

تفريغ إحصاء صيدلاني

Lecture 8,9,10 part 2: operal society

رقم المحاضرة: سكند ع

إعداد الصيدلانية : جنين

Counting Rule for Permutations

A second useful counting rule enables us to count the number of experimental outcomes when *n* objects are to be selected from a set of N objects, where the order of selection is important.

Number of Permutations of NObjects Taken n at a Time

$$P_n^N = n! \binom{N}{n} = \frac{N!}{(N-n)!}$$

where:
$$N! = N(N-1)(N-2)...(2)(1)$$

 $n! = n(n-1)(n-2)...(2)(1)$
 $0! = 1$

Permutations

The number of ways you can arrange
 n distinct objects, taking them r at a time is

$$P_r^n = \frac{n!}{(n-r)!}$$

where
$$n! = n(n-1)(n-2)...(2)(1)$$
 and $0! \equiv 1$.

Example: How many 3-digit lock combinations can we make from the numbers 1, 2, 3, and 4?

The order of the choice is important!

$$P_3^4 = \frac{4!}{1!} = 4(3)(2) = 24$$

Examples

Example: A lock consists of five parts and can be assembled in any order. A quality control engineer wants to test each order for efficiency of assembly. How many orders are there?

The order of the choice is important!

$$P_5^5 = \frac{5!}{0!} = 5(4)(3)(2)(1) = 120$$

Counting Rule for Combinations

A third useful counting rule enables us to count the number of experimental outcomes when n objects are to be selected from a set of N objects.

Number of Combinations of N Objects Taken n at a Time

$$C_n^N = \binom{N}{n} = \frac{N!}{n!(N-n)!}$$

where:
$$N! = N(N-1)(N-2) \dots (2)(1)$$

 $n! = n(n-1)(n-2) \dots (2)(1)$
 $0! \neq 1$

Combinations

 The number of distinct combinations of n distinct objects that can be formed, taking them r at a time is

$$C_r^n = \frac{n!}{r!(n-r)!}$$

Example: Three members of a 5-person committee must be chosen to form a subcommittee. How many different subcommittees could be formed?

The order of the choice is not important!

$$C_3^5 = \frac{5!}{3!(5-3)!} = \frac{5(4)(3)(2)1}{3(2)(1)(2)1} = \frac{5(4)}{(2)1} = 10$$

Example

• A box contains six M&Ms®, four red and two green. A child selects two M&Ms at random. What is the probability that exactly one is red?

The order of the choice is not important!

$$C_2^6 = \frac{6!}{2!4!} = \frac{6(5)}{2(1)} = 15$$

waysto choose 2 M & Ms.

$$C_1^2 = \frac{2!}{1!1!} = 2$$
ways to choose
1 green M & M.

$$C_1^4 = \frac{4!}{1!3!} = 4$$
ways to choose
$$1 \text{ red M \& M}$$

 $4 \times 2 = 8$ ways to choose 1 red and 1 green M&M.

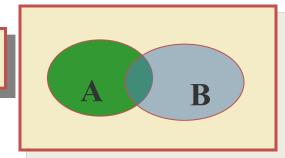
P(exactly one red) = 8/15

Calculating Probabilities for Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, A and B, the probability of their union, $P(A \cup B)$, is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 P(AUB) واذا انظب منى بالامتحان أطبع



Addition Law

The <u>addition law</u> provides a way to compute the probability of event *A*, or *B*, or both *A* and *B* occurring.

The law is written as:

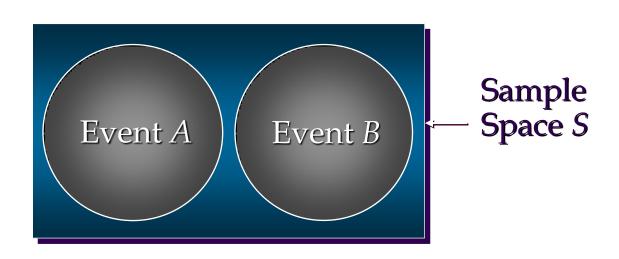
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually Exclusive (Disjoint) Events

Two events are said to be <u>mutually exclusive</u> if the events have no sample points (outcomes) in common.

