





## تفريغ فسيولوجي

lecture 11 part 2

إعداد الصيدلانيه: دور دم عافي





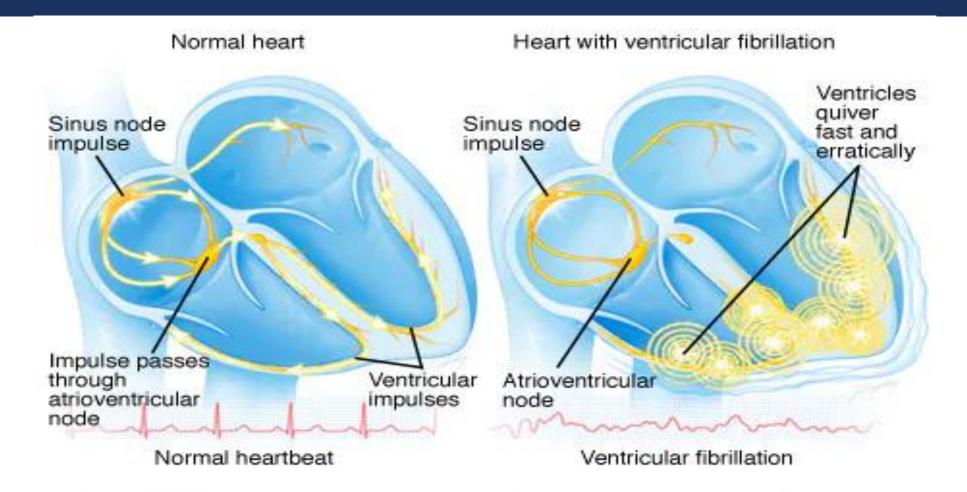


## CHLORIDE ( -> q Ni On S

- Chloride ions are the most prevalent anions in extracellular fluid.
- The normal blood plasma chloride ions concentration is 95–105 mEq/liter.
- Chloride ions moves relatively easily between the extracellular and intracellular compartments because most plasma membranes contain many chloride ions leakage channels and antiporters.
- Processes that increase or decrease renal reabsorption of sodium ions also affect

reabsorption of chloride ions.

Na M [en al [eulosofphion] bless of wind of all all advisors of cesses


Cl M [eapsofphion the instrument of the prior of the instrument of the prior of the instrument of the inst



wormal cocentration

- Potassium ions are the most abundant cations in intracellular fluid (140 mEq/liter).
- Potassium ions plays a key role in establishing the resting membrane potential and in the repolarization phase of action potentials in neurons and muscle fibers.
- Potassium ions also helps maintain normal intracellular fluid volume.
- When potassium ions moves into or out of cells, it often is exchanged for hydreogen ions and thereby helps regulate the pH of body fluids.
- Because potassium ions is needed during the repolarization phase of action potassium ions levels can be lethal. For instance, hyperkalemia (above-normal concentration of K in blood) can cause death due to

ventricular fibrillation.
الما الما العالم العالم



@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.



- Bicarbonate ions are the second most prevalent extracellular anions.
- Normal blood plasma of bicarbonate ions concentration is 22–26 mEq/liter in systemic arterial blood and 23–27 mEq/liter in systemic venous blood.
- Bicarbonate ions concentration increases as blood flows through systemic capillaries because the carbon dioxide released by metabolically active cells combines with water to form carbonic acid; the carbonic acid then dissociates into hydrogen ions and bicarbonate concention is
  - blood flows through pulmonary capillaries, however, the concentration of
- The intercalated cells of the renal tubule can either form bicarbonate ions and release it into the blood when the blood level is low or excrete excess bicarbonate ions in the urine when

  the level in blood is too high. Letter and the level in blood is too high. Letter and the level in blood is too high. Letter and the level in blood is too high. Letter and the level in blood is too high. Letter and the level in blood is too high. Letter and levels bicarbonate ions in the urine when

  who per bicarbonate ions in the urine when

  the level in blood is too high. Letter and levels in the levels bicarbonate ions in the urine when

  who is allowed to be allowed in the level in blood is too high. Letter and levels in the levels bicarbonate ions. It letters are levels bicarbonate ions in the urine when

  when

  when

  where the blood is too high. Letters are blood in the levels bicarbonate ions. It letters are levels bicarbonate ions.

