لرخر محاخرة فاينال

3- Laboratory Diagnosis and Treatment of Viral Infection

Mohammad Altamimi, MD, PhD The Hashemite University, 2024

تفريغ: أمنة بعارة

Objectives

- Understand principles of laboratory diagnosis of viral infections
- Differentiate methods of viral detection and isolation
- 3. Describe viral reaction to physical and chemical agents
- 4. Describe and apply common methods of Inactivating viruses
- Understand principles and classes of anti-viral agents
- 6. Understand principles, types, and application of viral vaccines

الشكل عام تشخيع الامران الفيروسية كان منص عشان هاي الاسباب.

Difficulties

های معوبار زمان

- Can not be seen under light microscope
- Can not be cultivated easily
- Do not grow on culture media
- Treatment was not available

ا) عاهنقر نشوفها کرت

light micros

ے عاصفتر نزرع الفيروسات بسعولة

هلا تغيراله مع Changed situation

- Rapid techniques محوصات سر بعه
- 2-Screening for Blood transfusion مرالمنعرف انه بتنقاعن حسل المربت الدم
- 3-Treatment available. العلاج مار متوفي

Specimens

According to the disease

Respiratory — Throat swab

CNS العام المال CNS - CSF Cevebral spinal fluid المال CSF باخ عبدة منحار العائل المال الم

- Eyes- Conjunctival scrapings
- Viremia Blood سوره النيوس و سري المناطقة المن
 - GIT and Liver Stool وبالراحين اوبالراحين اوبالراحين اوبالراحين اوبالراحين اوبالراحين المحادي والمحتان والم
 - Skin-Scrapings

النقل والتخزين للحينة

Specimen Storage and Transport

هو ن بقالم احفظ العنات عند درجه تم اله م الام) ليعنى نب الرمية ا

Keep specimens other than blood at 4°C

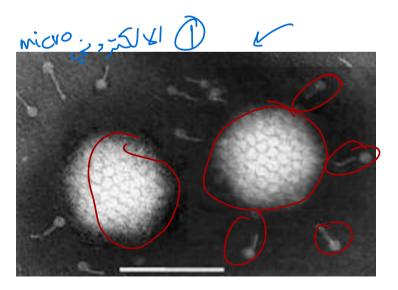
If delay >24hrs, freeze at -70°C or below.

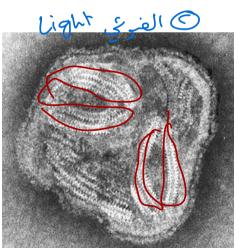
• Avoid any storage at -20°C greater loss in infectivity

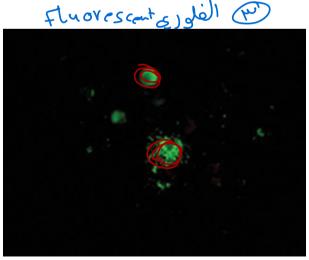
Nonenveloped viruses more stable than enveloped

Viral Transport Medium

عملول علحي و انه يعنسن تركيزات الويدة عناسه Salt solution – ensures proper ionic concentrations

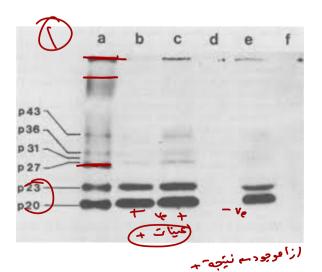

- Buffer maintains pH
- تحا فن على استة اد العيروى Protein for virus stability الهودين
- Antibiotics or antifungals to prevent contamination التعنع التلوث

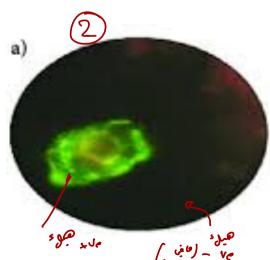

فرت تشخيص الفيروسات

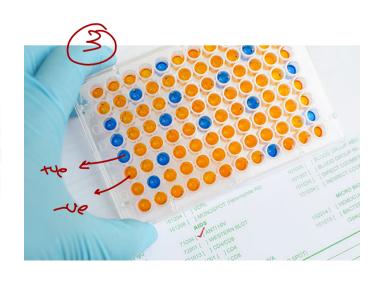

1. Microscopy

السيوبلارع بعدر الوفي بس عند المربح المعدر الوفي

- Electron Microscope
- الاحسار الاحظامة Light microscope – Inclusion bodies
- Fluorescent Microscope -Fluorescent antibody technique الفاوري المفادة العجم المفادة الفارية

