurs more than once on the parent carbon chain,

(2) (3) (4) (5)

the prefixes di-, tri-, tetra-, penta-, and so on

are used to indicate two, three, four, five, and so on.

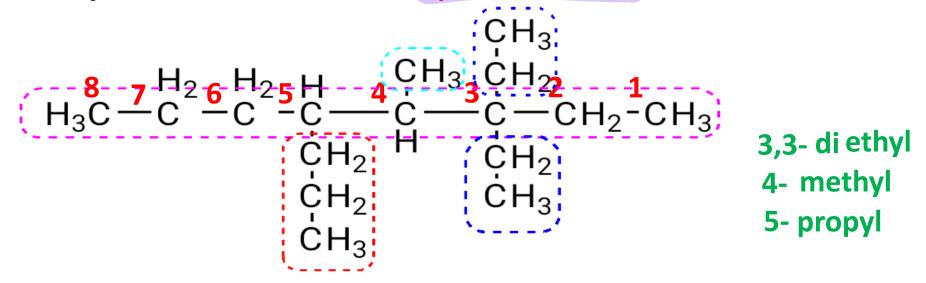


Nomenclature

Saturated Hydrocarbons 1. Alkanes

The IUPAC Rules

2,2,4,4-Tetramethylpentane


Nomenclature

The IUPAC Rules

4)

If different alkyl substituents are attached on the parent carbon chain,

they are named in order of alphabetical order.

3,3-Diethyl -4-methyl - 5-propyl octane

Nomenclature

The IUPAC Rules

Note that each substituent is given a number corresponding to its location on the longest chain. The substituent groups are listed alphabetically.

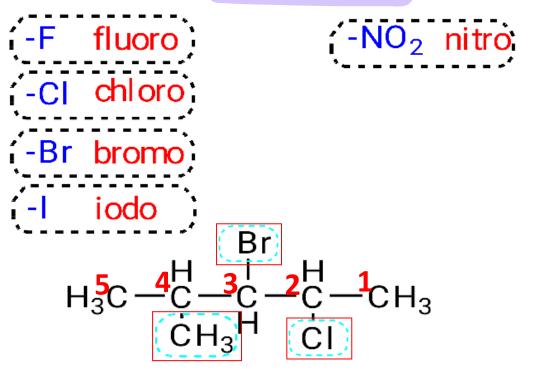
4-Ethyl-2-methylhexane

5) When two substituent are present on the same carbon, use the number twice.

3-Ethyl-3-methylhexane

Nomenclature

The IUPAC Rules


6) When two chains of equal length compete for selection as the parent chain, choose the chain with the greater number of substituents.

2,3,5-Trimethyl-4-n-propylheptane

Nomenclature

The IUPAC Rules

If substituents other than alky groups are also presents on the parent carbon chain; all substituents are named alphabetically.

2-chloro 3-bromo 4- methyl

3-bromo -2-chloro -4-methylpentane

Sources of Alkanes

- O The two principal sources of alkanes are petroleum and natural gas.

 Petroleum and natural gas constitute the chief sources of
 - Alkanes up to 40 Carbons
 - Aromatic (Gasoline and its derivatives)

 (Cyclic aliphatic hydrocarbons) (Alicyclic) [salwrated]
 - Heterocyclic Unsaturated (x atoms (N,O,S)

Sources of Alkanes

Petroleum Refining

Some components of refined petroleum

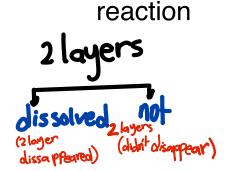
	Fraction	Boiling range (°C)	Caron content
	Gas quickly evaporates	Below 20	C1 – C4
	Petroleum ether	20 – 60	C5 – C6
	Naphtha	60 – 100	C6 – C7
1	Gasoline	40 – 200	C5 – C10
5	Kerosine	175 – 325	C11 – C18
	Gas oil	300 – 500	C15 - C40
	Lubricating oil, asphalt, petroleum coke and paraffins	Above 400	C15 – C40

Physical Properties

Physical Properties of Alkanes, Alkenes and Alkynes

Those properties that can be observed without the compound undergoing a chemical

A. Physical States


C1 (C2) to C4 are gases,

C5 to C17 are liquids,

C18 and larger alkanes are wax –like solids.

