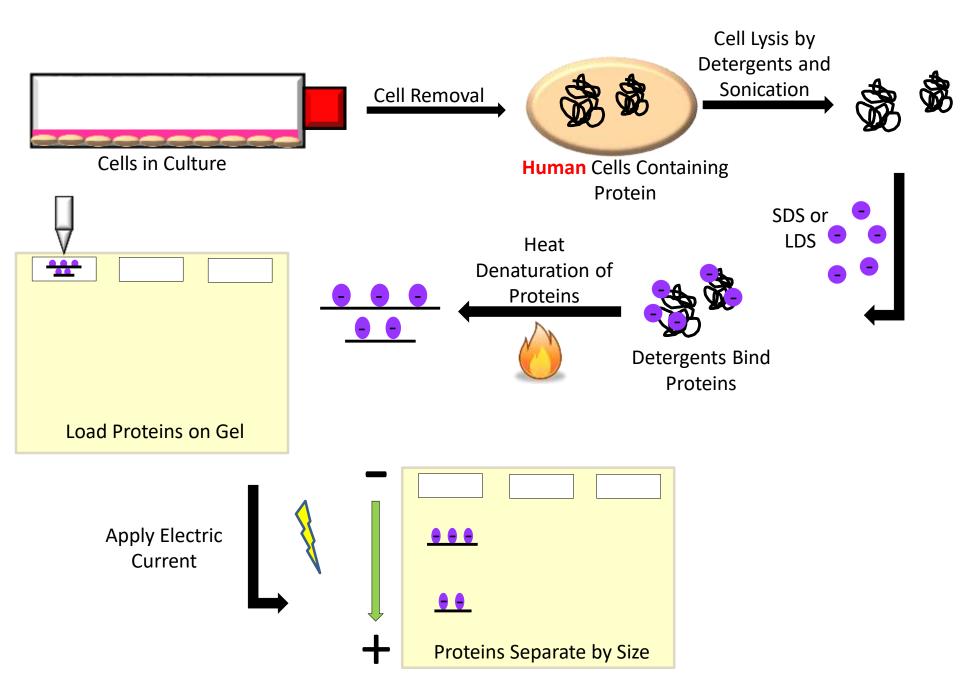
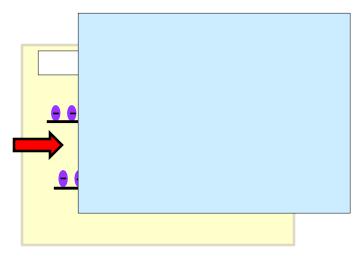
Western Blot

Two Main Types of Westerns

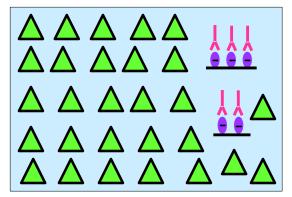

1. Denaturing (Most Commonly Used)


- SDS-PAGE

2. Non-Denaturing

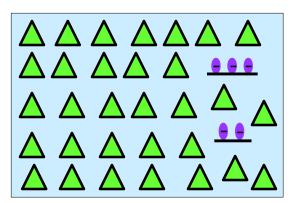
- Native PAGE

SDS-PAGE Western Blot Method



Transfer or Blot Protein from Gel to Nitrocellulose and/or PVDF Membrane

Block Membrane with Non-Specific Proteins



1° Antibody Binds Antigen (i.e. Protein of Interest)


Incubate Membrane with 1° Antibody

 1° Antibody is a Rabbit Anti-Human β -Actin Antibody

Non-Specific Proteins Bind to Unbound Regions of Membrane

Advantages and disadvantages of western blot

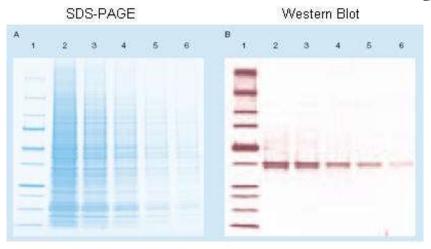
Advantages:

- 1. Verify the expression of a protein with high sensitivity and specificity
- 2. Determine the relative amount of a protein present in different samples
- 3. Analyze protein-protein interactions

Disadvantages:

- 1. Many steps where errors can occur
- 2. Accurate quantitation is very difficult
- Time consuming protocol
- 4. High cost

Volumes for 1X 1.0 μ m Space Resolving Gels


(5 ml total)