Two events are mutually exclusive if, when one event occurs, the other cannot occur (They can't occur at the same time. The outcome of the random experiment cannot belong to both A and B

If events *A* and *B* are mutually exclusive, $P(A \cap B) = 0$.



Mutually Exclusive Events

If events A and B are mutually exclusive, $P(A \cap B) = 0$.

The addition law for mutually exclusive events is:

$$P(A \cup B) = P(A) + P(B)$$

مثلا:

A: female

B:mdle

there's no need to include " $-P(A \cap B)$ "

event A and B

multually exclusive

نافاقد کانه

P(ANB)=0

Mutually Exclusive (Disjoint) Events

• Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa.

عكن يطبع الرقم فردي وأكبر من 2 بنفس الوقن • Experiment: Toss a die

Not Mutually Exclusive

-A: observe an odd number

-B: observe a number greater than 2

-C: observe a 6

–D: observe a 3

Mutually Exclusive

B and C?

B and D?

عير صفكن بطلع الرقم 6 و 3 mutually exc بنفس الوقت م 10 و

Example: Additive Rule

Example: Suppose that there were 120 students in the classroom, and that they could be classified as follows:

A: brown hair

$$P(A) = 50/120$$

B: female

$$P(B) = 60/120$$

	Brown	Not Brown
Male	20	40
Female	30	30

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $50/120 + 60/120 - 30/120$
= $80/120 = 2/3$

Brown hair or female

A Special Case

When two events A and B are **mutually exclusive,** $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

A: male with brown hair
$$P(A) = 20/120$$

B: female with brown hair P(B) = 30/120

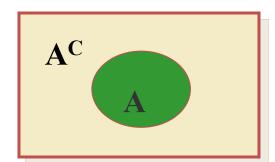
	Brown	Not Brown
Male	20	40
Female	30	30

A and B are mutually exclusive, so that

$$P(A \cup B) = P(A) + P(B)$$

= 20/120 + 30/120
= 50/120

Calculating Probabilities for Complements



We know that for any event A:

$$P(A \cap A^{C}) = 0$$

Since either A or A^c must occur,

• so that P(A∪A^c) = P(A)+ P(A^c) = 1

ر انهانون بند الهانون الهانون بند الهانون بالهانون بند الهانون بند الهانون بند الهانون بند الهانون بالهانون

$$P(A^C) = 1 - P(A)$$

الحدث مع مسمته الحدث مع مسمته 4 =

Example

Select a student at random from the classroom. Define:

A: male

P(A) = 60/120

B: female

	Brown	Not Brown
Male	20	40
Female	30	30

A and B are complementary, so that

$$P(B) = 1 - P(A)$$

= 1 - 60/120 = 4/////// 60

Calculating Probabilities for Intersections

• we can find $P(A \cap B)$ directly from the table. Sometimes this is impractical or impossible. The rule for calculating $P(A \cap B)$ depends on the idea of independent and dependent events. $\P(A)$

Two events, A and B, are said to be **independent** if and only if the probability that event A occurs does not change, depending on whether or not event B has occurred.

Conditional Probabilities

 The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$
"given"

A given

Conditional Probability

- The probability of an event given that another event has occurred is called a <u>conditional probability</u>.
- The conditional probability of \underline{A} given \underline{B} is denoted by $P(A \mid B)$.

A conditional probability is computed as follows:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Law منرب

The <u>multiplication law</u> provides a way to compute the probability of the intersection of two events.

The law is written as:

$$P(A \cap B) = P(B)P(A \mid B)$$

Example 1

– A: head on second toss

B: head on first toss

$$P(A|B) = P(A\cap B)$$

$$P(A)B) = P(A)B)$$

$$P(B)$$

$$P(A) does 1$$

1/4

1/4

TH

$$P(A|B) = \frac{1}{2}$$

 $P(A|not B) = \frac{1}{2}$

P(A) does not change, whether B happens or not...

