

إعداد الصيدلاني/ـة:Alaa Otoum

Chapter 6: Acetate – Malonate Pathway

Acetate-derived Natural Products

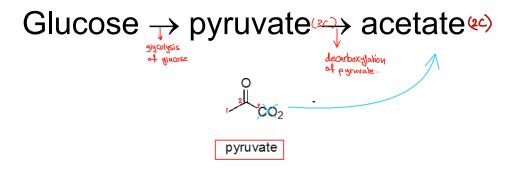
Acetate formed from carbohydrate via pyruvic acid

Acetate is precursor for large no. of important natural products (flavonoids, anthraquinones, macrolides, terpenes & steroids)

- 2 main routes originate with acetate pathway:
- 1. Acetate Malonate Pathway leading to FA & polyketides.
- 2. Mevalonic acid pathway producing terpenes & steroids

Acetate malonate pathway

- The biogenesis of <u>naturally</u> occurring <u>acetylenic</u> substances is very closely related to the synthesis of <u>unsaturated fatty acids</u>.
- In the <u>Plant Kingdome</u>, fatty acids are used to form of triglycerides to <u>produce</u>


 Oils: Liquid (meaturated)
- The natural sequence of the fatty acids (even-numbered fatty acids) starts with Palmatic acid (16 carbons), Stearic acid (18 carbons) and then Arachidonic acid (20 carbons). Palmatic acid and stearic acid are important in plants' oils,
- oils are composed of three fatty acids connected to glycerol.
- If <u>glycerol</u> is connected to <u>3 saturated fatty acids</u>, the product is a <u>solid</u> substance called <u>fat</u>, and its found primarily in <u>animal kingdom</u> (mammals especially).
- When at <u>least two of the hydroxyl groups</u> in the <u>glycerol</u> are connected to <u>unsaturated</u> fatty acids, the product is termed as <u>Oil</u>, because of <u>its liquid</u> <u>consistency</u>.
- Oils are mainly found in plants, but there are some exceptions (like coconut oil, which is solid).

Lipids in plant kingdom include

- fatty acids and waxes
- essential oils
- many vitamins (vitamina)
- hormones (non-peptide)
- components of cell membranes (non-peptide)

<u>Lipids are Hydrophobic</u> (non-polar, soluble in organic solvent), typically of low molecular compound or organic origin

Share a common biosynthesis that ultimately derives their carbon source from glucose (glycolysis)

Acetate-malonate pathway and Mevalonic acid pathway start their biogenetic role with <u>acetyl CoA</u>

Acetyl CoA is a very important building block of two carbons compound, it is needed in the degradation of carbohydrates and the synthesis of fatty acids, and appears in Krebs cycle and in the breakdown process of fatty acids.

Acetyl CoA + CO2 → Malonyl-CoA "3 carbons"

Now we will start with acetate-malonate pathway, and specifically with non-aromatic (aliphatic) derivatives.

None-aromatic derivatives in the acetate-malonate pathway polyacetylenic or polyynes, compounds having several unsaturated bonds.

Pyruvate dehydrogenase: Multi-enzyme complex that converts pyruvate to AcSCoA (most important step in Acetatemalonate pathway).

Acetyl Coenzyme A. AcSCoA is a thioester.

