3- Laboratory Diagnosis and Treatment of Viral Infection

Mohammad Altamimi, MD, PhD The Hashemite University, 2024

By: Sara Jaber

Objectives

- 1. Understand principles of laboratory diagnosis of viral infections
- 2. Differentiate methods of viral detection and isolation
- 3. Describe viral reaction to physical and chemical agents
- Describe and apply common methods of Inactivating viruses
- Understand principles and classes of anti-viral agents
- Understand principles, types, and application of viral vaccines

Difficulties

- Can not be seen under light microscope
 - Can not be cultivated easily
 - Do not grow on <u>culture media</u> الزامة البكيريا والعظريات
 - Treatment was not available

Changed situation

- Rapid techniques
- قبل نعل احب وجدة دم كارم Screening for Blood transfusion فبل نعل احب وجدة دم الدمواها
- Treatment available

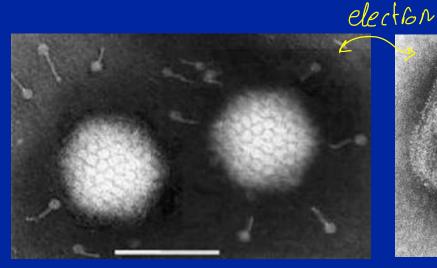
Specimens العينات

- According to the disease
 - Respiratory Throat swab, Mose Swap, lung lead to be supplied to the swap of the swap of
 - CNS CSF Needle Between Lu & 15
 - Eyes- Conjunctival scrapings
- Viras Viremia Blood
 - GIT and Liver Stool
 - Skin Scrapings

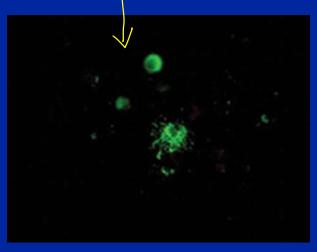
Specimen Storage and

Transport کان نخلی الفایوس عمی ه

Biohazard-1


- Keep specimens other than blood at 4°C
- If delay >24hrs, freeze at -70°C or below.
- Avoid any storage at -20°C: greater loss in infectivity
- Nonenveloped viruses more stable than enveloped
- Viral Transport Medium
 - Salt solution ensures proper ionic concentrations
 - Buffer maintains pH
 - Protein for virus stability
 - Antibiotics or antifungals to prevent contamination

Storage

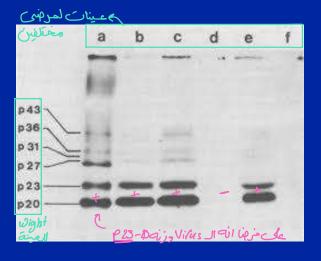

Hansport

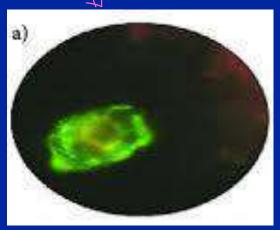
1. Microscopy

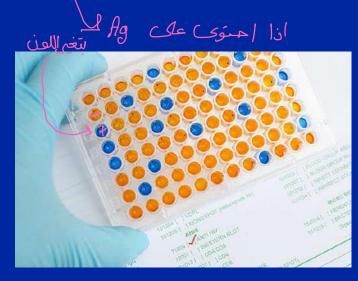
- الون الطبيع كانه Electron Microscope ⇒ المون الطبيع المون المون
- Light microscope Inclusion bodies اذا عمل Light microscope الكن بعَبرالشونه بال الماعل
- Fluorescent Microscope -Fluorescent antibody technique

2. Demonstration of Viral

Glyco Protienzo envelope ou Virus & Antigens


Antigens -> Virus کل جنامیت عبایت

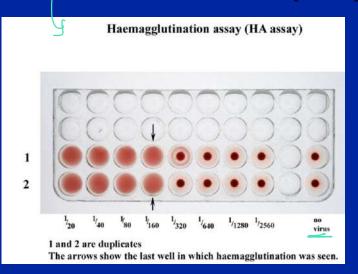

Precipitation on gel eg HBsAg 22 Marse Antigen


Immunofluorescence

Enzyme Linkes Immuno Sorbant Assay

(ELISA)