A and B are independent!

Independent Events

If the probability of event *A* is not changed by the existence of event *B*, we would say that events *A* and *B* are <u>independent</u>.

Two events *A* and *B* are independent if:

$$P(A \mid B) = P(A)$$

or

$$P(B \mid A) = P(B)$$

P(A) does change, depending on whether B happens or not...

A and B are dependent!

Defining Independence

 We can redefine independence in terms of conditional probabilities:

Two events A and B are **independent** if and only if

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

Otherwise, they are dependent.

• Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

Multiplication Law for Independent Events

The multiplication law also can be used as a test to see if two events are independent.

The law is written as:

$$P(A \cap B) = P(A)P(B)$$

القوائل لسية حفظ

The Multiplicative Rule for Intersections

 For any two events, A and B, the probability that both A and B occur is

$$P(A \cap B) = P(A) P(B \text{ given that A occurred})$$

= $P(A)P(B|A)$

• If the events **A** and **B** are independent, then the probability that both **A** and **B** occur is

$$P(A \cap B) = P(A) P(B)$$

Example 1 hot important

In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?

Define H: high risk N: not high risk

```
P(\text{exactly one high risk}) = P(HNN) + P(NHN) + P(NNH)
```

- = P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
- $= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)^2 = .243$

male = 51%

Example 2

Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08.

Use the Multiplicative Rule:

P(high risk and female = intersection)

P(high risk female) = $P(H \cap F)$ = P(F)P(H|F) = .49(.08) = .0392

Rules Summary

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B)$
- $P(A^{C}) = 1 P(A)$
- $P(A/B) = \frac{P(A \cap B)}{P(B)}$

- تعطى بالافتحان
- $P(A \cap B) = P(B)$. P(A/B)
- P(A/B)=P(A)
- P(B/A)=P(B)
- $P(A \cap B) = P(B) \cdot P(A)$

- Additional rules:
- $P(A \cap \overline{B}) = P(A) P(A \cap B)$
- $P(\overline{A} \cap B) = P(B) P(A \cap B)$
- $P(A \cup \overline{B}) = P(\overline{B}) + P(A \cap B)$
- $P(\bar{A} \cup B) = P(\bar{A}) + P(A \cap B)$
- De Morgan's Laws
- $P(\overline{A \cup B}) = P(\overline{A} \cap \overline{B}) = 1 P(A \cup B)$
- $P((\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B}) = 1 P(A \cap B)$

Examples

For the random experiment of rolling two fair dice, suppose that we define the two events A and B as follows:

A: First die show 1 → 1 العام رقم 1

B: Second die show 1 على حصر من علم وم 1 ا

Then find the value of $P(A \cup B)$?

Solution

The outcomes of the two events are as follows:

A = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)}
$$\rightarrow$$
 P(A) = 6/36
B = {(1,1), (2,1), (3,1), (4,1), (5,1), (6,1)} \rightarrow P(B) = 6/36
A \cap B = {(1,1)} \rightarrow P(A \cap B) = 1/36
P(A \cup B) = P(A) + P(B) - P(A \cap B)
= 6/36+6/36 - 1/36
= 11/36
= 0.306

Example-Disjoint Events

 For random experiment of rolling two fair dice, suppose that we define the two events A and B as follows:

A={ (1,2), (2,1)} P(A)= 2/36
B={(1,5), (2,4), (3,3), (4,2),(5,1)} P(B)=5/36
P(A \cap B)=
$$\phi = 2276$$

So P(A \cup B)= (2/36) + (5/36) = (7/36) = 0.194

Examples

* سُركة المدلانية بالامارات عنها حنبين تلفؤنات

• Suppose that in the Gulf pharmaceutical industries company in UAE, there are two telephone lines 1 and II. Let A be the event that line I is busy and let B be the event that line II is busy.

