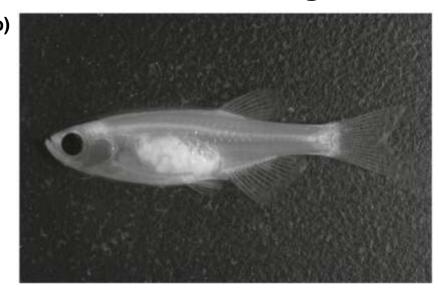
Introduction to biotechnology


 Biotechnology – using living organisms, or the products of living organisms, for human benefit to make a product or solve a problem

- Historical Examples
 - Fermentation
 - Selective breeding
 - Use of antibiotics
 - Synthesis of biopharmaceuticals

Example of Biotechnology – Selective Breeding

Normal zebrafish

"Casper" zebrafish – made by selective breeding

 What feature of Casper makes it a "model organism" to study migration of cancer cells compared to wildtype fish?

Why Biotechnology?

- Sometimes only way to make some products
- Selectivity
- Less by-products
- Moderate reactor conditions
- One process versus multiple chemical steps in chemical synthesis (process intensification)
- Sustainable: reduced energy, reduced CO2 emission (use of renewable resources), reduced waste (biodegradable), ...
- Economics (on a long term): fossil-based products become more expensive due to increased prices of crude oil; in IB biomass (agriculture and forest residues, energy crops, and algae) can be applied as raw materials

Biotechnology and What Does It Mean to You?

APPLICATIONS

APPLICATIONS Pharmaceuticals/Health Care Biopharma Gene therapy Gene "knockout" testing Fermentation technology Detection Forensics Regulatory Approval/Oversight DNA fingerprinting Food and Drug Administration (FDA) Disease DNA detection Environmental Protection Agency (EPA) Species member ID U.S. Department of Agriculture (USDA) Occupational Safety and Health Administration (OSHA) Agricultural Biotechnology Transgenic crops DNA tracking of seeds Transgenic animals **Drug Development** Bioinformatics **Environmental and Aquatic** High throughput screening Aquaculture Cell culture and human testing Bioremediation Transgenic modifications Bioextractions Genetic Engineering Through Molecular Biology and **Analysis Through Bioinformatics** Computer Science Human, animal/plant physiology Chemical engineering Mathematics 7 - Physics Genetics Molecular and cell biology Biochemistry Immunology Statistics

Microbiology

recombinant DNA technology started modern biotech as an industry

- Examples of applications
 - development of disease-resistant plants
 - food crops that produce greater yields
 - golden rice engineered to be more nutritious
 - genetically engineered bacteria that can degrade environmental pollutants

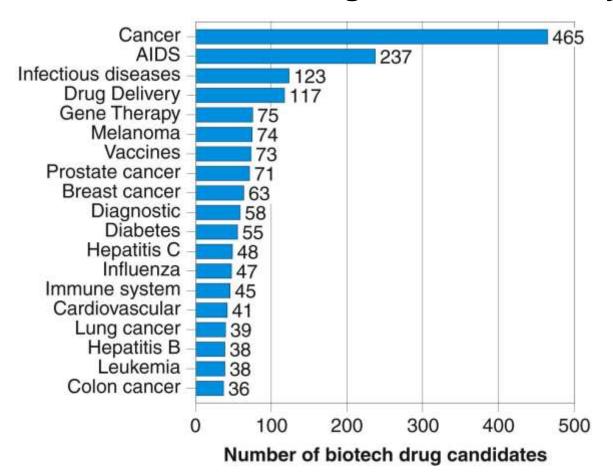
See the two chromosomes below and determine which chromosome has more than one gene involved in promoting breast cancer.