  It levels are levels bicarbonate ions in the urine when



- Because such a large amount of calcium is stored in bone, it is the most abundant mineral in the body. About 98% of the calcium in adults is located in the skeleton and teeth, where it is combined with phosphates to form a crystal lattice of mineral salts.

  Cleusing of Doubons Hansmelter years a company of carcingments years.
- Besides contributing to the hardness of bones and teeth, calcium ion plays important roles in blood clotting, neurotransmitter release, maintenance of muscle tone, and excitability of nervous and muscle tissue.

### CALCIUM

- The most important regulator of calcium ion concentration in blood plasma is parathyroid hormone (PTH).
- A low level of calcium ion in blood plasma promotes release of more PTH, which stimulates osteoclasts in bone tissue to release calcium (and phosphate) from bone extracellular matrix. Thus, PTH increases bone phosphate) from bone extracellular matrix. Thus, PTH increases bone osteoclasts المحجمة عن طريق زيادة المحجمة عن طريق زيادة المحجمة عن طريق زيادة المحجمة عن طريق زيادة المحجمة عن طريق عن ط
- Parathyroid hormone also enhances reabsorption of calcium ion from glomerular filtrate through renal tubule cells and back into blood, and increases production of calcitriol (the form of vitamin D that acts as a hormone), which in turn increases calcium ion absorption from food in the gastrointestinal tract.

  (flom of bilgment) Calcitrol grass as a calcium ion absorption of calcium ion absorption also absorption absorption absorption of calcium ion absorption absorption absorption also absorption absorption

## PHOSPHATE

- About 85% of the phosphate in adults is present as calcium phosphate salts, which are structural components of bone and teeth.
- Three phosphate ions are important intracellular anions.
- The same two hormones that govern calcium homeostasis—parathyroid hormone (PTH) and calcitriol—also regulate the level of phosphate ions in blood plasma.
- PTH stimulates resorption of bone extracellular matrix by osteoclasts, which releases both phosphate and calcium ions into the bloodstream.
- In the kidneys, however PTH inhibits reabsorption of phosphate ions while stimulating reabsorption of calcium ions by renal tubular cells. Thus, PTH increases urinary excretion of phosphate and lowers blood phosphate level. Kelney and Thompson while stimulating of phosphate and lowers blood phosphate level.
- Calcitriol promotes absorption of both phosphates and calcium from the gastrointestinal

( claw of land of land )

does not inhance very (PTH) air air in Done (cabsolption lamid we then the properties of food (PTH) air air in Done (cabsolption) lamid we then the source is the contract of the contract of



- In adults, about 54% of the total body magnesium **is part of bone matrix as magnesium salts**. The remaining 46% occurs as magnesium ions in intracellular fluid (45%) and extracellular fluid (1%).
- Magnesium ions is the second most common intracellular cation (35 mEq/liter).
- Functionally,
- Magnesium ion **is a cofactor for certain enzymes** needed for the metabolism of carbohydrates and proteins and for the sodium–potassium pump.
- Magnesium ion is essential for normal neuromuscular activity, synaptic transmission, and myocardial functioning.
- In addition, secretion of parathyroid hormone (PTH) depends on magnesium ion.

The kidneys increase urinary excretion of magnesium ions in response to hypercalcemia, hypermagnesemia, increases in extracellular fluid volume, decreases in parathyroid hormone, and acidosis. The opposite conditions decrease renal excretion of magnesium ions.

ood Electrolyte Imbalances

decreense inextrallylar hupomay 

Ryponutremia (M-ph-su-TRE-mb-a) may be due to decreased undiam intake; increased sedium less through vensiting. diarrhes, aldosterous deficiency, or taking certain diserties; and excessive

dizziseo, headache. and bypotention: tachscardia and shock: mental confusion. stupor, and comaBypernatremia may occur with deliveration, water deprivation, or excessive sodium in diet or intravenous fluids; causes hypertonicity of ECF, which pulls water out of body cells ness ECF, causing cellular

dehydration.

betone thirst, beportenism. edems, spitation, and convulsions.