P(A)=0.55 P(B)=0.65 and $P(A\cap B)=0.35$

معلومات لتم اعطانها بالسوال العادية Answer the following:

a) Find the probability that both lines are free?

intersection

Examples

Solution

```
P(Both lines are free) = P(A \cap B) = P(A \cup B)
=1 - P(A \cup B)
=1 - (P(A) + P(B) - P(A \cap B)
= 1 - (0.55 + 0.65 - 0.35)
= 1 - 0.85
= 0.15
```

Continued

repla

b) Find the probability that line I is busy and line II is free?

Solution

P(Line I is busy and line II is free)= $P(A \cap \overline{B})$

$$=P(A \cap \overline{B})=P(A)-P(A \cap B)$$

$$=0.55-0.35$$

$$=0.20$$

Continued

اتحاد ۸ ا

c) Find the probability that line I is free or line II is busy?

Solution

```
P(line I is free or line II is busy)=P(\overline{A} \cup B)
= P(\overline{A})+ P(A \cap B)
=1-P(A)+ P(A \cap B)
=1-P(A)+ P(A \cap B)
= 0.8
```

Additional Rules

•
$$P(A/\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{P(A) - P(A \cap B)}{1 - P(B)}$$

$$P(\overline{A}/B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(B) - P(P \cap B)}{P(B)} = 1 - P(A/B)$$

$$P(\bar{A}/\bar{B}) = \frac{P(\bar{A} \cap \bar{B})}{P(\bar{B})} = \frac{P(\bar{A} \cup \bar{B})}{1 - P(B)} = \frac{1 - P(A \cup B)}{1 - P(B)} = \frac{1 - [P(A) + P(B) - P(A \cap B)]}{1 - P(B)}$$

Example

For the random experiment of rolling two fair dice, suppose that we define the two events A and B as follows:

A: First die shows 1

B: Second die show 2

Then find the value of P(A/B)

P(first die show I given that second die show 2)

<u>Solution</u>

•
$$P(A/B) = P(A \cap B)$$
• $P(B)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{1/36}{6/36}$$
$$= \frac{1}{6}$$

In the Queen Alia International Airport, suppose that the probability that a regularly scheduled flight departs on time is P(A) = 0.83; the probability that a regularly scheduled flight arrives on time is P(B) = 0.92; and the probability that it departs and arrives on time is $P(A \cap B) = 0.78$. Find the probability that a plane

- a) Arrives on time given that it departed on time, and
- b) Departed on time given that it has arrived on time? Solution

a)
$$P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{0.78}{0.83} = 0.94$$

a)
$$P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{0.78}{0.83} = 0.94$$

b) $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.78}{0.92} = 0.85$

Suppose that we have a drug box containing 20 tablets, of which 5 are defective, if 2 tablets are selected at random and removed from the box in succession without replacing the first, what is the probability that both tablets are defective? علبة فيها 20 حبة دواء ، 5 حبات خربانة

Solution

We shall let:

A: the event that the first tablet is defective

B: the event that the second tablet is defective

A\OB: the event that A occurs, and then B occurs after A has

occurred (both events occur)

* سحبت الحبة الاولى بعدين سحبت الحبة النالية

مطلول تسحل حبتين

- The probability of first removing a defective tablet is 5/20 = ¼, then the probability of removing a second defective tablet from the remaining 4 is 4/19, hence:
- P(A∩B)=P(B). P(A/B) defective و الحبة طلعت ۱۹ المؤنة عنها المؤندة ال
 - = 1/19=0.053

Additional Rules

Definition of Independence

Two events A and B are said to be (statistically) independent if any one of the following equivalent conditions holds:

- P(A∩B)=P(A)P(B)
- P(A/B)=P(A)
- 3) P(B/A)=P(B)

Otherwise, they are said to be dependent events Then,

- 1) A and not B are independent, that is: $P(A \cap \overline{B}) = P(A)P(\overline{B})$
- 2) Not A and B are independent, that is: $P(\bar{A} \cap B) = P(\bar{A})P(B)$
- 3) Not A and not B are independent, that is: $P(\bar{A} \cap \bar{B}) = P(\bar{A})P(\bar{B})$

Two dice are rolled. Suppose that we define the two events A and B as follows:

A: First die show 1.