Chromosome 13

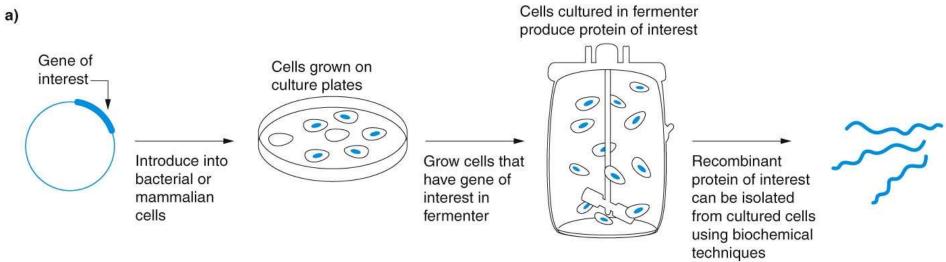
114 million bases

Cholesterol-lowering factor Cataract, zonular pulverulent Deafness, autosomal dominant Stem-cell leukemia/lymphoma and recessive syndrome Vohwinkel syndrome Spastic ataxia, Charlevoix-Saguenay type Ectodermal dysplasia Pancreatic agenesis Muscular dystrophy, limb-girdle, type 2C Maturity Onset Diabetes of the Young. type IV Breast cancer, early onset Pancreatic cancer Enuresis, nocturnal Dementia, familial British Disrupted in B-cell neoplasia Rieger syndrome, type 2 Leukemia, chronic lymphocytic, B-cell X-ray sensitivity MHC class II deficiency, group B Rhabdomyosarcoma, alveolar Hyperornithinemia Lung cancer, non small-cell Hyperammonemia Spinocerebellar ataxia Homocitrullinemia Ceroid-lipofuscinosis, neuronal Serotonin receptor Microcoria, congenital Retinoblastoma Schizophrenia susceptibility Osteosarcoma Xeroderma pigmentosum, group G Bladder cancer Coagulation Factor VIII deficiency Pinealoma with bilateral Oguchi disease Retinoblastoma Stargardt disease, autosomal dominant Wilson disease Coagulation Factor X deficiency Postaxial polydactyly, type A2 Hirschsprung disease Breast cancer, ductal Propionicacidemia, types I or pccA

Holoprosencephaly


Bile acid malabsorption, primary

Chromosome 21


50 million bases

Coxsackie and adenovirus receptor Myeloproliferative syndrome, transient Amyloidosis cerebroarterial, Dutch type Leukemia, transient, of Down Syndrome Alzheimer disease, APP-related Schizophrenia, chronic Enterokinase deficiency Multiple carboxylase deficiency Usher syndrome, autosomal recessive T-cell lymphoma invasion and metastasis Amyotrophic lateral sclerosis Oligomycin sensitivity Mycobacterial infection, atypical Jervell and Lange-Nielsen syndrome Down syndrome (critical region) Autoimmune polyglandular Long QT syndrome disease, type I Down syndrome cell adhesion molecule Bethlem myopathy Homocystinuria Epilepsy, progressive myoclonic Cataract, congenital, autosomal dominant Holoprosencephaly, alobar Deafness, autosomal recessive Knobloch syndrome Myxovirus (influenza) resistance Hemolytic anemia Leukemia, acute myeloid Breast cancer Platelet disorder, with myeloid malignancy

- Most drugs are developed to combat diseases affecting humans – Why?
- Which disease has the most drug candidates, Why?

 Use genetically modified cultured cells to make protein of interest

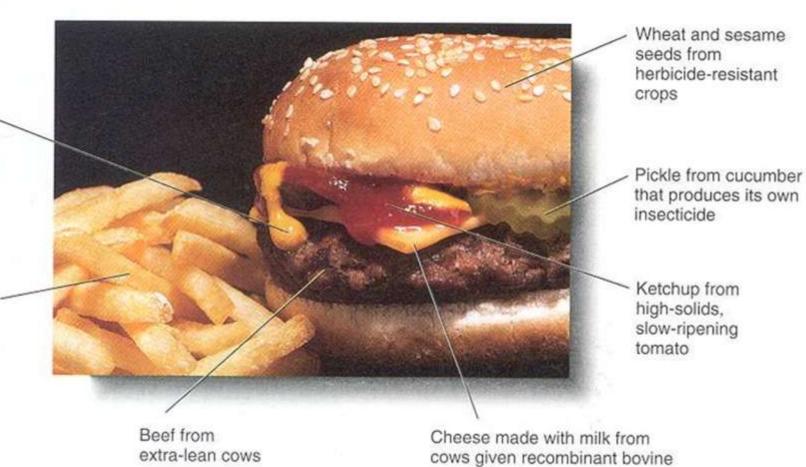
- Products of Modern Biotechnology
 - Example of recombinant proteins