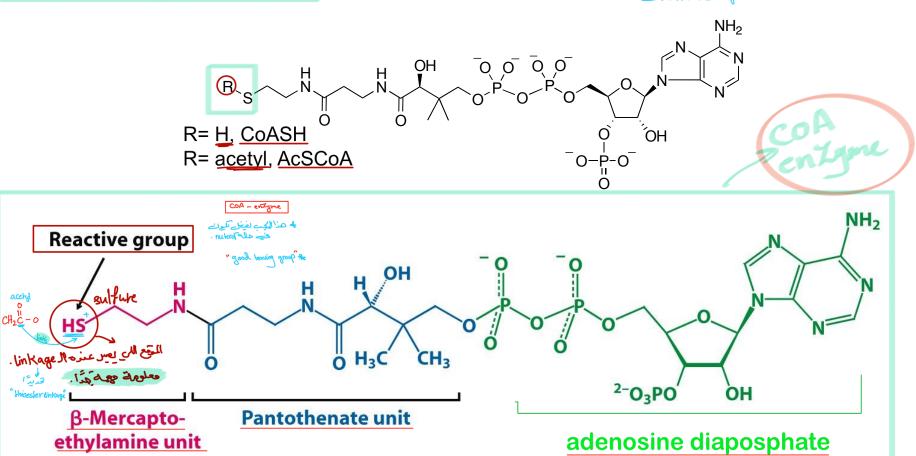


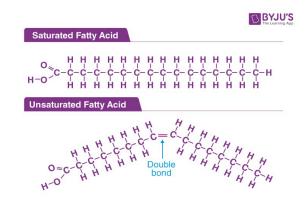
Figure 15.16

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company

Acetyl CoA is a thioester. Thioesters are more reactive toward nucleophilic acyl substitution than esters, but considerably less reactive than acid chlorides and anhydrides.

Thioester enolize more readily than esters. The enol can react with electrophile to afford α -substitution products


$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

Fatty acids (FA), fats, waxes

- FA: saturated or unsaturated
- Biosynthesis:

Saturated:

AcetylCoA+ CO₂→<u>MalonylCoA</u> AcetylCoA+ MalonylCoA - CO₂ →FA (4C)

Butyric (4C), Caproic, Caprylic, Capric, Lauric, Myristic, Palmitic, Stearic, Arachidic (20C)

Unsaturated: by dehydrogenation of saturated FA

Oleic acid 18:1 (9c)

Linoleic acid 18:2 (9c, 12c)

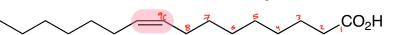
α-Linolenic acid 18:3 (9c, 12c, 15c)

γ- Linolenic acid 18:3 (6c, 12c, 15c)

Arachidonic acid 20:4 (5c, 8c, 11c, 14c) - eicosonid derivative

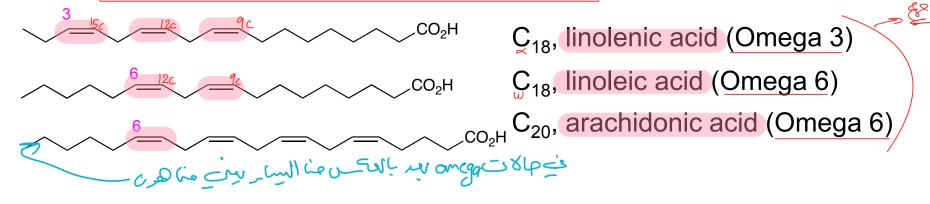
Eicosapentaeonic acid [EPA] 20:5 (5c, 8c, 11c, 14c, 17c)

Fats, Oils, and Fatty Acids. Fatty acids: refers to long, straight-chain saturated and unsaturated acids, typically from C_{12} - C_{20} (Table 26.1, p. 1069).

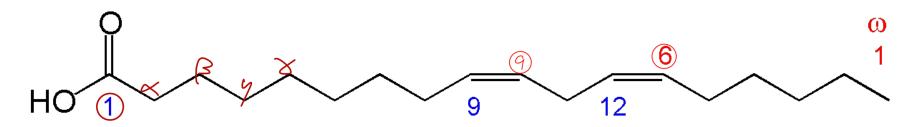

saturated fatty acids:

$$CH_3(CH_2)_nCO_2H$$

n=10, lauric acid (
$$C_{12}$$
)
n=12, myristic acid (C_{14})
n=14, palmitic acid (C_{16})

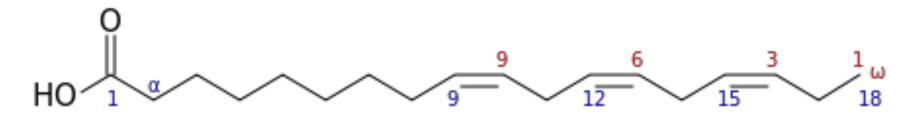

n=16, stearic acid (
$$C_{18}$$
)