B: The sum of the two numbers comes up on the two dice is 7.

Are the two events A and B independent?

Solution

A = {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)}
B = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
A
$$\cap$$
 B = {(1,6)}

(1)
$$P(A) = (\frac{6}{36})$$
 and $P(B) = (\frac{6}{36})$
then $P(A)P(B) = \frac{1}{36}$
(2) $P(A \cap B) = \frac{1}{36}$
Then we get that $P(A \cap B) = \frac{1}{36} = P(A)P(B)$

Two sets of cards with a letter on each card as follows are placed into separate bags:

Bag Number I

Bag Number II

Sara randomly picked one card from each bag. Find the probability that:

- She picked the letter J and R?
- **Both letters are L?**
- **Both letters are vowels?**

واذا كان عنا كيسين ، الكيس الأول فيه غيس أحرف والكيس الثاني فيه ست

Solution

- (a) Probability that she picked J and R = (1/5)(1/6) = 1/30 = 0.033
- (b) Probability that both letters are L =(1/5)(1/6)=1/30=0.033
- (c) Probability that both letters are vowels = (3/5)(2/6) = 6/30 = 0.2

Contingency Table

A contingency table provides a different way of calculating probabilities. The table helps in determining conditional probabilities quite easily. The table displays sample values in relation to two different variables that may be dependent or contingent on one another. The two variables are divided into several categories with their frequencies.

 A random sample of size 200 adults are classified below according to the sex and the level of education attained:

Education	Male (M)	Female (F)	Total
Elementary (E)	38	45	83
Secondary (S)	28	50	78
Higher (H)	22	17	39
Total	88	112	200

Suppose that a person is selected at random from this group, then find the probability that:

(a) the person is male?

Solution

P(the person is male) =
$$P(M) = 88 / 200 = 0.44$$

(b) the person has a secondary education?

Solution

P(the person has a secondary education)

$$= P(S) = 78 / 200 = 0.39$$

(c) the person is not a male?

Solution

P(the person is not a male) = 1 - P(the person is male)

$$= 1 - P(M) = 1 - 0.44 = 0.56$$

OR.

P(the person is not a male) = P(the person is female)

$$= P(F) = 112 / 200 =$$

d) The person is a male or has higher education?

Solution:

P(the person is a male or has higher education)

$$P(M \cup H)=P(M)+P(H)-P(M \cap H)=(88/200)+(39/200)-(22/200)=105/200=0.525$$

e) The person is female and not has an elementary education Solution

P(the person is a female and not has an elementary education)

$$P(F \cap \overline{E}) = P(F)-P(F \cap E) = (112/200)-(45/200)=67/200=0.335$$

f) The person is a male or has a secondary education? P(the person is not a female or has a secondary education) $P(\overline{F} \cup S)=P(\overline{F})+P(F \cap S)=(88/200)+(50/200)=(138/200)=0.69$

g) The person is neither a male nor has a higher education? solution#

P(the person is neither a male nor has a higher education)

```
=P(\overline{M} \cap \overline{H})
=(P(\overline{M} \cup \overline{H})
=1-P(MUH)
=1-[P(M)+P(H)-P(MOH)
```

=1-[88/200+39/200-22/200]=1-(105/200)=0.475

h) The person is a male given that the person has a secondary education?

Solution

P(the person is a male given that the person has a secondary education)

 $P(M/S) = P(M \cap S)/P(S) = (28/200)/(78/200) = 28/78 = 0.359$

i) The person does not have a higher education degree given that the person is a female?

Solution

P(the person does not have a higher education degree given that the person is a female)

$$P(\overline{H}/F) = \frac{P(\overline{H} \cap F)}{P(F)} = \frac{P(F) - P(H \cap F)}{P(F)} = 1 - P(H/F) = 1 - \frac{P(H \cap F)}{P(F)} = 1 - ((17/200)/(112/200)) = 1 - (17/112) = 0.848$$