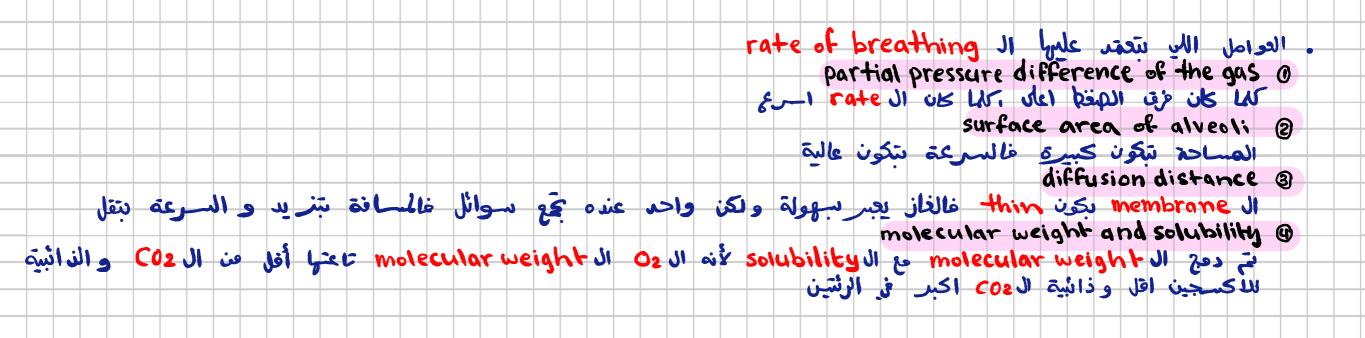
Date:
/ /

تفريغ فسيولوجي

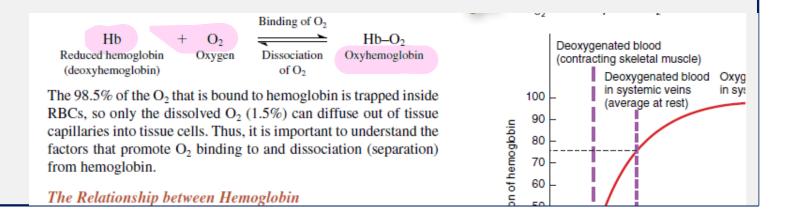
رقم المحاضرة : 6

Jeneen Alhasan: Jack jack


THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

- □ Partial pressure difference of the gases. Alveolar PO2 must be higher than blood PO2 for oxygen to diffuse from alveolar air into the blood. The differences between PO2 and PCO2 in alveolar air versus pulmonary blood increase during exercise.
- □ Surface area available for gas exchange. The surface area of the alveoli is huge. In addition, many capillaries surround each alveolus, so many that as much as 900 mL of blood is able to participate in gas exchange at any instant.

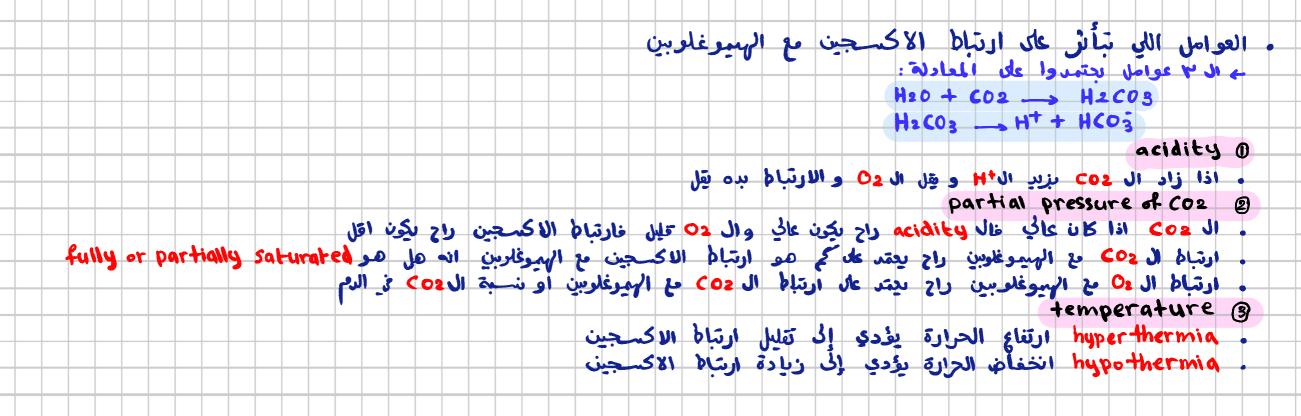
الام بيطلع فن العلب و بيتوزع على الخاء الحبم ، أول الشر بطير انتقال للأكسجن على عالماله و الكليم و الكليم و الله بودي عنى طريق الله بودي على المسمم و الله بودي على المسمم و الله بودي على المسمم و الله بعدل و exchange و الله بعدل الله بعدل و الله بعدل الله بعدل الله بعدل و الله و الله بعدل و الله


