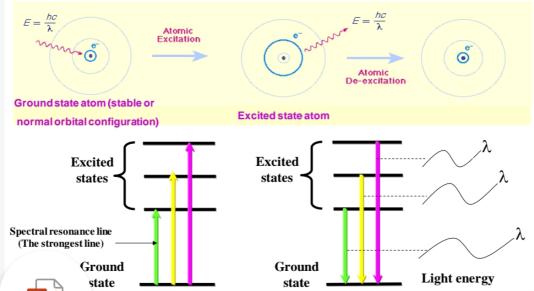

Atomic Spectroscopy


Atomic Spectroscopy Methods

- 1. Atomic Emission Spectroscopy (Flame Photometry)
- 2. Atomic Absorption Spectrometry (AAS)

1

Atomic Spectroscopy

To understand the relationship of these techniques to each other, It is important to understand the atom itself and the atomic process involved in each technique.

Atmoic spectroscopy:- هو عبارة عن شابتر بحكي أيضا عن انتقال للالكترونات والexcitation بس الفكرة هون انه رح نمتص heat ونبعث طاقة على شكل فوتون

2

Atomic Spectroscopy

Practically, the ratio of the excited to ground state atoms is extremely small. Therefore, The absorption spectrum is usually only associated with transitions from the ground state to higher energy states.

 $E = E_{y} - E_{j} = IN$

 $\Delta E = he/\lambda \ (v=e/\lambda)$ $\Delta E = Energy difference$

 $\mathbf{h} = P \operatorname{ank's constant}(6.626068 \times 10^{4} \operatorname{mkgs}^{2})$

v = frequency of craitted light

e = velocity of light

The fraction of free atoms that are thermally exited if governed by a Boltzmann Distribution

Boltzmann equation explain the relationship between the ground and excited state atoms $N_{\text{1}}/N_{\circ}=e^{\text{-}\Delta E/KT}$

N₁: Number of excited atoms, N₂: Number of ground state atoms, ΔE: excitation energy K: Boltzmann constant and T: Temperature in kelvin

Atomic Spectroscopy

The process of excitation and return to ground state is involved in the two techniques of atomic spectroscopy.

We measure the energy absorbed or emitted and use it for quantification process

3

Atomic Emission Spectroscopy (AES) (Flame Photometry)

Principle: Flame photometry is based upon those particles that are electronically excited in the medium.

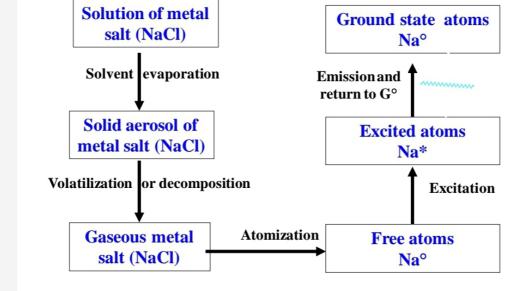
Flame: is the source of excitation energy. (low energy source).

Uses:

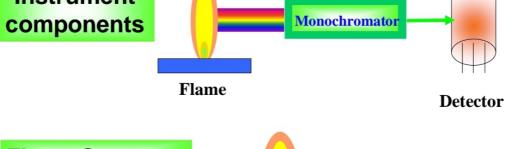
Flame photometry is used mainly for the determination of alkali metals and easily excited elements (Na, K, Li, Ca, etc.) particularly in biological fluids and tissues تكتسب الذرة طاقة على شكل حرارة عندما يتم تحفيزها، ثم
 تنبعث الطاقة على
 شكل إشعاع (light)

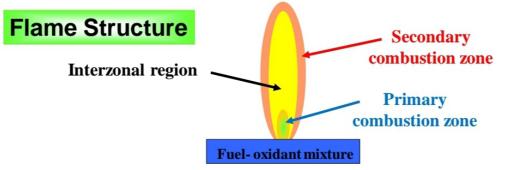
قانون Boltzmann :-هو علاقة بين الانتقال ما بين Boltzmann :state و state

<u>N1</u>:-عدد الالكترونات الى <u>صارلها</u> excited


:N. عدد الالكترونات الى ما <u>صارلها</u> N.