TABLE 1.2 EXAMPLES OF PROTEINS MANUFACTURED FROM CLONED GENES		
Product	Application	
Blood factor VIII (clotting factor)	Treat hemophilia	
Epidermal growth factor	Stimulate antibody production in patients with immune system disorders	
Growth hormone	Correct pituitary deficiencies and short stature in humans; other forms are used in cows to increase milk production	
Insulin	Treat diabetes	
Interferons	Treat cancer and viral infections	
Interleukins	Treat cancer and stimulate anti- body production	
Monoclonal antibodies	Diagnose and treat a variety of diseases including arthritis and cancer	
Tissue plasminogen activator	Treat heart attacks and stroke	

- Microbial Biotechnology
- Agricultural Biotechnology
- Animal Biotechnology
- Forensic Biotechnology
- Bioremediation
- Aquatic Biotechnology
- Medical Biotechnology
- Regulatory Biotechnology

- Microbial Biotechnology manipulation of microorganisms such as yeast and bacteria
 - Create better enzymes
 - More efficient decontamination processes for industrial waste product removal
 - Used to clone and produce large amounts of important proteins used in human medicine

Examples of product from microbial conversion


Products	Typical micro-organism(s)	Approximate worldwide production [kg/year]
Bulk organic produ	icts	
Ethanol	Saccharomyces cerevisiae	2. 10 ¹⁰
Acetone / butanol	Clostridium acetobutylicum	2. 10 ⁶ (butanol)
Biomass		
Starter cultures	Lactic acid bacteria, baker's yeast	5. 10 ⁸
Single-cell protein	e.g., Candida utilis	0.5-1. 108
Organic acids		
Citrate	Aspergillus niger	2-3.108
Lactate	29	
Amino acids		
L-glutamate	Corynebacterium glutamicum	3.108
Antibiotics		
Penicilline	Penicillium chrysogenum	3-4.107
cephalosporines	Cephalosporium acremonium	1.107
tetracyclines	Streptomyces aureofaciens	1.107
Note: The following ov	erview is a non-exhaustive list of products.	Source: Doran, 1995

Agricultural Biotechnology

- Plants more environmentally friendly that yield more per acre (genetically engineered)
- Resistance to diseases and insects
- Foods with higher protein or vitamin content
- Drugs developed and grown as plant products
- These better plants ultimately reduce production costs to help feed the growing world population

Mustard from plant engineered to contain more heart-healthy oils

French fries from altered potatoes with more starch to absorb less oil in cooking

growth hormone

Animal Biotechnology

- Animals as a source of medically valuable proteins
 - Antibodies
 - Transgenic animals
- Animals as important models in basic research
 - Gene "knockout" experiments
 - Design and testing of drugs and genetic therapies
- Animal cloning
 - Source of transplant organs

Animal Biotechnology

- transgenic animal: way to achieve large scale production of therapeutic proteins from animals for use in humans
- Female transgenic animals express therapeutic proteins in milk (contains genes from another source)
- Example: human genes coding for clotting proteins can be introduced into female goats for production of these proteins in their milk

Animal Biotechnology

– Gene knockout:

- Disrupt a gene in the animal and then look at what functions are affected in the animal as a result of the loss of the gene
- This allows researchers to determine the role and function of the gene
- Since humans are similar to rats and mice, gene knockout studies in rats and mice can lead to better understanding of gene function in humans.