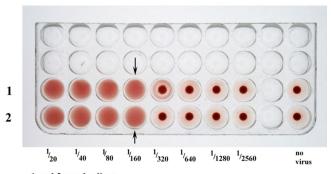

2. Demonstration of Viral Antigens


کے کمریعہ کانیہ-بالشخیص



ترسب الجل

- Immunofluorescence
- Enzyme Linkes Immuno Sorbant Assay (ELISA)



3. Serological Reactions (anti-viral antibodies)

- زيارة العيارة Rising titre of antibody in paired sample of sera for IgG antibody
- First sample At the earliest
- Second sample After 2 weeks
- Single sample IgM type of antibody detection
- Techniques –ELISA, Haemagglutination Inhibition (HAI)Test

Haemagglutination assay (HA assay)

1 and 2 are duplicates

The arrows show the last well in which haemagglutination was seen.

4. Molecular Techniques

لقتيات تقنظم الحف النووي Nucleic acid amplification techniques such as polymerase chain reaction (PCR) can be used to detect viral genomes in clinic

material.

To detect RNA, an initial reverse بون المنعانية transcription step is performed (converte RNA into cDNA). After this, PCR can be

<u>s</u> <u>performed</u>.

Molecular assays are very sensitive (able to detect only a few viruses in a clinical sample.)

They can also be used to measure the amount of virus (viral load) in a patient's sample.

كرو الفيروس وزراعته

5. Viral Isolation and Culture

Primary purposes of viral cultivation

To isolate and identify viruses in clinical specimens

To prepare viruses for vaccines

قال مورالفيروسارت لانتاج اللتاسارة المعاملة على المعاملة عل

Using Live Animal Inoculation استخاراً حقن الحيوانات الحيه Specially bred strains of white mice, rats, hamsters, guinea pigs, and rabbits

Animal is exposed to the virus by injection

ا جنة اللحور (Using Bird Embryos

Enclosed in an eggi nearly perfect conditions for viral propagation

Chicken, duck, and turkey are most common

Egg is injected through the shell using sterile techniques

Cell culture for viral identification

زراعه الخلايا لتحدير الفروس

echniques

منترحقن الهيمن المنتخبان معقدة

عشان نخیل دراسات صفعله Structure , بر m ul hiplication Menabics

Cell Culture

بتتآخر هذ الجمم و بتنزر عمر Routinely used for growing viruses Classified into 3 types: Primary cell culture – normal cells freshly taken from body & cultured, limited growth Rhesus monkey kidney اليان جنيذ الهاج Chick embryo fibroblast اليان جنيذ الهاج (fibroblast cells) that can be subcultivated for limited number of times, mostly 50 WI-38: human embryonic lung cell HL-8: Rhesus embryo cell Continuous cell lines – malignant cells, indefinite خالاما خعیم بعد به بنکل غیر عمدود subcultivtion الرح و HeLa: Human Ca of cervix cell line المراج و المراج HEP-2: Human epithelioma of larynx

Detection of Virus Growtles

• التأثيرات الخلوية الممرضة (CPE): تغييرات شكلية تحدث في الخلايا المزروعة، يمكن ملاحظتها تحت المجهر، وتكون مميزة لمجموعات مختلفة من الفيروسات.

· التثبيط الأيضي: عدم إنتاج الأحماض في وجود الفيروس.

-التلاصق الدموي: خاص بفيروسات الإنفلونزا وفيروسات الباراإنفلونزا، يتم ذلك من خلال إضافة كريات الدم الحمراء لخنزير غينيا إلى الزراعة.

التداخل (Interference): يمكن اختبار نمو فيروس غير ممرض للخلايا من خلال تلقيح فيروس ممرض معروف؛ نمو الفيروس الأول بمنع الإصابة بالفيروس الثاني.