.. K:- ثابت

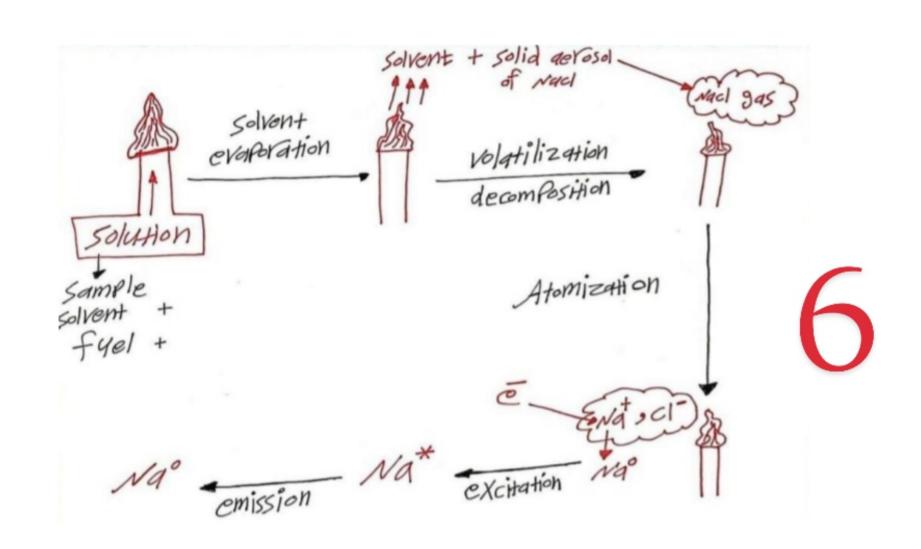

 $E\Delta$:-Excitation energy


عن طريق عملية الانتقال من ground state الى ground state عن طريق عملية الانتقال من quantity للمادة

Flame 🄥:- هو مصدر الحرارة واللهب

Functions of Flame

- 1. To convert the constituents of liquid sample into the vapor state.
- 2. To decompose the constituents into atoms or simple molecules:


$$M^+$$
 + e^- (from flame) -> M + $h\nu$

3. To electronically excite a fraction of the resulting atomic or

molecular species

M -> M*	Proj
	Ace
The flame is composed of :	Ace
a fuel gas and oxidant gas	
	Hyd
	Hyd

Fuel	Oxidant	Max. temp. (°C)
Propane	Air	1725
Acetylene	Air	2400
Acetylene	Oxygen	3100
Acetylene	Nitrous oxide	3000
Hydrogen	Air	2000
Hydrogen	Oxygen	2700
-hydrogen	Air + argon	1577

مكونات ال (structure) مكونات

primary-1

secondary-2

interzonal-3:-منطقة <u>atomaization</u>:- تحويل ال atomaization إلى atoms

وهاذ الفرق الكبير بين طريقة UV و flame انه هون بنتعامل مع ذرات مش مركبات / وراوبط ايونية مش تساهمية

ەظىفة flame فى

.1 تحويل المواد من الحالة السائلة الى الغازية.

.2 تفكيك المركبات الايونية واعطاء الكترون للذرات التي فقدت

الكترون خالل تأينها فتعود هذه

الذرات الى حالتها الغير متأينة.

.3 ومن ثم تقوم بتحفيز هذه الذرات التي بدورها ستقوم باشعاع الطاقة التي امتصتها خالل هذه العملية

العوامل المؤثرة على الانتقال حفظ

Factors affecting intensity of flame emission:

- 1- The concentration of the analyte in solution
- 2- The rate at which excited atoms are formed in the flame.
- 3- The rate at which the sample is introduced into the flame.
- 4- Temperature of the flame.
- 5- Composition of the flame.
- 6- The ratio of fuel to oxidant in the flame.
- 7- Solvent used to dissolve the sample.

The flame temperature is the most important factor. Increase in flame temperature causes an increase in emission intensity. This is controlled by composition of the flame.

High temperature flames should not be used for elements that ionized easily e.g. Na, K, Li or Ce. However, high temperature flames are generally favored for transition elements and alkaline earth metals.

