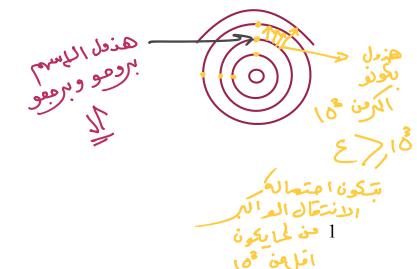

تفريغ تحليل آلي

Part (1) Application of UV /visible.

Molecular Apsorption spectrometry:

**Equipment of UV /visible of UV /vis

إعداد الصيدلاني/ة: Layan shaher



Chapter 14 Application of Ultraviolet/Visible Molecular Absorption Spectrometry

المارة منوعاً والمارة المارة منوعاً والمارة منوعاً والمارة منوعاً والمارة المارة منوعاً والمارة المارة الم

Absorption measurements based upon ultraviolet and visible radiation find widespread application for the identification and determination of myriad inorganic and organic species. Molecular ultraviolet/visible absorption methods are perhaps the most widely used of all quantitative analysis techniques in chemical and clinical laboratories throughout the world.

Absorptivity (a or ε)

الأشعاع

Defines how much radiation will be absorbed by a molecule at a given concentration and wavelength

الا متصاهبية المولارية عنهما تقبرعن التركوز الميها

- Is termed molar absorptivity (ε) if concentration is expressed in molarity (M, mol/L)
 - Can be calculated using Beer's Law $(A = abc = \varepsilon bc)$
 - If units of b is cm and c is M then ε is M⁻¹cm⁻¹ or Lmol⁻¹cm⁻¹
 - Magnitude of ε is an indication of the probability of the electronic transition

 المعازات المتعادية انتقال الالمكرونات.

الى بعمد بكون أبيرين قوا

The magnitude of Molar Absorptivities

ان کی به فرهمد 10 کی به فرهمد

Molar absorptivities range from zero up maximum on the order of 10⁵ are observed. The magnitude of ε depends upon the probability for an energy-absorbing transition to occur. Peaks having molar absorptivities less than about 10³ are classified as being of low intensity. They result from so-called forbidden transitions, which have probabilities of occurrence that are

less than 0.01.

السم المحتنقال

(>180 E>19

ABSORBING SPECIES

The absorption of ultraviolet or visible radiation by a molecular species M can be considered to be a two-step process, excitation

 $M+hv\longrightarrow M*$ absorption of light

The lifetime of the excited species is brief (10⁻⁸ to 10⁻⁹ s). Relaxation involves conversion of the excitation energy to heat.

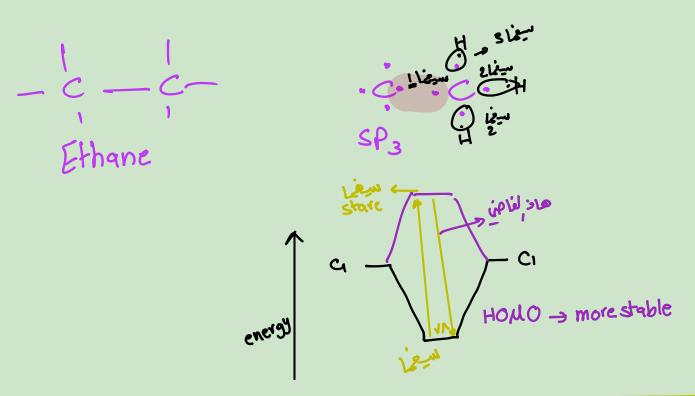
$$M* \longrightarrow M + heat or soil emession of light$$

The absorption of ultraviolet or visible radiation generally results from excitation of bonding electrons.