Chloride (C)\*) 95-105 mEg/liter

Hypochloremia (ht-pt-k16-kff-mt-a) may he due to excessive vomiting, overfredration, aldesterone deficiency, congestive heart failure, and therapy with certain disperties such as foresernide (Lasix\*).

water intake.

Muscle sparens. metabolic alkalosis. shallow respirations. hypotension, and firtuny.

Hyperchloremia may result from delysdration due to water loss or water deprivation; excessive chloride intake: or severe renal failure. hyperaldosteronism. certain types of acidosis, and some drugs.

Lefturgy, weakness, metabolic acidosis, and rapid, deep breathing.

Potassium (K1) 3.5-5.0 mEg/liter

Hypokalomia (M-et-ka-LE-est-a) may result from excessive loss. due to vomiting or diarrhea, decreased potavoiers intake. hyperaldestronium, kidney disease, and therapy with some durries.

Muscle fatigue, flaccid. paralysis, mental confusion, increased urine output, shallow respirations, and charges in electrocardiogram. including flamening of T wave.

Hyperkalemia may be due to excessive potassium enake, renal fadure. aldosterone deficiency. crushing injuries to body tioners, or transfusion of hemolyzed blood.

feetability, names, veniting, diarrhea, muscular weakness; can came death by inducing ventricular fibrillation.

Calcium (Ca<sup>2+</sup>) Total = 9.0-10.5 mg/dL ionized = 4.5-5.5 mEq/liter

Hypecalcemia (M. ph-kal-SE-me-a) may be due to increased. calcium loss, reduced calcium intake, elevated phosphate levels, or hypoparathyroidism.

Numbers and tingling of fingers; hyperactive reflexes, muscle crumps, tetany, and convulvious; home fractures; spasms of larvegral muscles that can cause death by

Hypercalcensia may result from hyperparathyroidism, some cancers, excessive intake of vitamin D. and Paget's disease of bone.

Lethargy, weakness, ancresia, nausea, vomiting, polyaria, itching, bone pain, depression, confusion, paresthesia, stupor, and

Phosphate (HPO<sub>2</sub>3-) 1.7-2.6 mEg/liter

Hypophosphatemia (Marth tox da-TE-md-a) may occur through increased urinary lones, decreased intestinal absorption. or increased utilization.

diabetes mellins, and

dioretic therapy.

Confusion, seignres. come, chest and muscle pain, marriesess and tingling of fingers. decreased coordination.

memory loss, and

lethargy.

aughyviation.

Hyperphosphatonia

occurs when kidneys fail to excrete excess phosphate. as in renal failure; can also result from increased make of phosphates or destruction of body cells, which releases phosphates mio blood.

Anoroxia, numera, vomiting, mincular weakness. hyperactive reflexes, tetans; and tackycardia.

Magnesium (Mg1+)

Hypomagnesenia 1.3-2.1 mEq/liter (MI'-pi)-mag'-ne-SE-mé-a) may be due to inadequate intake or excessive loss in urine or feces; also occurs in alcoholism, maleutrition.

Weakness, irritability. tetsay, delicium. convulsions, confusion, anversia, nausca, vomiting, paresthesia, and curling arrhythmus. Hypermagnesemia occurin renal failure or due to increased intake of Mg2+ such as Mg2+ containing antacids; also occurs in aldosterone deficiency and hypothymidism.

Hypotension, muscular weakness or paralysis. names, vomiting, and altered mental fenctioning.

\* Chall of soll \*

Please, return back

to this table (Table

27.2).

#### "Values are normal ranges of blood plasma levels in adults

#### ACID-BASE BALANCE

- Various ions play different roles that help maintain homeostasis.
- A major homeostatic challenge is keeping the hydrogen ions concentration (pH) of body fluids at an appropriate level.
- This task—the maintenance of acid—base balance—is of critical importance to normal cellular function. For example, the three-dimensional shape of all body proteins, which enables them to perform specific functions, is very sensitive to pH changes. المسكة بالد المساحة عبر المساحة ع
- Because metabolic reactions often produce a huge excess of hydrogen ions, the lack of any mechanism for the disposal of hydrogen ions would cause hydrogen ions in body fluids to rise quickly to a lethal level.
- Homeostasis of hydrogen ions concentration within a narrow range is thus essential to survival.