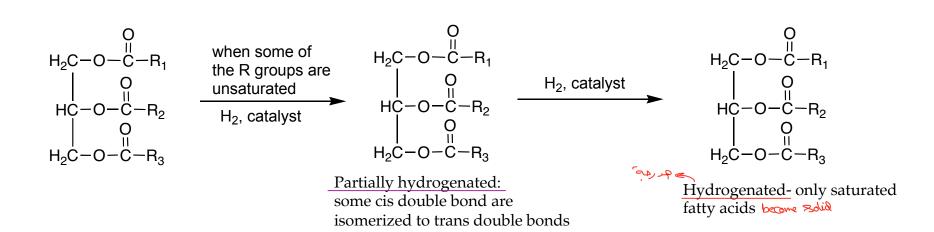
unsaturated fatty acid


C₁₈, oleic acid

polyunsaturated fatty acids (PUFA)

Linoleic acid


is a polyunsaturated omega-6 fatty acid


alpha-Linolenic acid

(ALA) is an *n*–3 fatty acid, it is one of <u>two essential fatty acids</u> (EFAs), so called because they are necessary for health, and they cannot be produced within the human body. They must be acquired through diet.

ALA is an omega-3 fatty acid(9c, 12c, 15c)

Fats and Oils: Triglycerides (triaceylglycerols) are tri-esters of glycerol (1,2,3-trihydroxypropane) and fatty acids.

Some important oils/fats/waxes

- Olive oil: Olea europea (Oleaceae)
- Arachis oil, peanut oil: Arachis hypogea (Fabaceae)
- Sesame oil: Sesamum indicum (Pedaliaceae)
- Almond oil: Prunus amygdalus (Rosaceae)
- Cottonseed oil: Gossypium herbaceum (Malvaceae)
- Soya bean oil: Glycine max (Fabaceae)
- Castor oil: Ricinus communis (Euphorbiacea)
- Cocoa butter: Theobroma cacao (Sterculiacea)
- Beeswax : Cera flava
- Spermaceti: Physeter macrocephalus

Spermaceti (from Latin sperma meaning "semen", and ceti meaning "whale") is a waxy substance found in the head cavities of the sperm whale

Castor Bean, Castor Oil Plant:

(بذور الخروع- زيت بذور الخروع)

•Ricinus communis L. Family: Euphorbiaceae

- •Castor bean Oil:
- •Oil from the castor bean seeds:
- •The oil is obtained from the seeds by two principal methods <u>expression and decoction</u>. The latter process is largely used in India, where the oil on account of its cheapness and abundance, is extensively employed for illuminating, as well as for other domestic and medicinal purposes.

Castor:

is a triglyceride, comprised of fatty acids, 90 % of which is ricinoleic acid, 7% oleic, 3% linoleic, 2% palmitic, 1% stearic, and trace amounts of dihydroxystearic.

Medicinal Uses Where can I find Castor oil in the pharmacy?

- 1 Castor oil is used to traet Constipation it is <u>Laxative</u> & purgative.
- 2. Castor oil can be used to treat Skin Problems such as sunburn, abrasions, acne, dry skin warts.
- 3 Castor oil is used in <u>hair treatment</u>: Castor oil protects the scalp and hair from microbial and fungal infections due to the presence <u>ricinoleic acid</u> which has <u>germicidal</u>, insecticidal and fungicidal properties
- 4 Castor oil is used in as anti-wrinkle Treatment Contradictions:
- •Castor oil is contraindicated in intestinal obstruction and during pregnancy and nursing.
- •The drug cant be administered to children under 12 years

Toxic Part in castor: The toxin Ricin is found within the hard, water-impermeable coat of the seeds. The toxin is not released unless the seed coats are broken (e.g., chewed) and the contents digested.

Symptoms of Poisoning

Variations in the severity of toxicity may be related to the degree to which seeds are chewed. Effects begin as nausea, vomiting, abdominal cramping, diarrhea, and dehydration.