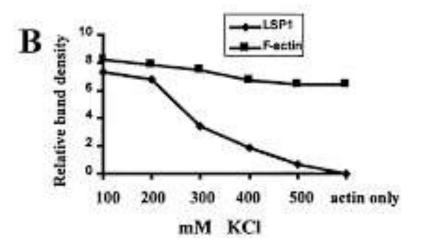
	7%	8%	9%	10%	12.5%	15%
30% Acrylamide	1.16 ml	1.33 ml	1.5 ml	1.66 ml	2.08 ml	2.5 ml
H2O	2.48 ml	2.32 ml	2.15 ml	1.98 ml	1.57 ml	1.15 ml
1.5M Tris (pH 8.8)	1.25 ml					
10% SDS	50 <i>μ</i> Ι					
10% APS	50 <i>μ</i> Ι					
TEMED	5 <i>µ</i> l	5 μΙ	5 <i>µ</i> l	5 <i>μ</i> Ι	5 <i>μ</i> Ι	5 <i>µ</i> l

Volumes for 1.0 m Stacking (4%)

	1 Stack (2ml)	2 Stacks (4ml)	3 Stacks (6ml)	4 Stacks (8ml)
30% Acrylamide	340 μ l	680 µI	1020 <i>μ</i> Ι	1.36 ml
H2O	1.36 ml	2.72 ml	4.08 ml	5.44 ml
1M Tris (pH 6.8)	250 <i>μ</i> Ι	500 μl	750 <i>µ</i> I	1 ml
10% SDS	20 <i>μ</i> Ι	40 <i>μ</i> Ι	60 μl	80 <i>μ</i> Ι
10% APS	20 <i>μ</i> Ι	40 <i>μ</i> Ι	60 <i>μ</i> Ι	80 <i>μ</i> Ι
TEMED 2 μl		4 <i>µ</i> l	6 <i>µ</i> I	8 <i>µ</i> I

HeLa Cell Lysate \\\'- -+ 2rn blot

Chemiluminescent Detection of CDK7 BioRad Bulletin 2032


Magic Mark XP Western Protein Standard

Lymphocyte specific protein 1

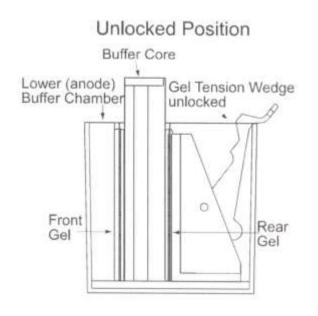
100 200 300 400 500 actin only mM KCl

Western Blot Protocol

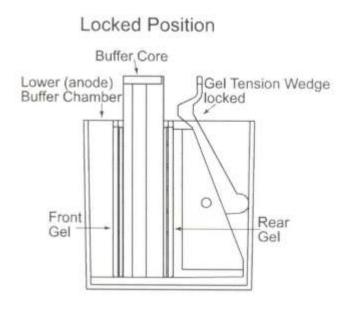
1. Sample Preparation

A) Add 10 mg of protein to 5 ml of 4X LDS Loading Buffer plus 2.5 ml of 10X Reducing Agent. Then add purified water to a total volume of 25 ml.

For example: If your total protein concentration is 2.0 mg/ml, you would need 5 ml of total protein to equal 10 mg. So you would mix:

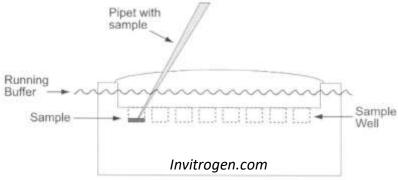

5 ml of protein 5 ml of 4X LDS Loading Buffer 2.5 ml 10X Reducing Agent 12.5 ml purified water.

B) Heat sample mixture at 70°C for 10 minutes.


2. <u>Electrophoresis</u>

A) While protein samples are heating, assemble electrophoresis unit.

Demonstration


XCell SureLock Mini-Cell

B) Load Gel

-Molecular weight marker and protein samples

Demonstration

C) Add 500 μ l Antioxidant to top chamber to maintain proteins in a reduced state and ensure optimal band sharpness.