#### ACID-BASE BALANCE

nallos lange

The removal of hydrogen ions from body fluids and its subsequent elimination from the body depend on the following three major mechanisms:

Buffer systems. Buffers act quickly to temporarily bind hydrogen ions, removing the highly

1. **Buffer systems**. Buffers act quickly to temporarily bind hydrogen ions, removing the highly reactive, excess hydrogen ions from solution. Buffers thus raise pH of body fluids but do not

concentration of remove hydrogen ions from the body.

More Wegthing

- dioxide can be exhaled. Within minutes this reduces the level of carbonic acid in blood, which raises the blood pH (reduces blood hydrogen ions level).
  - 3. Kidney excretion of hydrogen ions. The slowest mechanism, but the only way to eliminate acids other than carbonic acid, is through their excretion in urine. Calbon dioxid ( a halabon a party of calbon dioxid ( a halabon a party of calbon dioxid ( a halabon a party of calbon dioxid ( a halabon) and calbon d

### THE ACTIONS OF BUFFER SYSTEMS

Dear base

- Most buffer systems in the body consist of a weak acid and the salt of that acid, which functions as a weak base.
- Buffers prevent rapid, drastic changes in the pH of body fluids by converting strong acids and bases into weak acids and weak bases within fractions of a second. Showy pages
- Strong acids lower pH more than weak acids because strong acids release hydrogen ions more readily and thus contribute more free hydrogen ions. Similarly, strong bases raise pH more than weak ones.

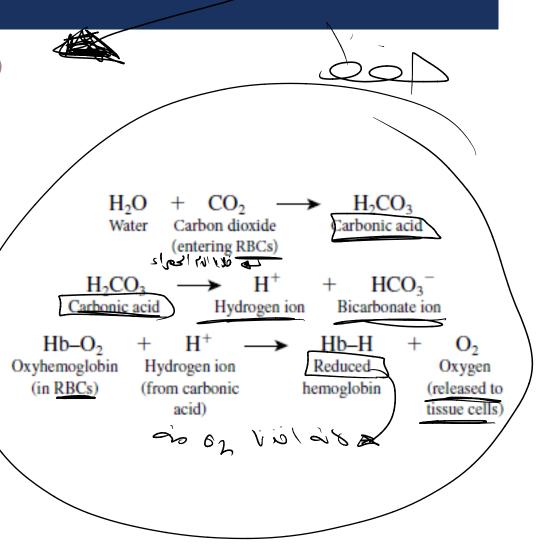
الم الريو

But torsystem & Luce 1



### PROTEIN BUFFER SYSTEM




- It is the most abundant buffer in intracellular fluid and blood plasma.
- For example, the protein hemoglobin is an especially good buffer within red blood
- cells, and albumin is the main protein buffer in blood plasma.

  Proteins are composed of amino acids, organic molecules that contain at least one carboxyl group (-COOH) and at least one amino group (-NH2); these groups are the functional components of the protein buffer system.
- The free carboxyl group at one end of a protein acts like an acid by releasing excess OH- in the solution to form water. The hydrogen ions is then able to react with any
- The free amino group at the other end of a protein can act as a base by combining with hydrogen ions when pH falls. with hydrogen ions when pH falls.
  - So, proteins can buffer both acids and bases.