THE RATE OF PULMONARY AND SYSTEMIC GAS EXCHANGE DEPENDS ON SEVERAL FACTORS:

- □ Partial pressure difference of the gases. Alveolar PO2 must be higher than blood PO2 for oxygen to diffuse from alveolar air into the blood. The differences between PO2 and PCO2 in alveolar air versus pulmonary blood increase during exercise.
- □ Surface area available for gas exchange. The surface area of the alveoli is huge. In addition, many capillaries surround each alveolus, so many that as much as 900 mL of blood is able to participate in gas exchange at any instant.

TRANSPORT OF OXYGEN AND CARBON DIOXIDE: OXYGEN TRANSPORT

- Oxygen does not dissolve easily in water, so only about 1.5% of inhaled O2 is dissolved in blood plasma.
- * About 98.5% of blood O2 is bound to hemoglobin in red blood cells (the amount dissolved in the plasma is 0.3 mL and the amount bound to hemoglobin is 19.7 mL.).


THE RELATIONSHIP BETWEEN HEMOGLOBIN AND OXYGEN PARTIAL PRESSURE

- ❖ The most important factor that determines how much O₂ binds to hemoglobin is the PO₂; the higher the PO₂, the more O₂ combines with Hb.
- ❖ When reduced hemoglobin (Hb) is completely converted to oxyhemoglobin (Hb–O₂), the hemoglobin is said to be fully saturated; when hemoglobin consists of a mixture of Hb and Hb–O₂, it is partially saturated. The percent saturation of hemoglobin expresses the average saturation of hemoglobin with oxygen. For instance, if each hemoglobin molecule has bound two O₂ molecules, then the hemoglobin is 50% saturated because each Hb can bind a maximum of four O₂.