B. Solubility

- O Alkanes, Alkenes and Alkynes are nonpolar compounds
- O Their solubility "Like dissolve like"
- O Alkanes, Alkenes and Alkynes are soluble in the nonpolar solvents; carbon tetrachloride, CCl₄ and benzene,
- O Alkanes, Alkenes and Alkynes are insoluble in polar solvents like water.

Intermolecular Forces and Liquids and Solids

Intermolecular Forces (To know the nature of the material)

"Measure" of intermolecular force

- Intermolecular forces are attractive forces between (diffents)
- molecules.

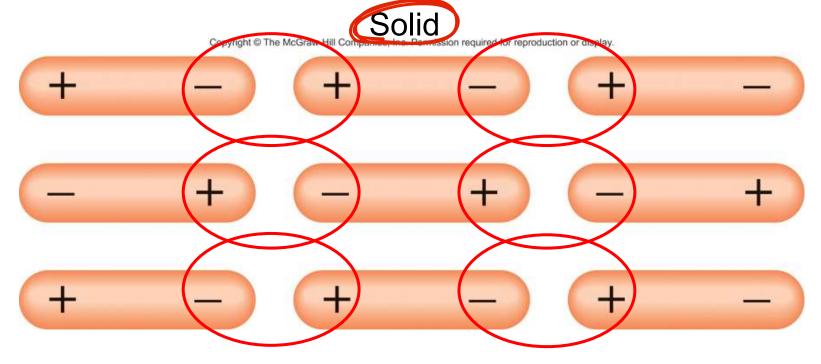
 Intramolecular forces hold atoms together in a molecule.

Intermolecular vs Intramolecular

- 41 kJ to vaporize 1 mole of water (inter) (weaker) multiple choice question
- 930 kJ to break all O-H bonds in 1 mole of water (intra)

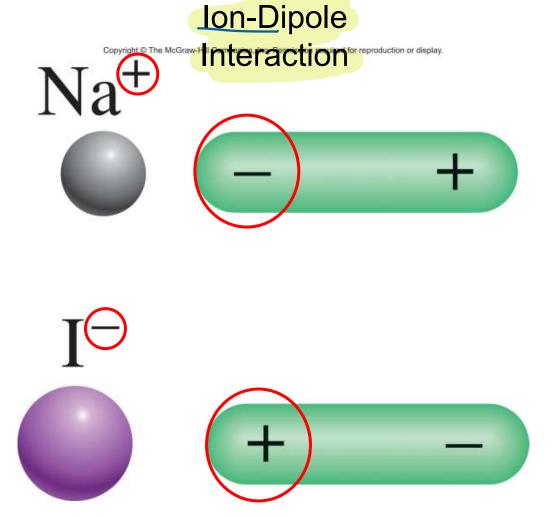
enerally, **inter**molecular melting point

Generally, **inter**molecular forces are much weaker than **intra**molecular forces.


Intermolecular Forces

Dipole-Dipole Forces

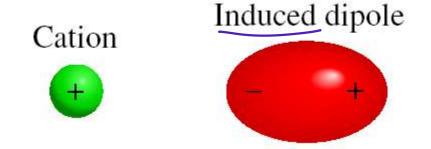
Attractive forces between polar molecules



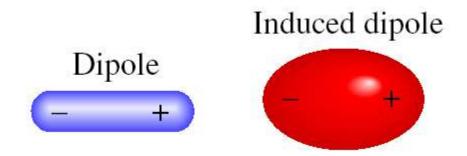
Orientation of Polar Molecules in a

Intermolecular Forces

Attractive forces between an ion and a polar molecule

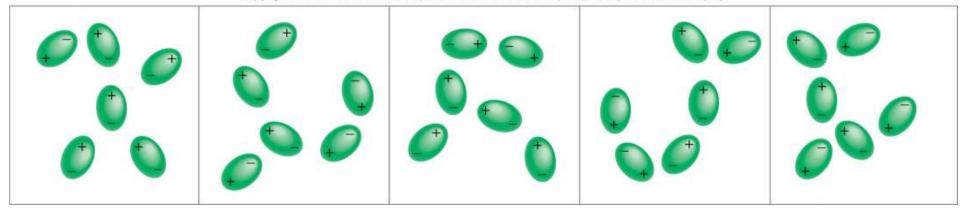

London forces (dipole-induced dipole attraction)