Forensic Biotechnology

- DNA fingerprinting
 - Inclusion or exclusion of a person from suspicion
 - Paternity cases
 - Identification of human remains
 - Endangered species
 - Tracking and confirmation of the spread of disease

Forensic Biotechnology

 Based on DNA results from this gel, did the defendant commit this crime?

Bioremediation

- The use of biotechnology to process and degrade a variety of natural and manmade substances
 - Particularly those that contribute to environmental pollution
- Example stimulated growth of bacteria that degrade components in crude oil
 - 1989 Exxon Valdez oil spill in Alaska
 - 2010 Deep Water Horizon spill promoted research into natural oil-degrading organisms and enzymes

 Bioremediation – adding nutrients to stimulate growth of bacteria to clean up oil spill

Aquatic Biotechnology

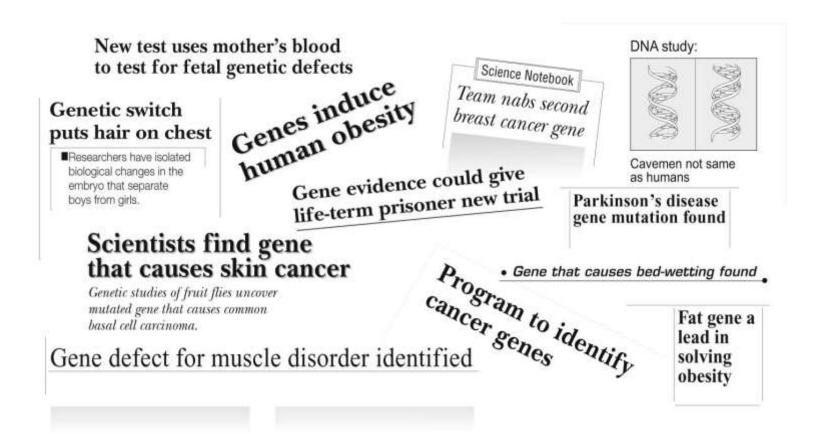
- Aquaculture raising finfish or shellfish in controlled conditions for use as food sources
 - 50% of all fish consumed by humans worldwide
- Genetic engineering
 - Disease-resistant strains of oysters
 - Vaccines against viruses that infect salmon and other finfish
 - Transgenic salmon that overproduce growth hormone
- Bioprospecting: rich and valuable sources of new genes, proteins and metabolic processes with important applications for human benefits
 - Marine plankton and snails found to be rich sources of antitumor and anticancer molecules

- Aquatic Biotechnology
- Why create transgenic salmon overproducing growth hormone?

transgenic

normal

Two different salmon


How does this modified salmon help humans?

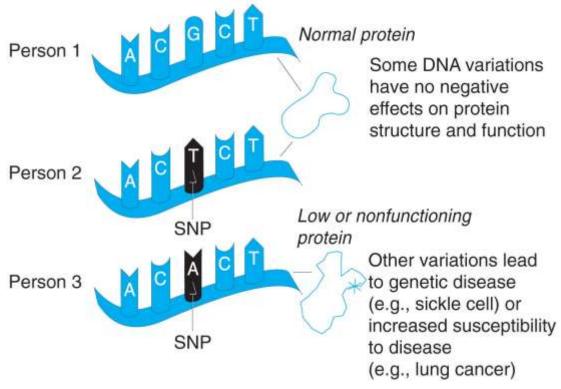
Medical Biotechnology

- Involved with the whole spectrum of human medicine
 - Preventive medicine
 - Diagnosis of health and illness
 - Treatment of human diseases
- New information from Human Genome Project
 - Gene therapy
- Stem cell technologies

- Stem cells grown in lab and then treated with different chemicals to allow them to develop into specific kinds of tissues needed for transplant
- Current use: stem cells are used for diabetes; spinal cord injuries