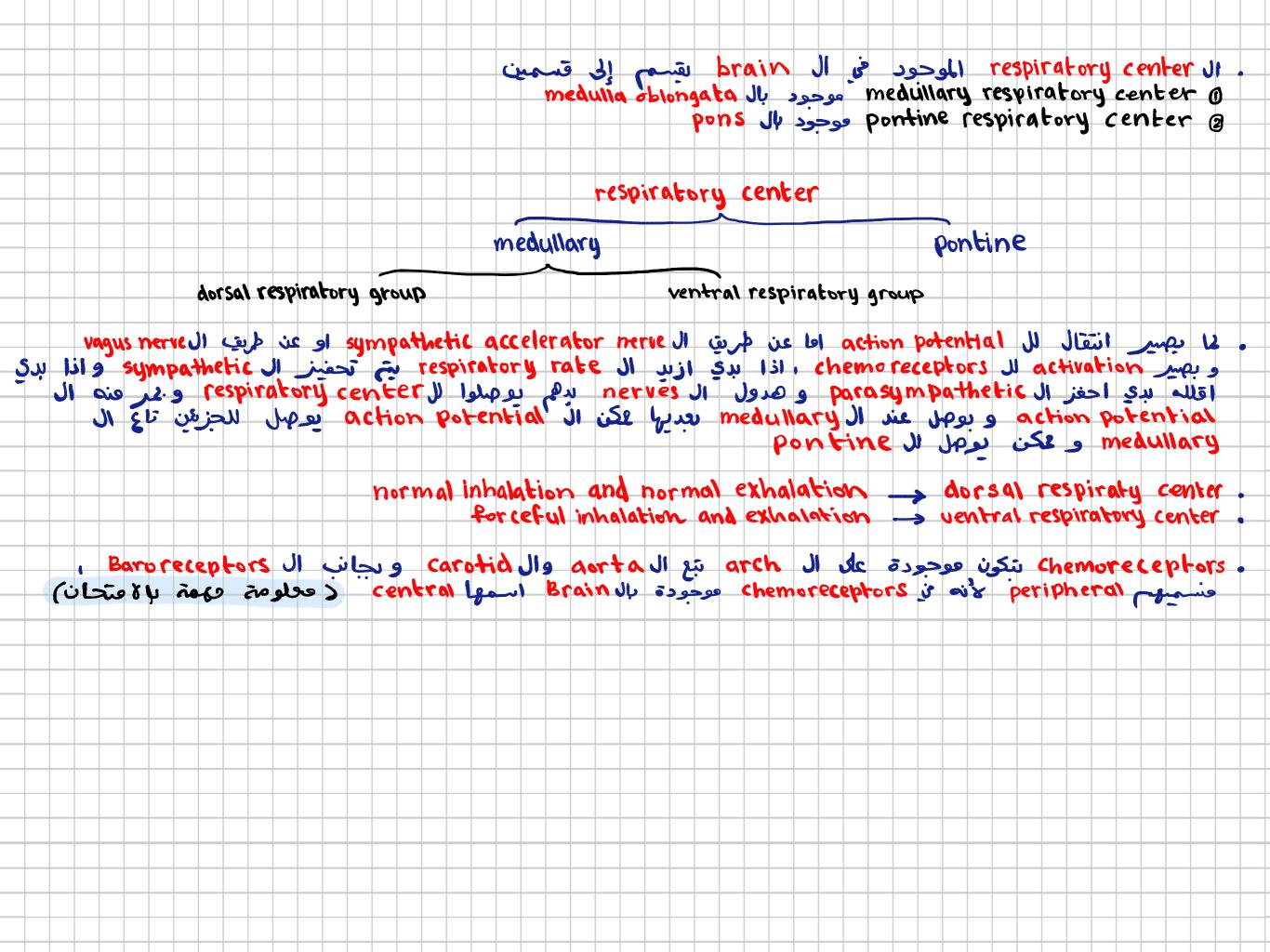
hemoglobin molecule has bound two O2 molecules, then the hemoglobin is 50% saturated because each Hb can bind a maximum of four O2.			
	fully saturated ميم في أربعة أكسجين عسميه partially saturated من من عدة أكسجين من عدة الميموغلوبين مع 2 أكسجين من مده الهيموغلوبين مع 2 أكسجين من مده الهيموغلوبين مع		
	اذا ارتبط الهيموغلوبين مع 2 أكسجين صند ميد partially saturated		

OTHER FACTORS AFFECTING THE AFFINITY OF HEMOGLOBIN FOR OXYGEN

*1. Acidity (pH): As acidity increases (pH decreases), the affinity of hemoglobin for O2 decreases, and O2 dissociates more readily from hemoglobin. The Bohr effect works both ways: An increase in hydrogen ion in blood causes O2 to unload from hemoglobin, and the binding of O2 to hemoglobin causes unloading of hydrogen ion from hemoglobin (hemoglobin can act as a buffer for hydrogen ions).