· التحول (Transformation): الفيروسات المسببة للأورام تُحدث تحولًا خبيئًا في الخلايا.

المناعة الفلورية (Immunofluorescence): اختبار للكشف عن المستضدات الفيروسية في الخلايا المصابة بالفيروسات باستخدام تقنبات الفلورية.

Cytopathic effects (CPE) – morphological changes in cultured cells, seen under microscope, characteristic CPE for different groups of viruses

Metabolic Inhibition – no acid production in presence of virus

Hemadsorption – influenza & parainfluenza viruses, by adding guinea pig erythrocytes to the culture

Interference – growth of a non cytopathogenic virus can be tested by inoculating a known cytopathogenic virus: growth of first virus will inhibit the infection by second

Transformation – oncogenic viruses induce malignant transformation

Immunofluorescence – test for viral Ag in cells from viral infected cultures.

Reaction to physical and chemical agents

- 1. She Heat and cold:
- Icosahedral viruses tend to be stable, while Enveloped viruses are much more heat labile
- *Viral infectivity is generally destroyed by heating منعطل شاكط الفيزوسان من كمريت التنفيذ at 50-60°C for 30 minutes Viruses can be preserved by storage at subfreezing

temperatures

- 2. Salts:
- - 3. pH:

Viruses are usually stable between pH values of 5.0 and 9.0. Some viruses (eg, enteroviruses) are resistant to acidic conditions. All viruses are destroyed by alkaline conditions.

مح كلع بتعطلوا

4. Radiation: المؤسلاء على المائد ال

viruses

5. Detergents:

Solubilize lipid constituents of viral membranes and disrupt capsids into separated polypeptides

6. Formaldehyde: معقكان الكبيم كان الهريتية

Formaldehyde destroys viral infectivity by reacting with nucleic acid

7. Quaternary ammonium, organic iodine, lowconcentration chlorine, and Alcohols are relatively not effective against viruses

Common Methods of Inactivating Viruses

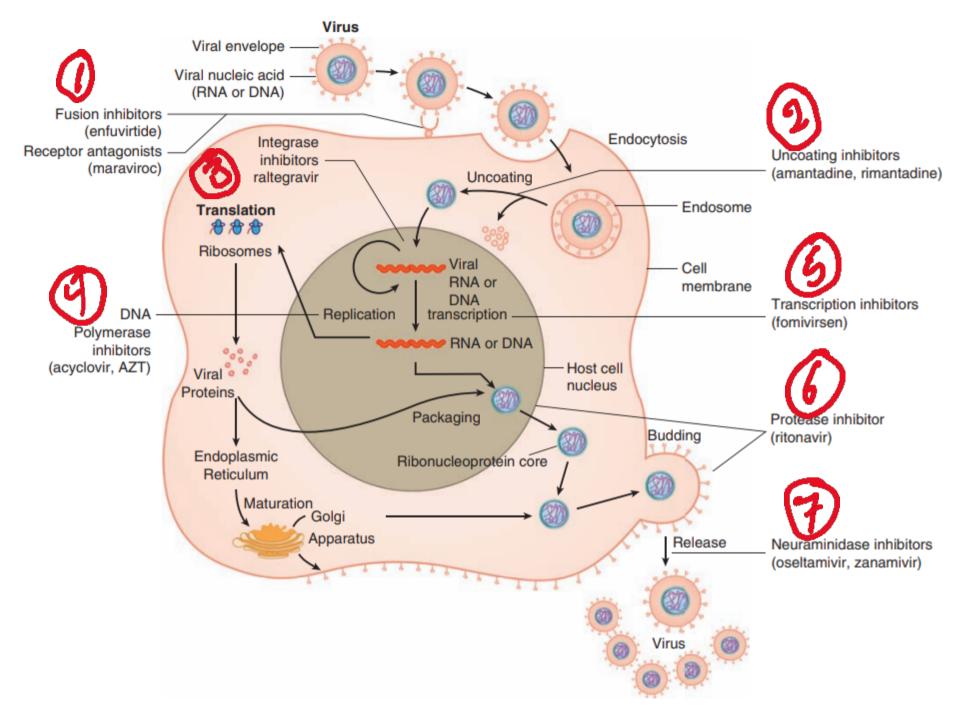
- Sterilization may be accomplished by steam under pressure, dry heat, ethylene oxide, and γ-irradiation
- Surface disinfectants include sodium hypochlorite, glutaraldehyde, and formaldehyde
- Skin disinfectants include chlorhexidine, 70% ethanol, and iodophors
- Vaccine production may involve the use of formaldehyde, ultraviolet irradiation, or detergents to inactivate the vaccine