- Non-polar molecules do not have dipoles like polar molecules. How, then, can non-polar compounds form solids or liquids?
- London forces (also called van der Waal forces) are due to small dipoles that exist in non-polar molecules
- Because electrons are moving around in atoms there will be instants when the charge around an atom is not symmetrical
- The resulting tiny dipoles cause attractions between atoms/molecules (the greater the mass, the greater the London forces)


Intermolecular Forces

Dispersion Forces

Attractive forces that arise as a result of **temporary dipoles induced** in atoms or molecules


ion-induced dipole interaction

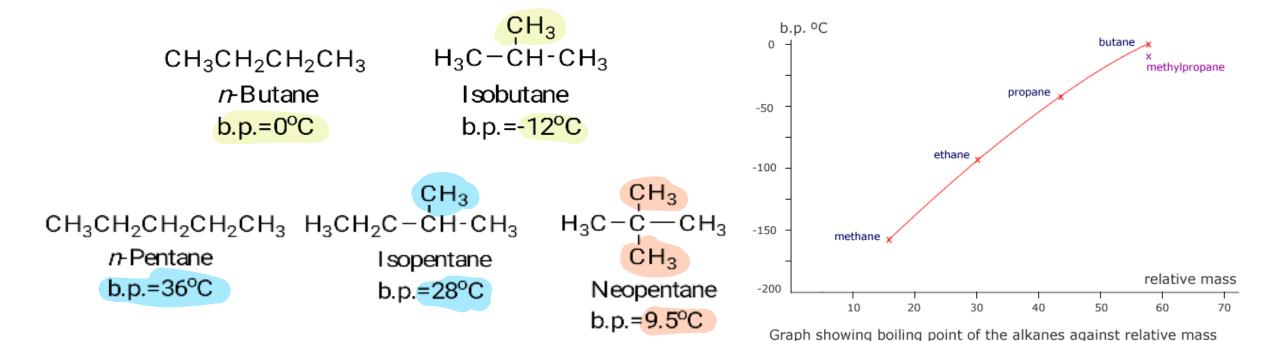
dipole-induced dipole interaction

Induced Dipoles Interacting With Each Other

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Intermolecular Forces

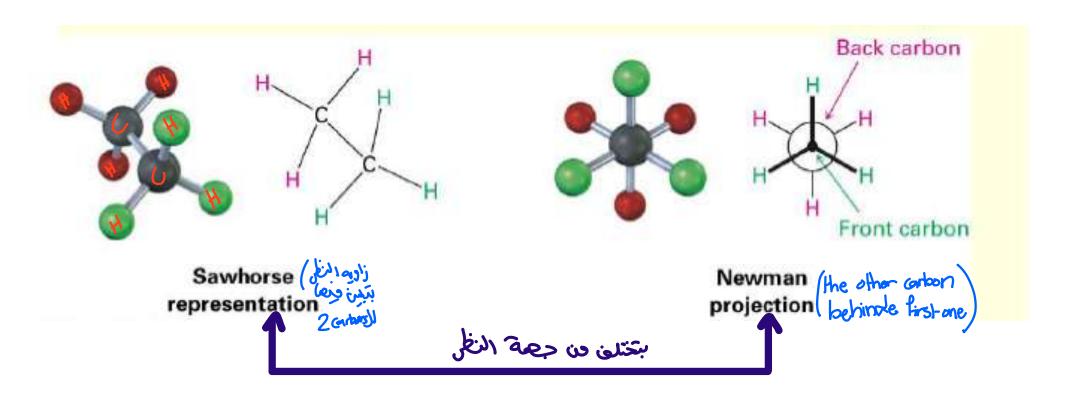
Hydrogen Bond


Is very important for soluble in solvents or not

The *hydrogen bond* is a special dipole-dipole interaction between the hydrogen atom in a polar N-H, O-H, or F-H bond and an electronegative O, N, or F atom.