### PROTEIN BUFFER SYSTEM

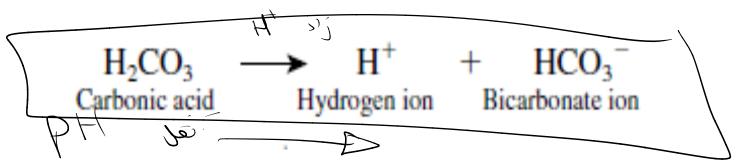
The protein hemoglobin is an important buffer of hydrogen ion in red blood cells. As blood flows through the systemic capillaries, carbon dioxide (CO2) passes from tissue cells into red blood cells, where it combines with water (H2O) to form carbonic acid (H2CO3). Once formed, H2CO3, dissociates into hydrogen ion and HCO3-. At the same time that CO2 is entering red blood cells, oxyhemoglobin (Hb–O<sub>2</sub>) is giving up its oxygen to Reduced hemoglobin tissue cells. (deoxyhemoglobin) picks up most of the hydrogen ion. For this reason, reduced hemoglobin usually is as Hb–H. The following reactions summarize these relationships:



## CARBONIC ACID-BICARBONATE BUFFER

LH2(03) CHEOS)

The carbonic acid-bicarbonate buffer system is based on the bicarbonate ion (HCO3-), which can act as a weak base, and carbonic acid (H2CO3), which can act as a weak acid. As you have already learned, HCO3- is a significant anion in both intracellular and extracellular fluids. acak base a


✓ Because the kidneys also synthesize new HCO3- and reabsorb filtered HCO3-, this important buffer is not lost in the urine. If there is an excess of

hydrogen ion, the HCO3- can function as a weak base and remove the excess

hydrogen ion as follows:

## CARBONIC ACID-BICARBONATE BUFFER SYSTEM

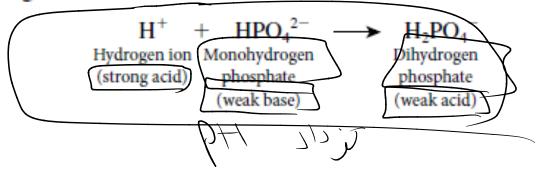
✓ Then, H2CO3 dissociates into water and carbon dioxide, and the CO2 is exhaled from the lungs. Conversely, if there is a shortage of hydrogen ion, the H2CO3 can function as a weak acid and provide hydrogen ion as follows:



Because CO2 and H2O combine to form H2CO3, this buffer system cannot protect against pH changes due to respiratory problems in which there is an excess or shortage of CO2.

## PHOSPHATE BUFFER SYSTEM

The components of the phosphate buffer system are the ions dihydrogen phosphate and monohydrogen phosphate.


the one for the carbonic acid-bicarbonate buffer system. The components of the phosphate buffer system are the ions *dihydrogen phosphate* (H<sub>2</sub>PO<sub>4</sub><sup>-</sup>) and *monohydrogen phosphate* (HPO<sub>4</sub><sup>2-</sup>). Recall that phosphates are major anions in intracellular fluid and minor ones in extracellular fluids (see Figure 27.6). The dihydrogen phosphate ion acts as a weak acid and is capable of buffering strong bases such as OH<sup>-</sup>, as follows:

OH<sup>-</sup> H<sub>2</sub>PO<sub>4</sub> → H<sub>2</sub>O + HPO<sub>4</sub><sup>2-</sup>

Hydroxide ion (strong base) Dihydrogen phosphate (weak acid) (weak base)

## PHOSPHATE BUFFER SYSTEM

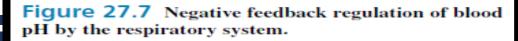
The monohydrogen phosphate ion is capable of buffering the H<sup>+</sup> released by a strong acid such as hydrochloric acid (HCl) by acting as a weak base:



✓ Because the concentration of phosphates is highest in intracellular fluid, the phosphate buffer system is an important regulator of pH in the cytosol. It also acts to a smaller degree in extracellular fluids and buffers acids in urine.

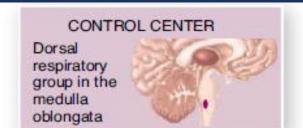
## EXHALATION OF CARBON DIOXIDE

The simple act of breathing also plays an important role in maintaining the pH of body fluids. An increase in the carbon dioxide (CO<sub>2</sub>) concentration in body fluids increases hydrogen ion concentration and thus lowers the pH (makes body fluids more acidic).