 One castor bean contains enough ricin to kill a child

Omega 3 fats

Omega-3 fats are a key family of polyunsaturated fats. There are three main omega-3s:

- 1. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) come mainly from fish, so they are sometimes called marine omega-3s.
- 2. Alpha-linolenic acid (ALA), the most common omega-3 fatty acid in most Western diets, is found in vegetable oils and nuts (especially walnuts), flax seeds and flaxseed oil, leafy vegetables, and some animal fat, especially in grass-fed animals. The human body generally uses ALA for energy, and conversion into EPA and DHA is very limited.

Why do we need Omega 3?

Alpha-linolenic acid (ALA), is found in vegetable oils and nuts (especially walnuts), flax seeds and flaxseed oil, leafy vegetables, and some animal fat, especially in grass-fed animals. The human body generally uses ALA for energy

The strongest evidence for a beneficial effect of omega-3 fats has to do with heart disease.

Omega-3 fats lower blood pressure and heart rate, improve blood vessel function, and, at higher doses,

lower triglycerides and may ease inflammation, which plays a role in the development of atherosclerosis.

Several large trials have evaluated the effect of fish or fish oils on heart disease. In the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardio (known as the GISSI Prevention Trial), heart attack survivors who took a 1-gram capsule of omega-3 fats every day for three years were less likely to have a repeat heart attack, stroke, or die of sudden death than those who took a placebo.

There have also been promising results from studies looking at omega-3 for cancer, depression, and attention-deficit hyperactivity disorder (ADHD). Due to these potential health benefits, fish oil, which is rich in omega-3 fatty acids, has become a popular supplement.

There is evidence that recommended amounts of DHA and EPA, taken as fish or fish oil supplements, may lower triglycerides and reduce the risk of heart attack, abnormal heartbeat, and stroke in people who have heart disorders. DHA and EPA may also benefit people who have hardening of the arteries or high blood pressure. Similar effects have been found for ALA, but more evidence is needed to support its potential benefits.

بذر الكتان Linseed- Flax seed

- Linum usitatisimum L. Family: Linaceae.
- They're the best plant source of omega-3 fatty acids.
- Flaxseeds are also a powerful source of fiber, protein, magnesium, iron, and potassium.
- Flaxseeds are also the leading source of a class of compounds called lignans, which are phyto-estrogens, or plant estrogens. Lignans influence the balance of estrogens in the body and help protect against breast cancer.
- The seeds must be ground, as the nutrients are difficult to absorb from the whole seeds. Since the oil in flaxseed spoils quickly, it's best to grind them as needed. Some people use a grinder dedicated to flaxseeds, grind them in small amounts, and keep the ground portion in the fridge in a small glass jar.
- Sprinkle ground flaxseeds on oat-meal, cereal, and yogurt, and use it in smoothies, pancakes, muffins, and quick breads. One to two tablespoons of ground flaxseed a day is all you need.