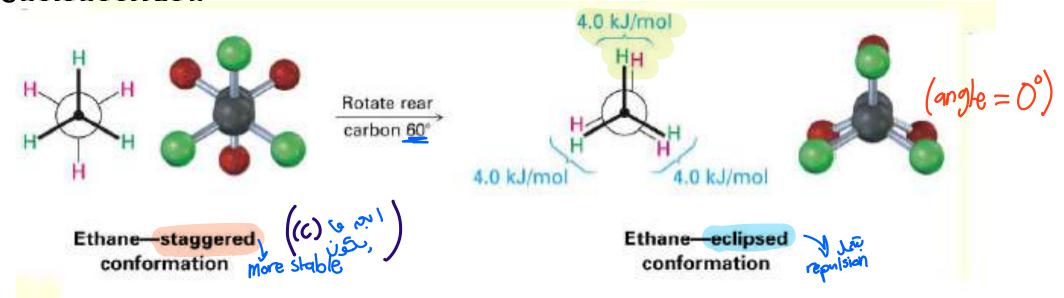
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Physical Properties


C. Boiling Points

- O Boiling point decreases with increasing branches
- D Boiling point increases with increasing molecular weight.

Conformational Isomers of

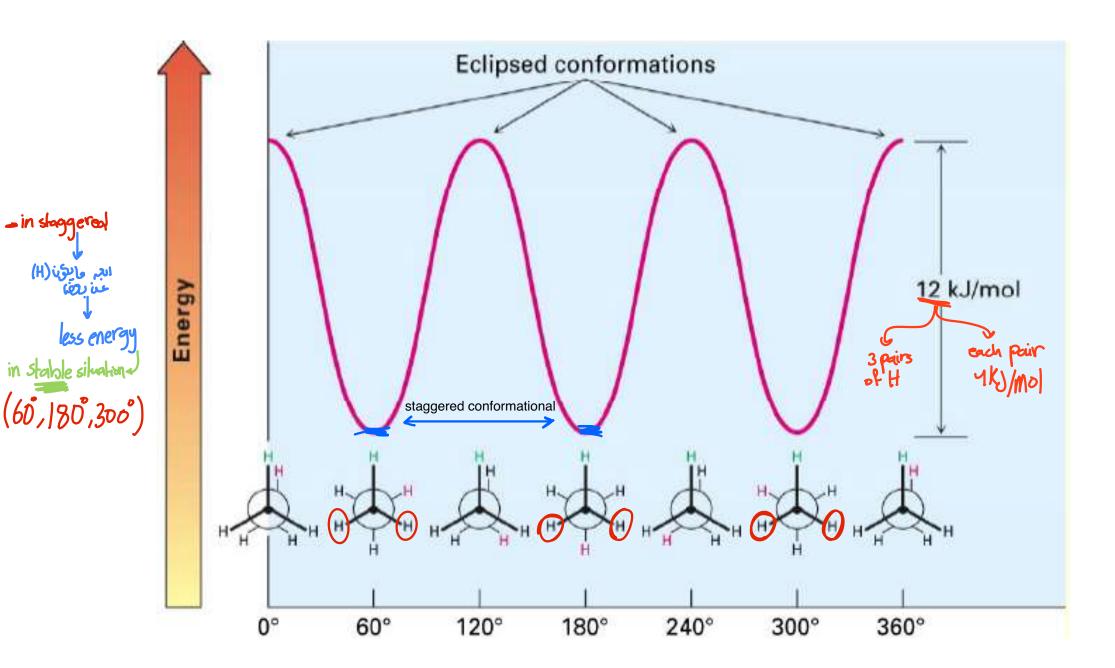

Isomers that differ as **Alkenns** of sigma bond Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes

Bond Rotation and Newman

Isomers of Alkanes

Rroje6tions rbon -carbon bond rotates, interconvert carbon bond rotates, interconvert between staggered and eclipsed conformers

Eclipsed conformer is 12.0 kJ/mol higher in energy ('free' rotation at room temperature)


Conformational

Isomers of Alkanes

Force that opposes rotation due to the repulsion Force that opposes rotation due to the repulsion of bonding electrons

- We do not observe perfectly free rotation الطابقيا There is a barrier to rotation, and some conformers are more stable than others
- Small energy barrier easily overcome at RT
- Each eclipsed H-H costs 4 kJ/mol of Torsional Energy

Strain Energy in Alkanes

Steric strain- repulsive interaction occurring between atoms that are forced closer together than their at far from each other.