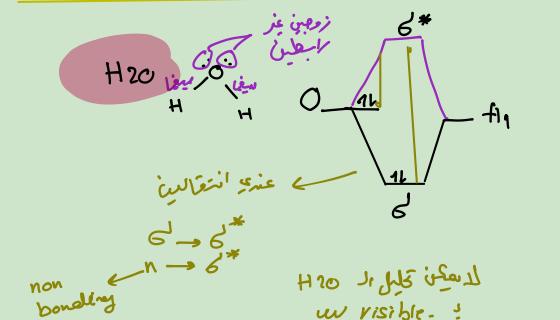
Electronic Transitions

There are three types of electronic transitions. The three include transitions involving:

- (1) π, σ, and n electrons (1) π , σ, and π electrons
- (2) d and f electrons ملف العنان والما عنان الما عنان ا
- (3) charge transfer electrons.


- المركبات البي بدهمين بدحليل ال ١١١ الي هي المصادم البي عاطمة pharmacentical companied هي الريال المحالم بالمحالم عاطمة المن المحالم البي عاطمة covalent المن المحالم المن المحالم بالمحالم بالمحالم بالمحالم بالمحالم بالمحالم بالمحالم بالمحالم بالمحالم المحالم بالمحالم بال

الدرى ما تبطه الله في المعرف المعرف


Types of Absorbing Electrons

The electrons that contribute to absorption by a molecule are: (1) those that participate directly bond formation between atoms; nonbonding or unshared outer electrons that are largely localized about such atoms as oxygen, the halogens, sulfur, and nitrogen. molecular orbitals associated with single bonds are designated as sigma (σ) orbitals, and the corresponding electrons are σ electrons.

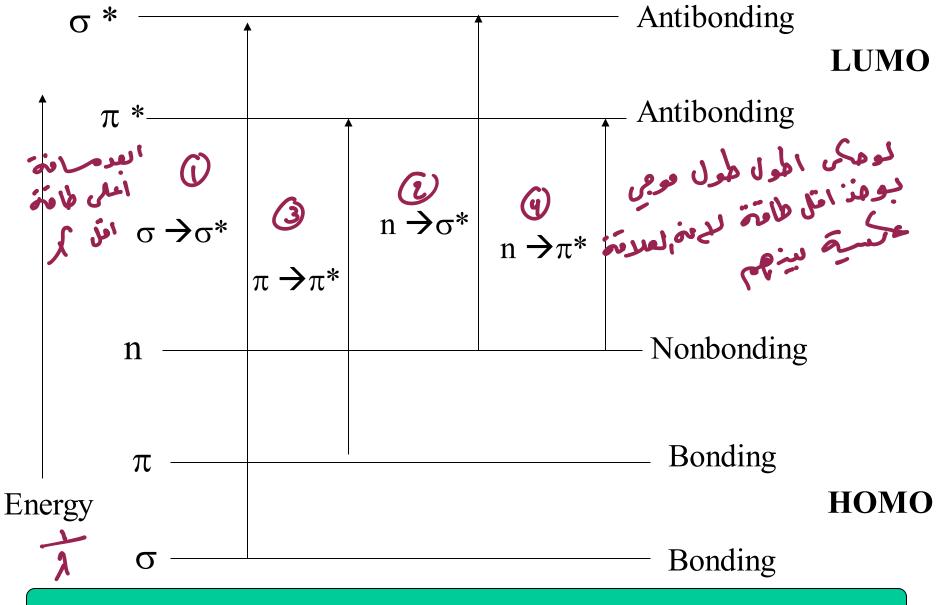
Alcane -> limais um mus

* السيغار صعد لاسينا stare دسى

Types of Absorbing Electrons

The double bond in a molecule contains two types of molecular orbitals: a sigma (σ) orbital and a pi (π) molecular orbital. Pi orbitals are formed by the parallel overlap of atomic p orbitals. In addition to σ and π electrons, many compounds contain nonbonding electrons. These unshared electrons are designated by the symbol n.

unshared + nonbonding Ju


(N) 1 Lais mais

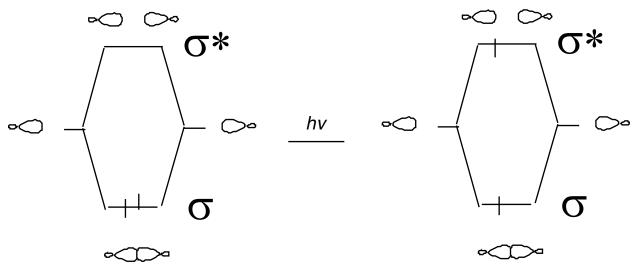
Energy

The energies for the various types of molecular orbitals differ significantly. The energy level of a nonbonding electron lies between the energy levels of the bonding and the antibonding π and σ orbitals. Electronic transitions among certain of the energy levels can be brought about by the absorption of radiation. Four types of transitions are أربعة انتقالات متوقعة حسب احتمام للا شعائ possible