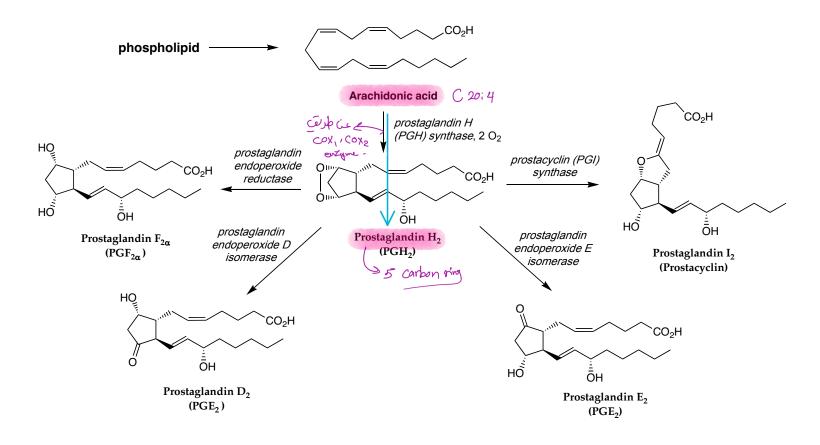
بذر الكتان Linseed- Flax seed

- Active constituents:
 - Mucilages: including arabinoxylans, galactans, rhamnogalacturonans.
- **Cyanogenic glycosides:** Linamarin, linustatin, neolinustatin (yielding under optimal conditions 30-50 mg HCN per 100 gm).
- Linmarin (may play a role in cancer treatment)
- Fatty oil (30-45%): chief fatty acids linolenic acid, linoleic acid, oleic acid.
- Proteins.
- Gluten: Flax is gluten-free.
- • Lignans: secoisolariciresinol-diglucoside
- **lignans**: Flax is a very rich source of a lignan called secoisolariciresinol diglucoside (SDG), which is found in amounts ranging from 1 mg/g of seed to nearly 26 mg/g of seed.
- **lignans** are natural antioxidants that may reduce the activity of cell-damaging free radicals, slow the aging process, and increase overall wellness.
- Besides acting as antioxidants, lignans are phytoestrogrens
- Lignans are especially important for women as studies have shown them to decrease the risk of breast cancer. In addition, lignans have been proven to reduce breast cancer symptoms and reduce the spread and growth of breast cancer after diagnosis.

Biogenesis of natural acetylenes

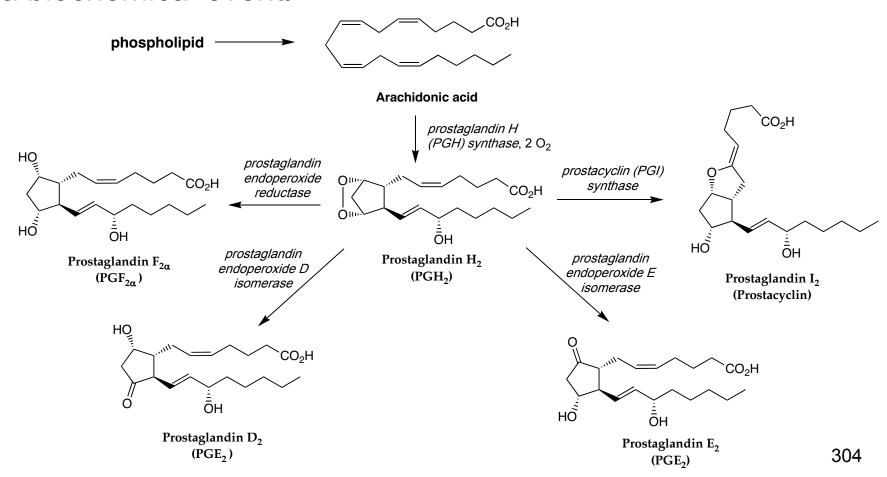
The precursor of the acetylenic substances is oleic acid

Ref.:

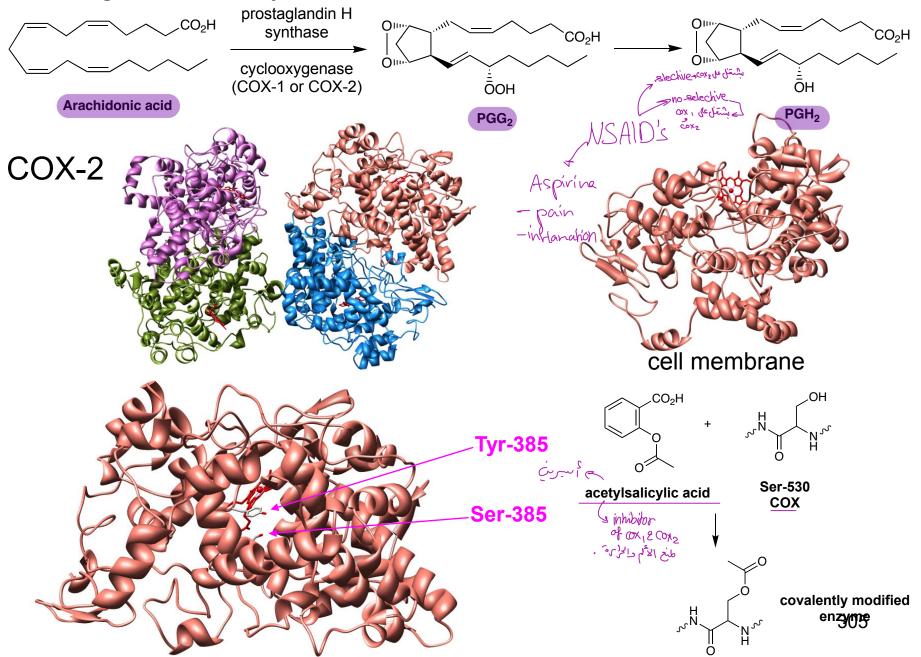

Prof. Sulaiman Khalil

Prostaglandin

سوا منانه الله infections injery حالمرية سيخاء ينفو - pain لاسند


The **prostaglandins** (PG) are a group of physiologically active <u>lipid</u> compounds having <u>diverse hormone-like effects in animals.</u>