Table 3.5	Energy Costs	for Interactions in	Alkane Conformers
-----------	---------------------	---------------------	--------------------------

		Energy cost	
Interaction	Cause		(kcal/mol)
H ← H eclipsed	Torsional strain	4.0	1.0
$H \longleftrightarrow CH_3$ eclipsed	Mostly torsional strain	6.0	1.4
$CH_3 \longleftrightarrow CH_3$ eclipsed	Torsional and steric strain	11	2.6
CH ₃ ↔ CH ₃ gauche من من بعنه	Steric strain	3.8	0.9

بس مش ورا بدی

Torsional Strain

Saturated Hydrocarbons

Notations for bond breaking and bond making

O A covalent bond can be broken in either two ways,

$$A \stackrel{\sim}{\longrightarrow} \stackrel{\leftarrow}{\downarrow} - \stackrel{energy}{\longrightarrow} A \cdot \cdot \stackrel{\leftarrow}{\downarrow} -$$

Free radicals (not stable)

Heterolytic cleavage.

$$A \xrightarrow{\nearrow} c - \underbrace{energy}_{Carboanion}$$

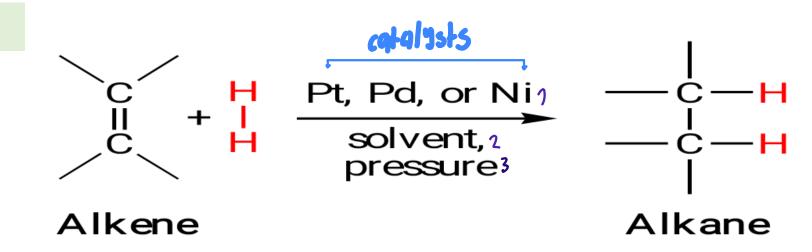
Carboanion

1. Alkanes

whe homolylic need high energy than heterolylic

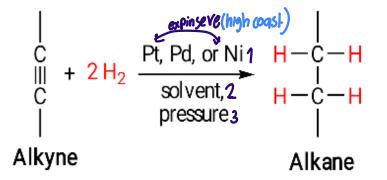
Preparation of Alkanes

1 (adding a H to a compound)


1) Hydrogenation of Alkenes and Alkynes

A great number of alkanes can be obtained by fractional distillation of crude petroleum and subsequent reactions as follows:

the mean source (natural) 1. Catalytic hydrogenation: in the lab


Alkenes and alkynes react with hydrogen in the presence of metal catalysts such as nickel, palladium, and platinum to produce alkanes.

General Reaction

Preparation of Alkanes

1) Hydrogenation of Alkenes and Alkynes

O Specific Examples

Preparation of Alkanes

2) Hydrolysis of Grignard Reagent

Grignard reagents react readily with any source of protons to give hydrocarbons.

3) By coupling of alkyl halides with dialkyl cuprate (all kinds of alkanes)

Reactions of Alkanes

Saturated hydrocarbons undergo very <u>few</u> reactions, so they are called <u>Paraffinic</u> hydrocarbons. (Latin <u>parum</u>, <u>little</u>; <u>affinis</u>, <u>affinity</u>)