بعد مدة من الإلهابة الجسم بغير


المحقادة عنا كالله على المحقود المسلم المحقود المحقود

- Rising titre of antibody in paired sample of sera for IgG antibody

 antibody

 المناح ربعدادل السري المراح المراح
 - First sample At the earliest Toh Isotype Buitch Jeen & Le-30) Jeen
 - البغر شكله و بعيد على الموات الموات
- Single sample IgM type of antibody detection
- Techniques –ELISA, Haemagglutination Inhibition (HAI)Test

لعاى الخطوة Genome I sp pall

4. Molecular Techniques

Nucleic acid amplification techniques بكثر المادة الوائية

such as polymerase chain reaction (PCR) can be used to detect viral genomes in clinical material.

 To detect RNA, an initial reverse RNA -> DMA transcription step is performed

(converts RNA into cDNA). After this,

PCR can be performed.

Molecular assays are very sensitive (able to detect only a few viruses in - او Primer بإذا كان موجود فالفيرين clinical sample.)

They can also be used to measure the amount of virus (viral load) in a patient's sample.

لوكان OD = 1/2 البداية

وبعد العلاج صاره ٤- ١١٠ - يعنى انه العلاج مفيد

كانت غالبة لكن مهارست أجمعه

وكمان الفايروسات مادرة على تغير الصه

Genomel itsill Babis use

بدی اعرف نوی ۷۱٬۲۵۴

Sequence confice hole

لع بعدر بهاى العاربية اتابع عالة المرين

5. Viral Isolation and Culture

- Primary purposes of viral cultivation
 - To isolate and identify viruses in clinical specimens
 - To prepare viruses for vaccines
 - To do detailed research on viral structure, multiplication cycles, genetics, and effects on host cells
- 1. Using Live Animal Inoculation جنالبًا بتنتعري وممكن الله يعدي الناس Specially bred strains of white mice, rats, hamsters,
 - guinea pigs, and rabbits
 - Animal is exposed to the virus by injection
- 2. Using Bird Embryos نزرج الغايروس معى الاجنة الموجودة بالبليات
 - Enclosed in an egg- nearly perfect conditions for viral propagation

 - Chicken, duck, and turkey are most common
 Egg is injected through the shell using sterile techniques
- Cell culture for viral identification

Cell Culture

Routinely used for growing viruses Classified into 3 types:

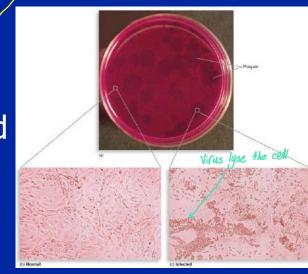
العني كل مرة بوي المسمل زداعة كازم ادجع أحز Primary cell culture – normal cells freshly taken from body & cultured, limited growth ____ calls

1. Rhesus monkey kidney

2. Chick embryo fibroblast

3. Human amnion cell culture

2) Diploid cell strains – cells of single type ~ (fibroblast cells) that can be subcultivated for limited number of times, mostly 50


1. WI-38: human embryonic lung cell

2. HL-8: Rhesus embryo cell

Continuous cell lines – malignant cells, indefinite subcultivtion

1. HeLa: Human Ca of cervix cell line

2. HEP-2: Human epithelioma of larynx

صحنا بختار خلارا عندها مترة عالية على التكائر وجون عي بتنكاثرلحالعي وبغدر اعمل عمالاسمامي

Detection of Virus Growth in Cell Cultures

- 1. Cytopathic effects (CPE) morphological changes in cultured cells, seen under microscope, characteristic CPE for different groups of viruses
 - 2. Metabolic Inhibition no acid production in presence of virus
 - 3. Hemadsorption influenza & parainfluenza viruses, by adding guinea pig erythrocytes to the culture
 - 4. Interference growth of a non cytopathogenic virus can be tested by inoculating a known cytopathogenic virus: growth of first virus will inhibit the infection by second
 - Transformation oncogenic viruses induce malignant transformation
 - Immunofluorescence test for viral Ag in cells from viral infected cultures.