 Prostaglandins have been found in almost every <u>tissue</u> in humans and other animals. They are derived enzymatically from fatty acid (Arachodonic acid). Every prostaglandin contains 20 carbon atoms, including a <u>5-carbon ring</u>



Prostaglandins. (eicosanoids) C₂₀ compounds derived from arachidonic acid and related fatty acids

hormone: (Greek, horman, to set in motion) chemical messengers from one cell to another, that acts as a signal for a biochemical event.

Prostaglandin biosynthesis

> involved in protection of GI mucus.

COX-1 is a constitutive enzyme that is expressed in virtually all mammalian cells

COX-2 is an inducible enzyme that is expressed as a results of a biochemical response; expressed in phagocytes (macrophages) as part of an inflammation response.

NSAIDs: non-steroidal anti-inflammatory drugs

Aspirin, ibuprofren, and naproxen are non-selective

Celebrex, vioxx, and brextra are selective inhibitors of COX-2 (coxibs)

$$F_3C$$
 N
 CH_3

Thromboxanes: named for their role in thrombosis, the formation of a clot inside a blood vessel

Leukotrienes: a family of eicosanoid inflammatory mediators produced in leukocytes by the oxidation of the essential fatty acids arachidonic acid

$$CO_2H$$
 Lipoxygenase CO_2H Aracidonic acid Leukotriene A_4

$$\begin{array}{c|c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ \hline$$

Antibiotics Derived from Acetate Malonate Pathway

Professor Suleiman OLIMAT

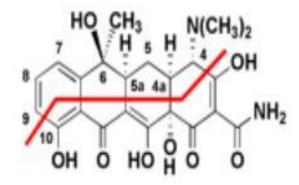
Antibiotics Derived from Acetate Malonate Pathway

Antibiotics derived from the acetate metabolism

- 1- Antibiotics with fused ring system:
 - -Griseofulvin
 - -Tetracyclines
 - -Anthracyclines
- 2-Macrolide antibiotics
- 3-Polyene antibiotics

Tetracyclines

Tetracyclines


Biosynthesized from 1 MalonamylCoA + 8 MalonylCoA

 $(1NH_2-CO-CH_2-CO-SCØA +8 HOOC-CH_2-CO-SCOA) \rightarrow C-19$ Polyketide $\rightarrow \rightarrow \rightarrow$ cyclisation $\rightarrow C-6$ methylation $\rightarrow ØH$ at C-4 \rightarrow dearomatization $\rightarrow 4$ -keto derivative $\rightarrow Cl^-$ at C-7 \rightarrow amination and stepwise methylation at C-4 \rightarrow hydroxylation C-6 \rightarrow reduction of double bond in ring B

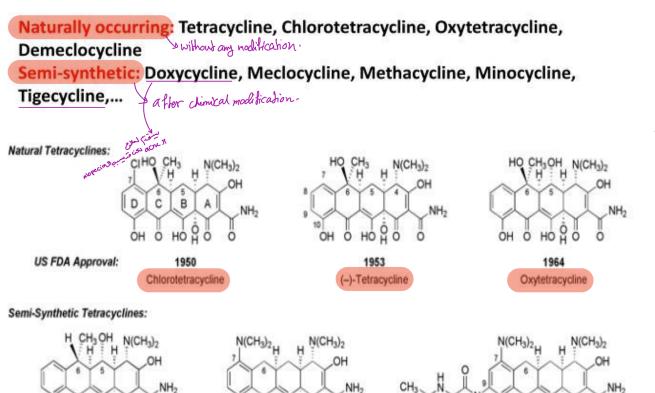
- Biosynthesized in <u>Streptomyces spp</u>. (S. aureofaciens, S. rimosus,...)
- Broad spectrum activity
- · Protein synthesis inhibitor
- Side effects! chelating agent