Halogenation

The **halogenation** of an alkane appears to be a simple free radical substitution in which a C-H bond is broken and a new C-X bond is formed

$$RH + X_2 \xrightarrow{\text{Heat}} RX + HX \quad X = Cl \text{ or Br}$$

$$Alkyl \text{ halide}$$

$$Reactivity \quad X_2: Cl_2 > Br_2$$

$$H: 3^0 > 2^0 > 1^0 > CH_3-H$$

Combustion

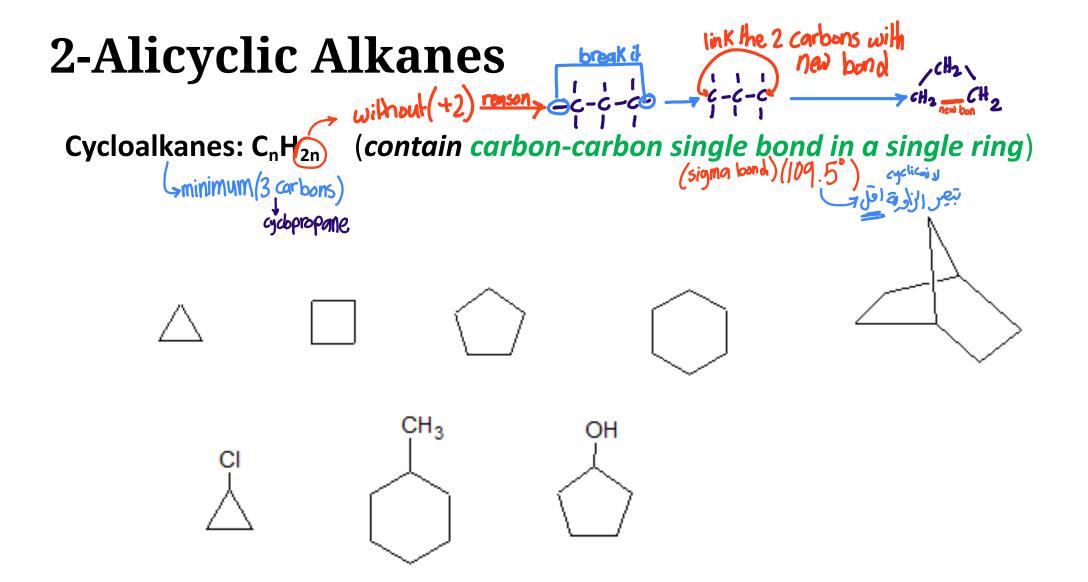
$$H$$
 $-\dot{C}$
 $+ O_2$
 $heat$
 $CO_2 + H_2O + heat$
An alkane

Reactions of Alkanes

A. Halogenation

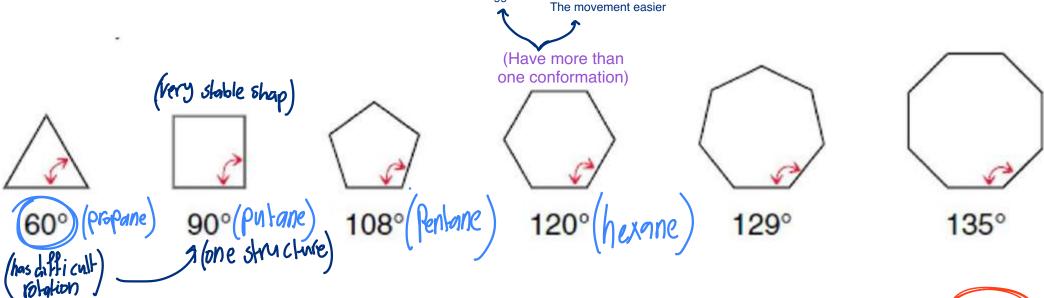
- O Substitution reaction of alkanes, i.e. replacement of hydrogen by halogen, usually chlorine or bromine, giving alkyl chloride or alkyl bromide.
- O Flourine reacts explosively with alkanes

 It is unsuitable reagent for the preparation of the alkyl flourides. (highly reactive) (He most exclaimed)
- O lodine is too unreactive
 It is not used in the halogentaion of alkanes.
- O Halogenation of alkanes take place at <a href="https://hightunes.orunder.new