Flame Photometry

Effect of the solvent used to dissolve the sample; if the solvent is water the process is slow and if it is organic solvent the process is fast and emission intensity is increased.

It is therefore very important that calibration curves be prepared using the same solvent.

The stochiometric ratio of fuel to oxidant in the flame must be used, in which both fuel to oxidant are totally consumed.

العوامل المؤثرة على الانتقال حفظ

بس ملاحظة اهم عامل هو درجة الحرارة اللهب من العوامل المؤثرة على الشعاع الناتج

ويمكن التحكم بها عن طريق المواد المكونة للهب .

• لا يجوز استخدام لهب ذو درجة حرارة عالية للمواد التي تتأين بسرعة مثل

Na,K,Ca,Li ل استخدامها يمكن ولكن alkaline metals.

if the solvent .

اذا كان المذيب ماء رح يبطئ العملية

اما اذا كان المذيب مركب عضوي رح يسرع العملية

The stochiometric:- لازم ال oxidant و The stochiometric تكون نسبتهم متقاربة من بعض ويتم استهلاكهم مع بعض

9

انواع ال flame

nublizer-1:- هو بنتج aerosol لل test solution الي <u>ستحول</u> إلى <u>غاز</u>

2- burner :- ينخلط fuel و oxidant اله نوعين من حيث طريقة الشغل

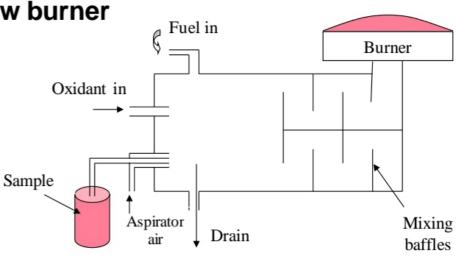
اولا :- pre-mix :- ابحانياته بعطيني مخلوط pre-mix :- كن سلبياته :- ممكن يسبب انفجار بسبب كثرة الضغط

The nebulizer-burner system

To convert the test sample into gaseous atoms

Nebulizer produce an aerosol of the test solution Burner in which the mixing between fuel and oxidant

Types of burner system


1. Pre-mix or laminar flow burner

Advantages

Homogenous flame

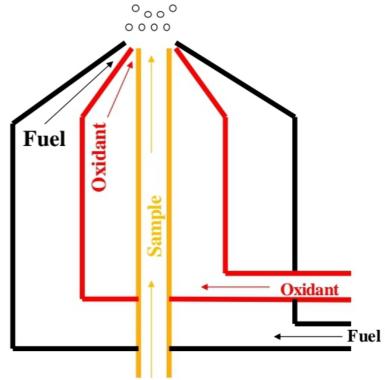
Disadvantages

Suffers from explosion hazards

10

Flame Photometry

2. Total consumption burner


Three concentric tubes, the sample, fuel and oxidant only mix at the tip of burner

Advantages

- 1. Simple to manufacture
- 2. Allows a total representative sample to reach the flame
- 3. Free from explosion hazards

Disadvantages

Aspiration rate varies with different solvents

Flame

flame انواع ال

nublizer-1:- هو بنتج aerosol لل test solution الي <u>يتتحول</u> إلى <u>غاز</u>

2- burner :- ينخلط fuel و oxidant اله نوعين من حيث طريقة الشغل

اولا :- pre-mix :- ابحانياته بعطيني مخلوط homogeneous لولا :- ممكن يسبب انفجار بسبب كثرة الضغط

ثانیا :- Total consumption burner ا:- ایجابیاته انه سهل التصنیع " بخلی کل الذرات تتعرص للهب " وما بصیر فیه انفجار التعنیر الله الزم أضل اتاکد وأشبك علیه بالنسب لانه کثیر التغیر fuel و sample فیها کل Mechanism of action:- 3 tubes و oxidant " mix on the top

لكن بهذه العملية ممكن نعملها بدون flame (لهب) فقط حرارة عالية heated gravite <u>furance</u>

مميزاته : ١- للعينات الصغيرة جداً

۲- حساس أكثر ب ۱۰۰۰ مرة من flame

٣- ،ويمكن تعديل الفرن باختلاف العينات التي نقوم بتحليلها.