CARBON DIOXIDETRANSPORT Under normal resting conditions, each 100 mL of deoxygenated blood contains the equivalent of 53 mL of gaseous CO2, which is transported in the blood in three main forms: 1. Dissolved CO₂. The smallest percentage—about 7%—is dissolved in blood plasma. On reaching the lungs, it diffuses into alveolar air and is exhaled. **2.** Carbamino compounds. somewhat higher percentage, about 23%, combines with the amino groups of amino acids and proteins in blood to form carbamino compounds. Because the most prevalent protein in blood is hemoglobin (inside red blood cells), most of the CO2 transported in this manner is bound to hemoglobin. ال ١٥٥ يتواحد على ١٧ أسكال dissolved coz in plasma 7% () يتواجد لحاله في البلازما 23% carbamino compounds @ ارتباله مع الهموغلوبين 60-70% bicarbonate ions 3 عدا الخلية ، عنان علا مدنة ا- و بالناني اذا بده يلا و راح يهمير اختلال بال clectrical gradient حول الخلية ، عنان علا

CARBON DIOXIDETRANSPORT


❖The amount of CO2 that can be transported in the blood is influenced by the percent saturation of hemoglobin with oxygen. The lower the amount of oxyhemoglobin (Hb–O2), the higher the CO2-carrying capacity of the blood, a relationship known as the Haldane effect.

ارتباط ال ٥٥ مع الهموغلوبين بعمد على ارتباط ال ٥٥٤ مع الهموغلوبين والعكس صحيح

CONTROL OF BREATHING

✓ Respiratory Center:

• These nerve impulses are sent from clusters of neurons located bilaterally in the brain stem. This widely dispersed group of neurons, collectively called the respiratory center, can be divided into two principal areas on the basis of location and function: (1) the medulla oblongata and (2) the pontine respiratory group in the ponts.

THE INFLATION REFLEX

- ✓ Similar to those in the blood vessels, stretch-sensitive receptors called baroreceptors or stretch receptors are located in the walls of bronchi and bronchioles.
- When these receptors become stretched during overinflation of the lungs, nerve impulses are sent along the vagus (X) nerves to the dorsal respiratory group (DRG) in the medullary respiratory center. In response, the DRG is inhibited and the diaphragm and external intercostals relax. As a result, further inhalation is stopped and exhalation begins.

OTHER INFLUENCES ON BREATHING ☐ Limbic system stimulation: Anticipation of activity or emotional anxiety may stimulate the limbic system, which then sends excitatory input to the DRG, increasing the rate and depth of breathing. **□** Temperature ☐ Pain ☐ Stretching the anal sphincter muscle ☐ Irritation of airways: Physical or chemical irritation of the pharynx or larynx brings about an immediate cessation of breathing followed by coughing or sneezing. □ Blood pressure normal المعزوط تكون المصلح activity المعزوط تكون المحتوط المسلح normal ولكن اذا زادت ال activity system ولكن اذا زادت ال sympathetic nervous systemy activation

TABLE 23.3

Summary of Stimuli That Affect Breathing Rate and Depth

STIMULI THAT INCREASE BREATHING RATE AND DEPTH	STIMULI THAT DECREASE BREATHING RATE AND DEPTH
Voluntary hyperventilation controlled by cerebral cortex and anticipation of activity by stimulation of limbic system.	Voluntary hypoventilation controlled by cerebral cortex.
Increase in arterial blood P _{CO2} above 40 mmHg (causes an increase in H ⁺) detected by peripheral and central chemoreceptors.	Decrease in arterial blood P_{CO_2} below 40 mmHg (causes a decrease in H^+) detected by peripheral and central chemoreceptors.
Decrease in arterial blood P _{O2} from 105 mmHg to 50 mmHg.	Decrease in arterial blood P _{O2} below 50 mmHg.
Increased activity of proprioceptors.	Decreased activity of proprioceptors.
Increase in body temperature.	Decrease in body temperature (decreases respiration rate), sudden cold stimulus (causes apnea).
Prolonged pain.	Severe pain (causes apnea).
Decrease in blood pressure.	Increase in blood pressure.
Stretching of anal sphincter.	Irritation of pharynx or larynx by touch or chemicals (causes brief apnea followed by coughing or sneezing).