Treatment and Prevention of Viral Infections

As bacteria and protozoa do not rely on host cellular machinery for replication, processes specific to these organisms provide ready targets for developing antibacterial and antiprotozoal drugs. However, because viruses are obligate intracellular parasites, antiviral drugs must be capable of selectively inhibiting viral functions without damaging the host, making the development of such drugs very difficult. Furthermore an ideal drug would reduce disease symptoms without modifying the viral infection so much as to prevent an immune response in the host. There is a need for antiviral drugs active against viruses, for which vaccines are not available or are not highly effective.

Anti-viral Development

- Viruses are now becoming better understood and several viral genomes have been properly mapped. Scientists are now looking for the best drug targets
- The main point of interest is any viral protein that the host organism does not normally produce
- Once these viral proteins are identified they are tested using a large-scale screening process to test for effectiveness


Anti-viral Targets

- There are several known methods that the makers of Antiviral drugs are looking at, including:

 Inhibitors of Attachment

 Inhibitors of Call Penetration and
 - Inhibitors of Cell Penetration and Uncoating
 - Neuraminidase Inhibitors
 - **Protease Inhibitors**
 - Inhibitors of Nucleic Acid Synthesis
 - Nucleotide Analogs
 - Stopping the release of the mature viruses from the host cell

1. Oseltamivir (Tamiflu)

• Prevents the mature viruses from leaving the cell

It is a neuraminidase inhibitor, it works on both influenza A and B

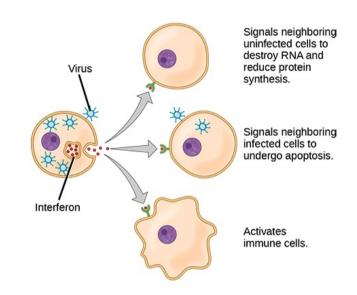
- Neuraminidase is an enzyme found on the virus which cleaves sialic acid from cell membrane, leading to a more effective release of viruses
- Used to battle avian flu and influenza

وفعال معافحة انفلونزاالطيور والانفلونزا الموسيء

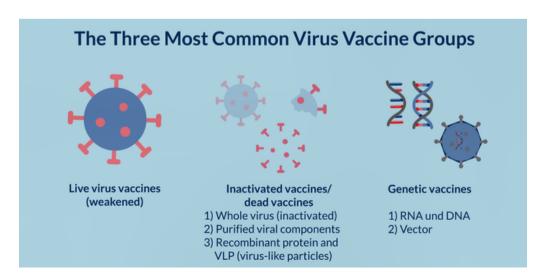
2. Acyclovir (Zovirax)

A widely used antiviral with main implications in the treatment of herpes Seen as a "new age" in antiviral therapy, Gertrude Elion, its creator, was given the Nobel prize for medicine in 1988

It is a nucleoside analogue and prevents viral replication in infected cells Inhibits viral DNA polymerase and terminates viral DNA chain growth



3. Interferons


 α and β interferons are produced by all the cells in response to viral infections γ interferons are produced only by T lymphocyte and NK cells in response to cytokines The action of interferons leads to an inhibition of translation Pegylated interferon-α (Peg-IFα) is given for 6 to 12 months to treat chronic hepatitis C disease

Viral Vaccines

- General Principles Types:
- Killed-Virus Vaccines
- Attenuated Live-Virus Vaccines ضيينة المغينة
- Genetic vaccines لقامات حينية.
 - Proper Use of Vaccines
 - Vaccine development and future direction