سلبياته:- ۱- قليل الدقة ۲- قليل precision __ امكانية حدوث تداخلات وتفاعلات ايونية بين الذرات نتيجة درجة الحرارة المرتفعة

جشکل کبیر. ^{Easy PDF}

Non Flame Atomizers

For example: Heated Gravite Furnace

Sample evaporation → time and temp. controlled drying and ashing

Advantages

- 1. small samples are analysed
- 2. 1000-fold more sensitive than flame
- 3. Oven is adaptable to determination of solid samples

Disadvantages

- 1. Low accuracy
- 2. Low precision
- More ionic interferences due to very high temp.

Flame Photometry

Monochromators

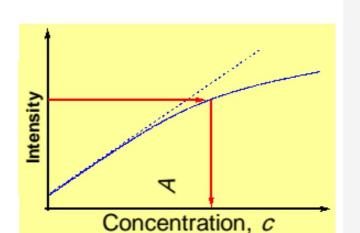
As in UV

Detectors

Films or photomultipliers

Analytical technique

- Choice of the wavelength: of maximum sensitivity and minimum spectral interferences
- 2. Sample preparation:
 - It is very important to obtain the sample in a <u>form of solution</u>, where the spectral and chemical interferences are absent
 - b. <u>Demineralized distled Water</u> and very pure reagents are to be used because of the high sensitivity of the technique
 - Because of the instability of the very dilute Solution, it is advisable to <u>dilute the</u> solution just before use.
 - Several elements can be determined in blood, urine, cerebrospinal fluid and other biological fluids by direct aspiration of the sample after dilution with water.


Flame Photometry

<u>Chemical interferences</u>: can often be overcome by simple dilution with a suitable reagent solution e.g. serum is diluted by EDTA solution for the determination of <u>Calcium</u> in order to prevent interference from phosphate.

3. Standard curves

Deviations from linearity may occur

Monochromator

• هو عبارة عن فلتر يقوم بامتصاص او عكس <u>االشعة</u> مهما كان طولها الموجى والسماح <u>الشعة</u> ذات

طول موجي معين فقط بالمرور من <u>خالله</u> والذهاب نحو <u>Detector الخذ</u> القراءات.

• نقوم باختيار الطول الموجي حسب أسس <u>معىنة حيث</u> يتم اختيار الطول الموجي ذو اعلى حساسية

واقلِ تداخل طيفي ممكن.

- يتم تحضير العينة بخطوات معينة :
- 1. يجب ان تكون العينة على شكل محلول <u>النه</u> ال يحتوي على <u>تداخالت</u> كيميائية او طيفية.
- 2. يجب استخدام مياه مقطرة خالية من المعادن ومواد نقية النهذا التكنيك دقيق للغاية.
 - 3. يجب تخفيف المحلول قبل الستخدام مباشرة؛ الن المحاليل
 المخففة تصبح غير مستقرة بعد

مضى بعض من الوقت.

.4 نقوم بتخفيف العينات مثل البول والسائل النخاعي والدم بالماء للحصول على تراكيز بعض

Chemical interferences: can often be overcome by simple dilution .with a suitable reagent solution

• من بعض الامثلة التي نستخدم التخفيف فيها لتقليل نسبة التداخلات الكيميائية عند التحليل

هو serum Blood يتم تخفيفه بواسطة ال EDTA لحساب تراكيز

الكالسيوم ومنع

Easy PDF تداخلها مع الفوسفيت.

3. Qualitative analysis

Flame photometry are useful mostly for the detection of elements in group I and II of the periodic table. The presence of certain elements can be detected by the use of a filter or monochromator.

Advantages and disadvantages

The method is **not** as **reliable** as other atomic emission spectroscopic methods, but it is **fast and simple**.