Reaction to physical and chemical agents

1. Heat and cold:

- Icosahedral viruses tend to be stable, while Enveloped viruses are much more heat labile
- Viral infectivity is generally destroyed by heating at 50–60°C for 30 minutes
 - Viruses can be <u>preserved</u> by storage at subfreezing temperatures

2. Salts:

 Many viruses can be <u>stabilized</u> by salts in order to resist heat inactivation

3. pH:

Viruses are usually stable between pH values of 5.0 and 9.0. Some viruses (eg, enteroviruses) are resistant to acidic conditions. All viruses are destroyed by alkaline conditions.

4. Radiation:

Ultraviolet, x-ray, and high-energy particles inactivate viruses

Detergents:

Solubilize lipid constituents of viral membranes and disrupt capsids into separated polypeptides

6. Formaldehyde:

Formaldehyde destroys viral infectivity by reacting with nucleic acid

7. Quaternary ammonium, organic iodine, low-concentration chlorine, and Alcohols are relatively not effective against viruses

Common Methods of Inactivating Viruses

Sterilization may be accomplished by steam under pressure, dry heat, ethylene oxide, and y-irradiation

Surface disinfectants include sodium hypochlorite, glutaraldehyde, and

formaldehyde

Skin disinfectants include chlorhexidine,

70% ethanol, and iodophors

Vaccine production may involve the use of formaldehyde, ultraviolet irradiation, or detergents to inactivate the vaccine

Treatment and Prevention of Viral Infections

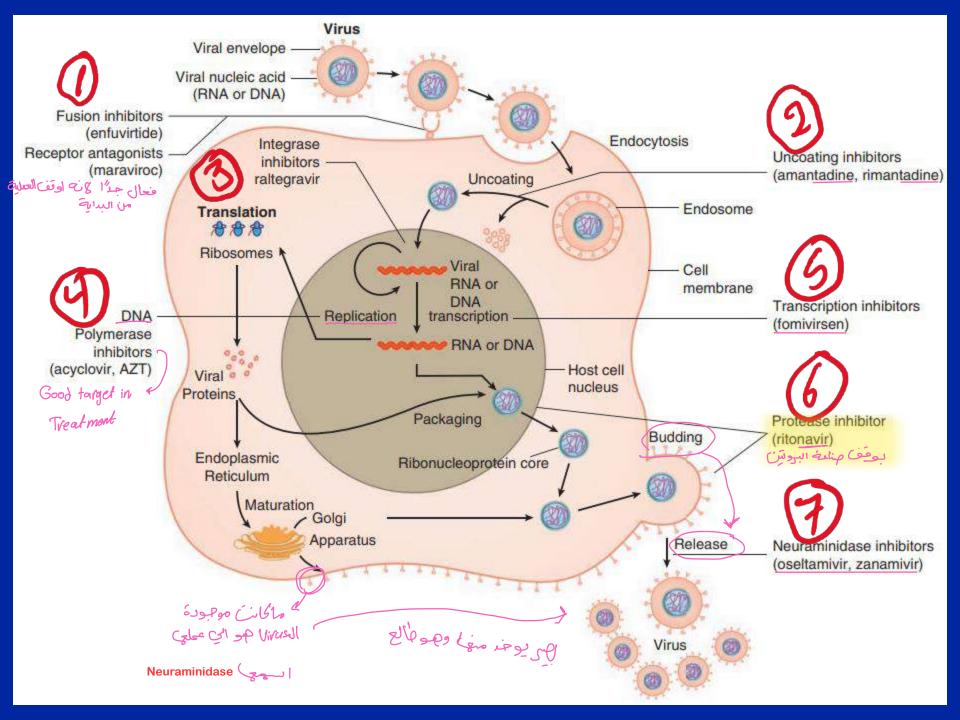
• As bacteria and protozoa do not rely on host cellular machinery for replication, processes specific to these organisms provide ready targets for developing

However, because viruses are obligate intracellular parasites, antiviral drugs must be capable of selectively inhibiting viral functions without damaging the host, making the development of such drugs very difficult.
 Furthermore an ideal drug would reduce disease

 Furthermore an ideal drug would reduce disease symptoms without modifying the viral infection so much as to prevent an immune response in the host.