Reactions of Alkanes

A. Halogenation

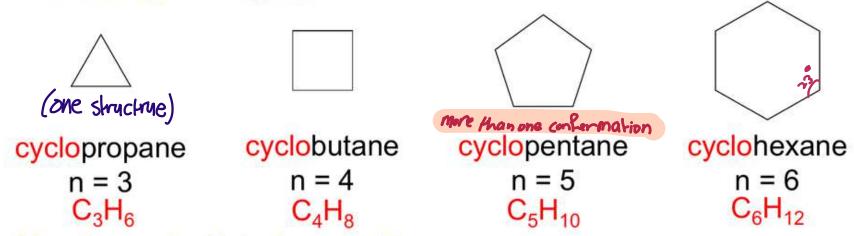
CI-CI + H-C-CI
$$\xrightarrow{heat}$$
 CI-C-CI + HCI


Wethane Dichloromethane (Methylene chloride)

Saturated Hydrocarbons 2. Alicyclic Alkanes

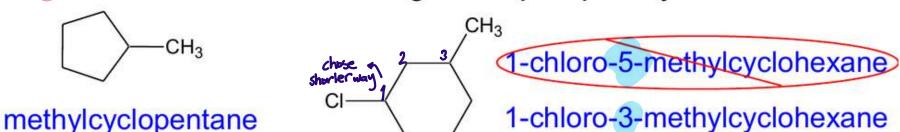
Cyclic Alkanes

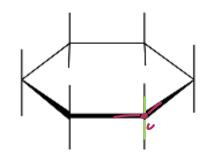
Carbon atoms in alkanes are sp³ hybridized

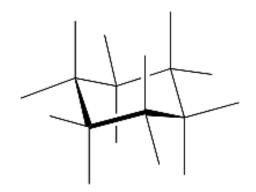


 To optimize the bond angles, most cycloalkanes are NOT flat in their most stable conformation

Nomenclature

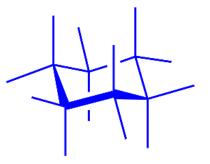

Cycloalkanes


- Alkanes with closed ring(s) of C atoms
- General formula: $C_nH_{2n}(C_3H_6, C_4H_8, C_5H_{10}, etc.)$
- Naming: use cyclo- prefix before alkane name



Naming substituted cycloalkanes:

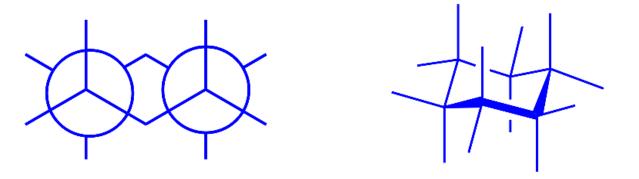
- 1 substituent: no numbering necessary
- 2 or more substituents: highest alpha priority on C #1



Cyclohexane does not have any angle strain! It isn't a flat molecule. By rotating about the carboncarbon bonds, it can achieve 109.5° bond angles.

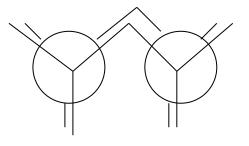
the substituents — equatorial

(the form is unless diverse)