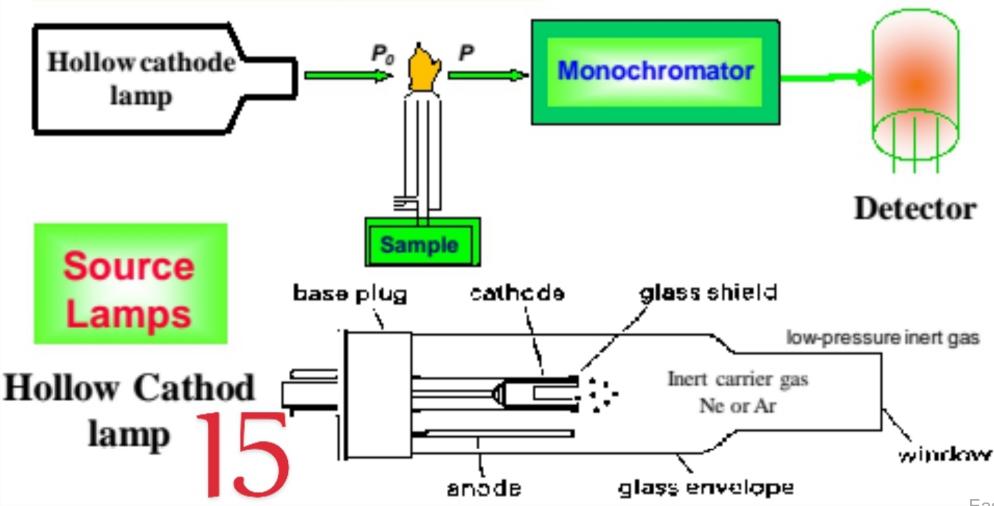
4. Quantitative analysis

To perform quantitative analysis, the sample is introduced into the flame and the intensity of radiation is measured. The concentration of the emitting substance is then calculated from a calibration curve or using standard addition method.

TFlame Photometry

Application of flame photometry in pharmaceutical analysis

- 1. Metals are major constituents of several pharmaceuticals such as dialysis solutions, lithium carbonate tablets, antacids and multivitamin mineral tablets.
- 2. The elements Na, K, Li, Mg, Ca, Al and Zn are among the most common elements subjected to pharmaceutical analysis using flame emission technique.
- 3. Sodium and potassium levels in biological fluids are difficult to analyze by titrimetric or colorimetric techniques. Their analysis is very important for control of <u>infusion and dialysis</u> solutions which must be carefully monitored to maintain proper electrolyte balance.


Advantages

- 1. Flame emission is the simplest and least expensive technique.
- 2. The analysis may be carried out without prior separation as other components such as dextrose, do not interfere.

Atomic Absorption Spectroscopy

Atomic Absorption spectroscopy involves the study of the absorption of radiant energy by neutral (ground state) atoms in the gaseous state.

Instrument components

Easy PDF

- Qualitative analysis: flame photometry are useful •

 mostly for
 the detection of elements in group I and II of the
 periodic table
- نقوم باستخدام <u>monochromator</u> او فلتر لتحديد وجود بعض العناصر بالعينة

عملية flame fhotometery تفيد بالكشف عن + quantity quality للمادة

مهمة للكشف عن نوع المادة من عناصر الجدول الدوري المجموعة الأولى و الثانية quality

(شُرحت سابقا) Quantity

تطبیقات علی flame photometery

1-المعادن هي المكونات الرئيسية للعديد من المستحضرات الصيدلانية مثل غسيل الكلى

المحاليل وأقراص كربونات الليثيوم ومضادات الحموضة والفيتامينات المتعددة المعدنية

أجهزة لوحية.

• 2. العناصر <u>Na</u>، K، Li، <u>Mq</u>، <u>Ca</u>، <u>Al</u> هي من بين العناصر الأكثر شيوعاً

> flame العناصر الخاضعة للتحليل الدوائي باستخدام photometery

• 3. يصعب تحليل مستويات الصوديوم والبوتاسيوم في السوائل البيولوجية

<u>Titrmatric</u> أو colorimetric. <u>تحليلهم</u> مهم جدا ل

السيطرة على محاليل التسريب وغسيل الكلى التي يجب مراقبتها

4- للحفاظ على توازن اللكهرباء سليم

ایجابیات flame photometery

simplest-1

2- اقل تكلفة

3- ما بتحتاج تفصل کل مکون لحاله عادی بکون مخلوط ما رح یکون فی تداخلات

**يتم استخدام هذا النوع لقياس كمية الطاقة التي تم امتصاصها من قبل الكترونات معين عند تحفيزها وانتقالها لمستويات طاقة اعلى .