• There is a need for antiviral drugs active against viruses, for which vaccines are not available or are not highly effective ما المناع والمناع المناع الم

Anti-viral Development


• Viruses are now becoming better understood and several viral genomes have been properly mapped. Scientists are now looking for the best drug targets

• The main point of interest is any viral protein that the host organism does not normally produce produce protein with a produce prod

• Once these viral proteins are identified المربية ال

Anti-viral Targets Niral Replication Steps_11 and 12.

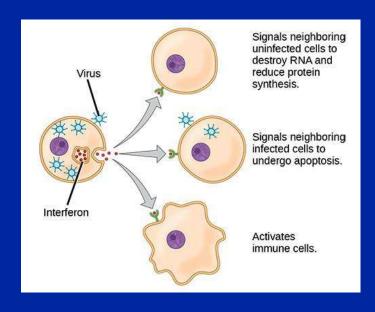
- There are several known methods that the makers of Antiviral drugs are looking at, including:
 - 1. Inhibitors of Attachment (maraviroc)
 - 2. Inhibitors of <u>Cell Penetration</u> and <u>Uncoating amantadine</u>, rimantadine (enfuvirtide)
 - 3. Neuraminidase Inhibitors (oseltamivir, zanamivir)
 - 4. Protease Inhibitors (ritonavir)
 - 5. Inhibitors of Nucleic Acid Synthesis
 - 6. Nucleotide Analogs
 - 7. Stopping the release of the mature viruses from the host cell

1. Oseltamivir (Tamiflu)

- Prevents the mature viruses from leaving the cell
 - It is a <u>neuraminidase</u> inhibitor, it works on both influenza A and B
- Neuraminidase is an enzyme found on the virus which
 - →cleaves sialic acid from cell membrane, leading to a more effective release of viruses
 - Used to battle avian flu and influenza

2. Acyclovir (Zovirax)

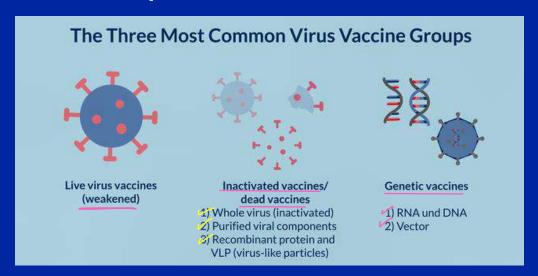
- A widely used antiviral with main implications in the treatment of herpes
- Seen as a "new age" in antiviral therapy, Gertrude Elion, its creator, was given the Nobel prize for medicine in 1988
- It is a nucleoside analogue and prevents viral replication in infected cells
- Inhibits viral DNA polymerase and terminates viral DNA chain growth



3. Interferons INF (aby)

لعملنامني سنغ ومرنا نعليعي ومحاسع

- a and β interferons are produced by all the cells in response to viral infections
- γ interferons are produced only by T lymphocyte and NK cells in response to cytokines
- The action of interferons leads to an inhibition of translation
- Pegylated interferon-a (Peg-IFa) is given for 6 to 12 months to treat chronic hepatitis C & B disease المكانة على عام 30-50٪ إليالة المكانة المكانة


في درية الموجن

Viral Vaccines

General Principles

Types:

- 1. Killed-Virus Vaccines المحال المح
- 3. Genetic vaccines
- Proper Use of Vaccines
- Vaccine development and future direction