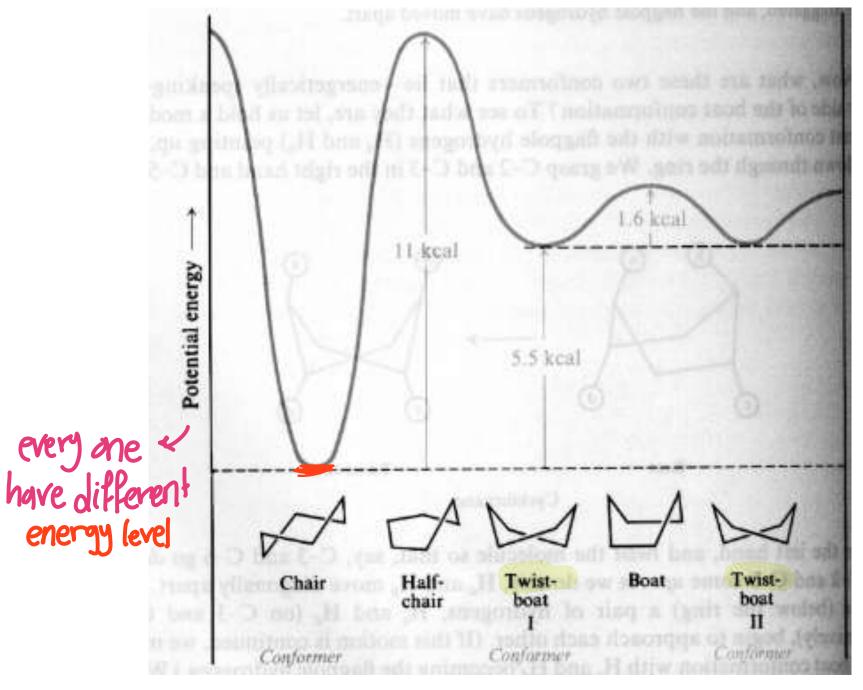

chair

THE THE PARTY OF T

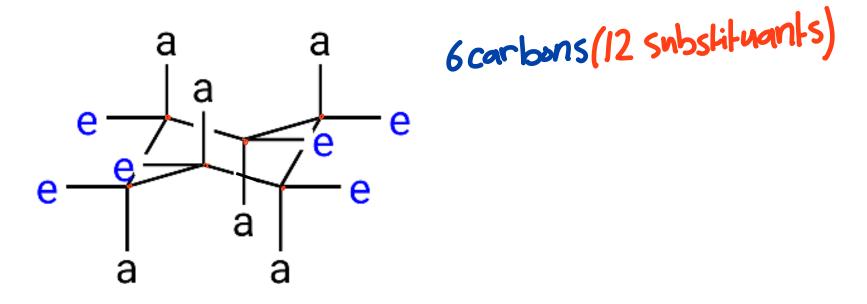
twist boat

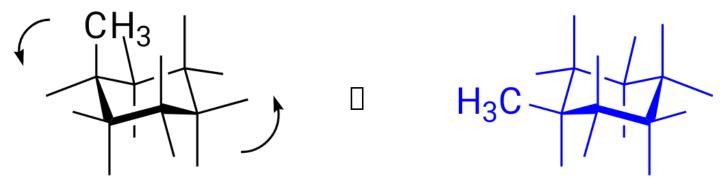

boat

The **chair** conformation of cyclohexane is free of both angle strain and torsional strain (deviation from staggered). This is the most stable conformation. The substituents is the most the corbots


rebullion ()

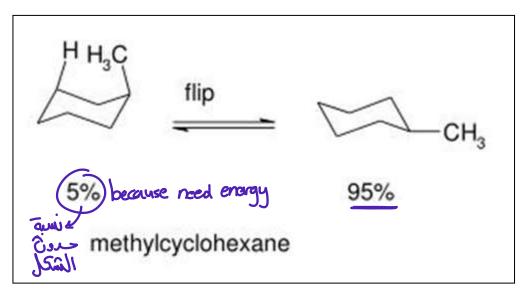
The boat conformation is free of angle strain, but has a great deal of torsional strain (eclipsed). To relieve the strain, it twists slightly to form the twist boat:

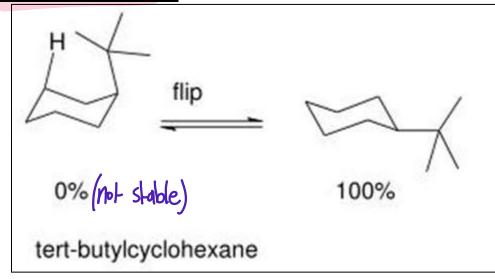

The carbons were strain, it twists


#3602, 2651 Chair & boat in.

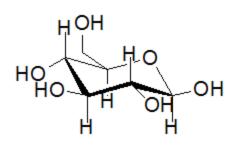
most repular shapes cyclopulane

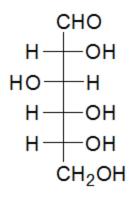
the most stable the least energy


a = <u>axial</u> positions in the chair conformation e = <u>equatorial</u> positions

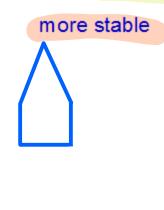


CH₃ in axial position position


CH₃ in equatorial


is more stable

Glucose molecule


beta-D-glucose

all OH groups equatorial

CX: cyclopentame

(it can move)

name: half chair
half boat

alpha-D-glucose

one group forced to be axial (equatorial ほりり)