(makes body fluids more alkaline). This chemical interaction is illustrated by the following reversible reactions:

$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$
Carbon Water Carbonic Acid Hydrogen Bicarbonate dioxide  $H^+ \longrightarrow Carbonic$  acid  $H^+ \longrightarrow Carbonic$  acid  $H^+ \longrightarrow Carbonic$   $H^+ \longrightarrow Carbonic$   $H^+ \longrightarrow HCO_3^-$ 

#### EXHALATION OF CARBON DIOXIDE


$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$
Carbon Water Carbonic Hydrogen Bicarbonate dioxide acid ion ion

- ✓ With increased ventilation, more CO<sub>2</sub> is exhaled. When CO<sub>2</sub> levels decrease, the reaction is driven to the left (blue arrows), hydrogen ion concentration falls, and blood pH increases.
- ✓ If ventilation is slower than normal, less carbon dioxide is exhaled. When CO<sub>2</sub> levels increase, the reaction is driven to the right (red arrows), the hydrogen ion concentration increases, and blood pH decreases.



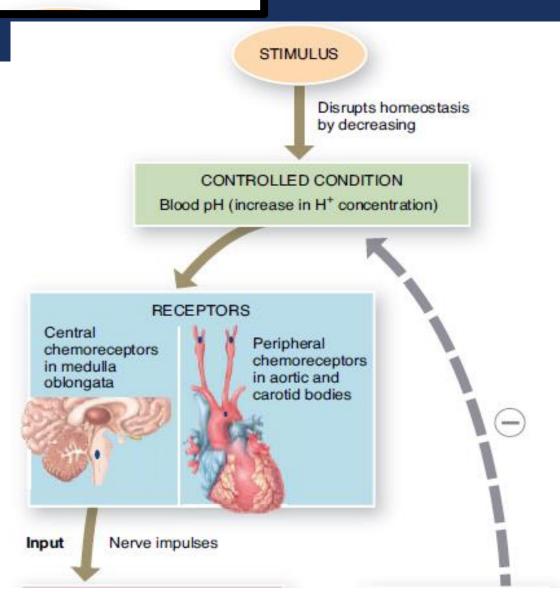


Exhalation of carbon dioxide lowers the H<sup>+</sup> concentration of blood.



Return to homeostasis when response brings blood pH or H<sup>+</sup> concentration back to normal




Nerve impulses



Contracts more forcefully and frequently so more CO<sub>2</sub> is exhaled

#### RESPONSE

As less H<sub>2</sub>CO<sub>3</sub> forms and fewer H<sup>+</sup> are present, blood pH increases (H<sup>+</sup>concentration decreases)



## Acid-Base Balance

| P   | 1          | /,<br>O |        | * |
|-----|------------|---------|--------|---|
| 2/2 | ) <b>\</b> |         | ^<br>ح | * |

| <b>TABLE 27.3</b>                          |                                                                                                                                                                        |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mechanisms That Maintain pH of Body Fluids |                                                                                                                                                                        |  |  |
| MECHANISM                                  | COMMENTS                                                                                                                                                               |  |  |
| Buffer systems                             | Most consist of a weak acid and its salt,<br>which functions as a weak base. They<br>prevent drastic changes in body fluid pH.                                         |  |  |
| Proteins                                   | The most abundant buffers in body cells<br>and blood. Hemoglobin inside red blood<br>cells is a good buffer.                                                           |  |  |
| Carbonic acid-<br>bicarbonate              | Important regulator of blood pH. The<br>most abundant buffers in extracellular<br>fluid (ECF).                                                                         |  |  |
| Phosphates                                 | Important buffers in intracellular fluid and urine.                                                                                                                    |  |  |
| Exhalation of CO <sub>2</sub>              | With increased exhalation of CO <sub>2</sub> ,<br>pH rises (fewer H <sup>+</sup> ). With decreased<br>exhalation of CO <sub>2</sub> , pH falls (more H <sup>+</sup> ). |  |  |
| Kidneys                                    | Renal tubules secrete H <sup>+</sup> into urine and<br>reabsorb HCO <sub>3</sub> <sup>-</sup> so it is not lost in urine.                                              |  |  |

#### ACID-BASE IMBALANCES

- \* The normal pH range of systemic arterial blood is between 7.35 and 7.45. Acidosis (or acidemia) is a condition in which blood pH is below 7.35.