D) Run gel at 180V for 45 minutes

3. Transfer

- A) Soak marked (for orientation) nitrocellulose (or PVDF) membrane in transfer buffer containing 10% Methanol at least 10 minutes prior to transfer.
- B) When gel run is complete, turn off power source, remove gel from precast plates, place transfer buffer-soaked filter paper sheet on top of gel, remove gel from plate, and place on top of membrane blotting pads that have been removed of bubbles.
- C) Place membrane on top of gel and cover with another transfer buffersoaked filter paper sheet and blotting pads to fill the transfer chamber.

Blotting Pad Blotting pads assembled horizontally Blotting Pad Blotting Pad

D) Add 500 µl Antioxidant and run transfer at 30V for 1 hour.

4. **Blocking**

A) Remove membrane from transfer chamber and incubate in 5% Blotto [5% powdered milk in TBS-Tw (1X TBS, 0.1% Tween 20)] at room temperature for 30 minutes with slow shaking.

Fill up the space on the membrane to prevent non-specific antibody binding

Recommended to block for >1 hour

Milk

BSA

Strong blocking agent Less signal Not-recommended for phosphoproteins Cheap!

High signal High background!

Diluted in same Buffer use for washing (PBST/TBST)

5. Primary Antibody Incubation

A) Prepare a 1:1000 dilution of primary antibody (Rabbit Anti-Human b-Actin) in 5% Blotto.

B) Incubate membrane in primary antibody solution overnight at 4°C with gentle rocking.

6. Membrane Washing

A) Wash membrane 3 x 5 minutes each in TBS-Tw with gentle shaking at room temperature.

7. Secondary Antibody Incubation

- A) Prepare a 1:5000 dilution of secondary antibody (Goat Anti-Rabbit IgG-HRP) in 5% Blotto.
- B) Incubate membrane in secondary antibody solution for 30 minutes at room temperature with gentle shaking.

8. Repeat Membrane Washing

9. <u>Visualization of Protein of Interest</u>

A) Place membrane protein side up on saran wrap on a flat surface.

B) Quickly add 50 ml of ECL solution B to 2 ml of ECL solution A, mix, and add directly to membrane.

C) Incubate in the dark for 3-5 minutes, remove excess solution, and place membrane protein side down onto a new piece of saran wrap.

D) Close saran wrap around membrane, tape to film cassette and expose film in the dark room for 30 seconds to 1 minute.

E) Develop film & identify protein of interest.

Detection

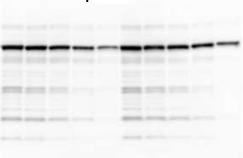
- Colorimetric less sensitive
- Radioactive label
- Fluorescently labelled secondary antibody highly quantitative
- Chemiluminescent HRP or AP labelled secondary antibody very sensitive!

- Rabbit primary antibodies
 - Natural diversity
 - High affinity and specificity
 - Novel epitope recognition

- Why goat anti-rabbit secondary antibodies
 - To increase the intensity of the signal

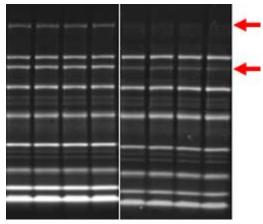
Result of Western Blot

Blot from unstained Gel

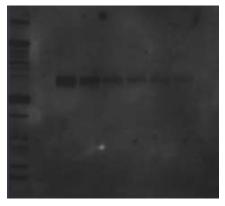

Blot from stained Gel

Confirm HIV virus

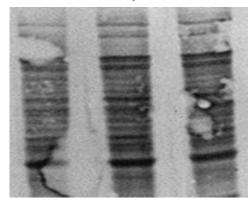
- The confirmatory HIV test employs a western blot to detect anti-HIV antibody in a human serum sample.
- Proteins from known HIV-infected cells are separated and blotted on a membrane as above.
- Then, the serum to be tested is applied in the primary antibody incubation step; free antibody is washed away, and a secondary anti-human antibody linked to an enzyme signal is added.
- The stained bands then indicate the proteins to which the patient's serum contains antibody.
- Western blot can also be used as a confirmatory test for


Common problems

Non specific bands


Probably too much antibody
Or insufficient blocking

Incomplete transfer


Transfer time too short
Transfer current too low

High background

Probably too much antibody
Or insufficient blocking
Or insufficient washing

Blotchy transfer

Air bubbles between gel and membrane

Other types of blotting

- Southern blotting is used to detect specific sequences of DNA in DNA samples.
- Northern blotting for RNA
- Eastern for post-translational protein modifications
- South-western for DNA-protein interactions blotting.