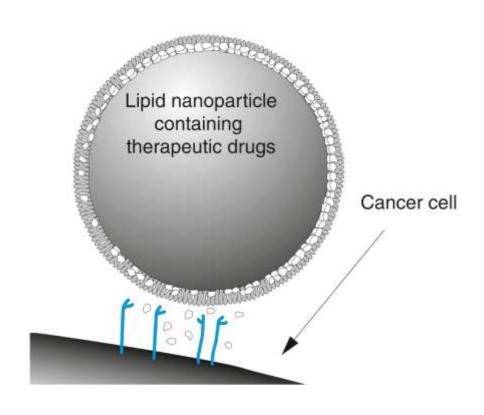
- Medical biotechnology
 - Genes are headline news items

Regulatory Biotechnology


- Quality Assurance (QA)
 - All activities involved in regulating the final quality of a product
- Quality Control (QC)
 - Part of QA process that involves lab testing and monitoring of processes and applications to ensure consistent product standards
 - Together QA and QC ensure that biotechnology products meet strict standards for purity and performance
- Why as a consumer should you care about a product undergoing intense regulations?

- How will medical biotechnology change our lives in the years ahead?
 - Human Genome Project
 - Research on the function of human genes and controlling factors that regulate genes
 - Human proteome
 - Collection of proteins responsible for activity in a human cell

Single Nucleotide Polymorphisms (SNPs)


- Single nucleotide changes (mutations) in DNA sequences that vary from individual to individual
- These variations are the cause of some genetic diseases (sickle cell anemia)
- SNPs will help identify genes involved in medical conditions including arthritis, stroke, cancer, heart disease, diabetes, and behavioral and emotional illnesses
- Example of SNPs and breast cancer
- Identification of SNPs in BRCA1 and BRCA2 genes involved in promoting breast cancer led to development of better targeted treatments for people who have those specific gene mutations

 Example of how we can benefit from the human genome project

 Based on the figure, why doesn't person 2 develop a genetic disease due to the SNP (G → T)?

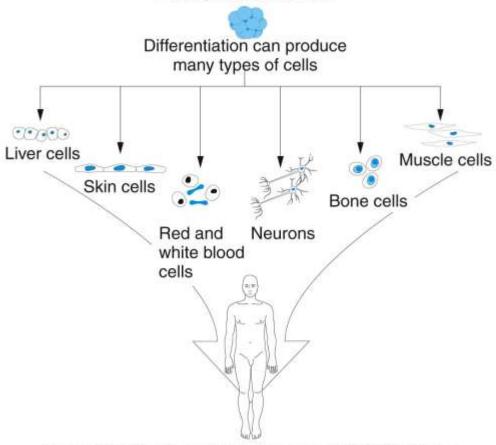
- How will medical biotechnology change our lives in the years ahead?
 - Nanotechnology
 - Applications that incorporate extremely small devices
 - Small particles that can deliver drugs to cells

Gene therapy technology

- Replacing or augmenting defective genes with normal copies of the gene
 - Still have barriers to overcome before this technology becomes safe and effective
 - Obstacles include:
 - How can normal genes be delivered to virtually all cells in the body?
 - What are the long-term effects of introducing extra genes in humans?
 - What must be done to ensure the proper protein is made after the genes are delivered to the body?

 Small interfering RNA (siRNA) is emerging technology to silence genes that are involved in disease progression

Stem cell technology


- Stem cells are immature cells that grow and divide to produce different cell types
- Most stem cells are from embryos called embryonic stem cells (ESCs) but they are controversial since the process involves death of an embryo
- Some stem cells are from adult cells (ASCs)
 - Either type of stem cell can be coaxed to grow into cells of interest to replace damaged tissue or failing organs (liver, pancreas, retina)

Embryonic vs. adult stem cells?

Biotechnology in the 21st Century

• ESCs can give rise to many types of differentiated cells

[Embryonic stem cells]

Transplantation to replace damaged or defective tissue