  \* alkalosis (or alkalemia) is a condition in which blood pH is higher than 7.45
- \* The major physiological effect of acidosis is depression of the central nervous system through depression of synaptic transmission. If the systemic arterial blood pH falls below 7, depression of the nervous system is so severe that the individual becomes disoriented, then comatose, and may die. Patients with severe acidosis usually die while in a coma.
  - \* The major physiological effect of alkalosis, by contrast, is overexcitability in both the central nervous system and peripheral nerves. Neurons conduct impulses repetitively, even when not stimulated by normal stimuli; the results are nervousness, muscle spasms, and synapticactivity ) over activation he me is even convulsions and death.

### ACID-BASE IMBALANCES

✓ Change in blood pH that leads to acidosis or alkalosis may be countered by compensation, the physiological response to an acid-base imbalance that acts to normalize arterial blood pH. Compensation may be either complete, if pH indeed is brought within the normal range, or partial, if systemic arterial blood pH is still lower than 7.35 or higher than 7.45.

# ACID-BASE IMBALANCES: RESPIRATORY ACIDOSIS Bicarmonde + Ht Tible, describing a year

- Inadequate exhalation of CO<sub>2</sub> causes the blood pH to drop.
- Such conditions include pulmonary edema, injury to the respiratory center of the medulla oblongata, airway obstruction, or disorders of the muscles involved in breathing medicinal for the conditions of the muscles.

   If the respiratory problem is not too severe, the kidneys can help raise the
- If the respiratory problem is not too severe, the kidneys can help raise the blood pH into the normal range by increasing excretion of hydrogen ion and reabsorption of HCO<sub>3</sub>- (renal compensation).
- The goal in treatment of respiratory acidosis is to increase the exhalation of CO2, as, for instance, by providing ventilation therapy. In addition, intravenous administration of HCO3- may be helpful.

## ACID-BASE IMBALANCES: RESPIRATORY ALKALOSIS

- o The cause is the increase of pH (hyperventilation). Die exhatation of co2
- Such conditions include oxygen deficiency due to high altitude or pulmonary disease, cerebrovascular accident (stroke), or severe anxiety.
- o Again, renal compensation may bring blood pH into the normal range if the kidneys are able to decrease excretion of hydrogen ion and reabsorption of HCO<sub>3</sub>-.
- Treatment of respiratory alkalosis is aimed at increasing the level of CO2 in the body. One simple treatment is to have the person inhale and exhale into a paper bag for a short period; as a result, the person inhales air containing a higher-than-normal concentration of CO2.

## ACID-BASE IMBALANCES: METABOLIC ACIDOSIS

- The causes the blood pH to decrease.
- Three situations may lower the blood level of HCO3+ المحالية على المحالية المحا
- (1) actual loss of HCO3-, such as may occur with severe diarrhea or renal dysfunction.

  Tenal dysfunction diarrhea & Lossof HCO3
- (2) accumulation of an acid other than carbonic acid, as may occur in ketosis.
- (3) failure of the kidneys to excrete hydrogen ions from metabolism of dietary proteins.

  excellent of HT Decide Long Coloners
- If the problem is not too severe, hyperventilation can help bring blood pH into the normal range (respiratory compensation).
- Treatment of metabolic acidosis consists of administering intravenous solutions of sodium bicarbonate and correcting the cause of the acidosis.

# ACID-BASE IMBALANCES: METABOLIC ALKALOSIS

• A nonrespiratory loss of acid or excessive intake of alkaline drugs causes the blood pH to increase above 7.45. Excessive vomiting of gastric contents, which results in a substantial loss of hydrochloric acid, is probably the most frequent cause of metabolic alkalosis.

 Respiratory compensation through hypoventilation may bring blood pH into the normal range. Treatment of metabolic alkalosis consists of giving fluid solutions to correct chloride ions, potassium ions, and other electrolyte deficiencies plus correcting the cause of alkalosis.

metabolic ai rajosis 7 1/2 650



## THANK YOU

AMJADZ@HU.EDU.JO