Tetracyclines

Positions amenable to modification

Positions believed to be key to ribosomal binding

Biosynthesis


 A biosynthesis of tetracycline, particularly in its latter stages, has been studied with the use of mutant cultures. It has been established that the so-called **pretetronids**:

• are intermediates, convertible by non-mutated *Streptomyces* aureofaciens into tetracyclines. Cosynthesis, by use of blocked mutants, has demonstrated that 4-hydroxy-6-methylpretetranid (R₁ = Me, R₂ = OH) is a transformable intermediate and the precursor to the 6-methyltetracyclines. The complete biosynthesis is as follows:

Tetracycline

Chlortetracycline

Oxytetracycline

о но но

1971

(-)-Minocycline

Ö

он о но й о

1967

(-)-Doxycycline

Structures!

о но но

2005

(-)-Tigecycline

Antineoplastic anthracycline derivatives

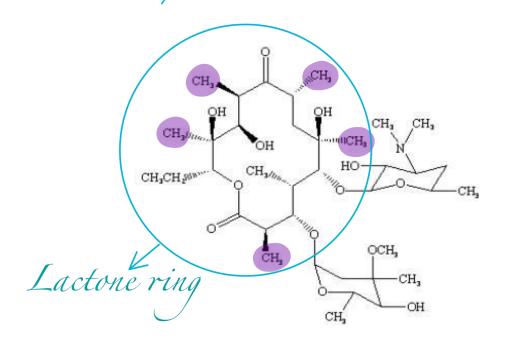
Produced by cultures of Streptomyces spp.; inhibit DNA dependent RNA synthesis (awtiCanar) SE: nausea, bone marrow depression, hair loss, local tissue necrosis;

Biosynthesis: 1 PropionylCoA + 9 MalonylCoA

Griseofulvin:

Produced by Penicillium spp (P. griseofulvum,)

1 AcetylS-CoA + 6 MalonylS-CoA → Polyketide →


Griseophenone $C \rightarrow B \rightarrow A \rightarrow Dehydrogriseofulvin \rightarrow$

Griseofulvin

Macrolide antibiotics

- ❖Synthesized from acetate units
- Produced by Streptomyces spp.
- ❖Large lactone ring (12, 14, 16 or ♣ atoms)
- ❖ Numerous CH₃ substituents in lactone ring
- ❖ 1-3 deoxy-sugar/sugar moieties attached to the ring
- Erythromycin A, B as examples
- Mainly active against Gram-positive bacteria and Mycoplasma spp.; useful in pat. with penicilline allergy
- Protein synthesis inhibitors
- ❖SE: few, mainly GI symptoms

Erythromycin A: 1 [PropionylCoA] + 6 [2-MethylmalonylCoA] \rightarrow Polyketo-acid \rightarrow condensation \rightarrow Erythronolide ring (14 atoms) \rightarrow glycosidation \rightarrow Erytrhromycine (Azithromycine is its semi-synthetic analog) [1 CH₃-CH₂-CO-SCOA + 6 HOOC-CH-(CH₃)-CO-SCOA]

Polyenes double bond

- The group of <u>antibiotics</u> known collectively as polyenes is characterized by a <u>large lactone ring</u> (20–44 membered) containing a series of conjugated double bonds.
- The macrolide ring is often linked via a hydroxyl group to an aminosugar unit
- The macrolide ring is probably derived from acetate and propionate.
- They are often mixtures of closely related compounds.
- <u>Streptomyces</u> are the usual producing organisms, and to date over 200 polyenes have been claimed
- Candida albicans is susceptible to the polyenes
- Cutaneous, intestinal and vaginal infections of Candida

antifungal

Amphotericin B: formed of 16 acetate units (1 AcetylCoA + 15 MalonylCoA + 3 MethylmalonylCoA); macrolactone ring followed by glycosidation withD-mycosamine via OH at C-19