 $\sigma \rightarrow \bar{\sigma}^*$, $n \rightarrow \sigma^*$, $n \rightarrow \pi^*$, and $\pi \rightarrow \pi^*$.

LUMO: lowest unoccupied molecular orbital

HOMO: highest occupied molecular orbital

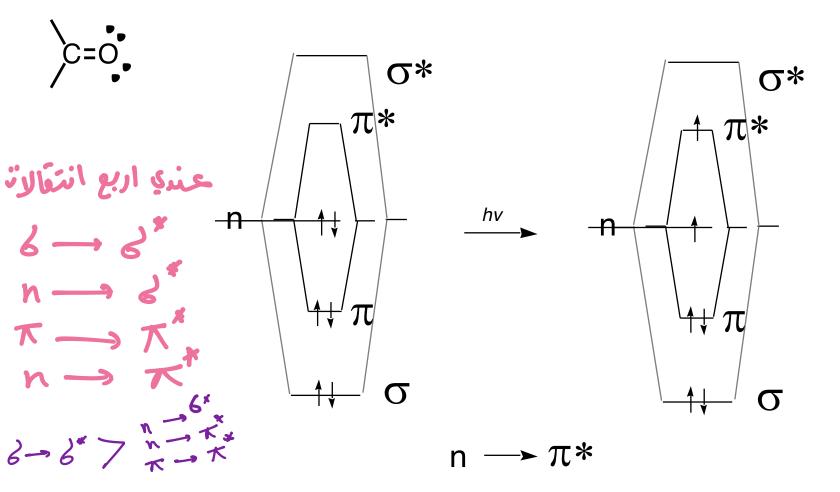

For convenience of reference, definitions of the various spectral regions have been set by the Joint Committee on Nomenclature in Applied Spectroscopy:

خطرامقدم	Region Far ultraviolet Near ultraviolet	Wavelength (nm)	
بلامسيل وكواراز	Far ultraviolet	10-200	
		200-380 180 - 7-80	
ارم	Visible	380-780	
اعنا بننسون (هذول داسون الانتاب الالمام	Near infrared	780-3000	
Brain - Mar	Middle infrared	3000-30,000	
IRE	Far infrared	30,000-300,000	
NUR	Microwave	300,000-1,000,000,000	

$\sigma \rightarrow \sigma^*$ Transition

An electron in a bonding σ orbital of a molecule is excited to the corresponding antibonding orbital by the absorption of radiation. The energy required to induce a $\sigma \rightarrow \sigma^*$ transition is large. Methane (CH₄) can undergo only $\sigma \rightarrow \sigma^*$ transitions, exhibits an absorption maximum Δ max at 125 nm. Absorption maxima due to σ σ * transitions are never observed in the ordinarily accessible ultraviolet region (Far UV لع لا نوائل فن ١١ ١٥٥١ range).

Ethane


 $\lambda_{\text{max}} = 135 \text{ nm}$ (a high energy transition)

Absorptions having $\lambda_{max} < 200$ nm are difficult to observe because everything (including quartz glass and air) absorbs in this spectral region.

$n \rightarrow \sigma^*$ Transitionsاهمان نطبق مرطبن

Saturated compounds containing atom with unshared electrons are capable of n $\rightarrow \sigma^*$ transitions. These transitions require less energy than the $\sigma \rightarrow \sigma^*$ type and can be brought about by radiation in the region of between 150 and 250 nm, with most absorption peaks appearing below 200 nm. The molar absorptivities are low intermediate in magnitude and range between 100 and 3000 L cm⁻¹ mol ⁻¹.

عد قليل مبر العبد العبد

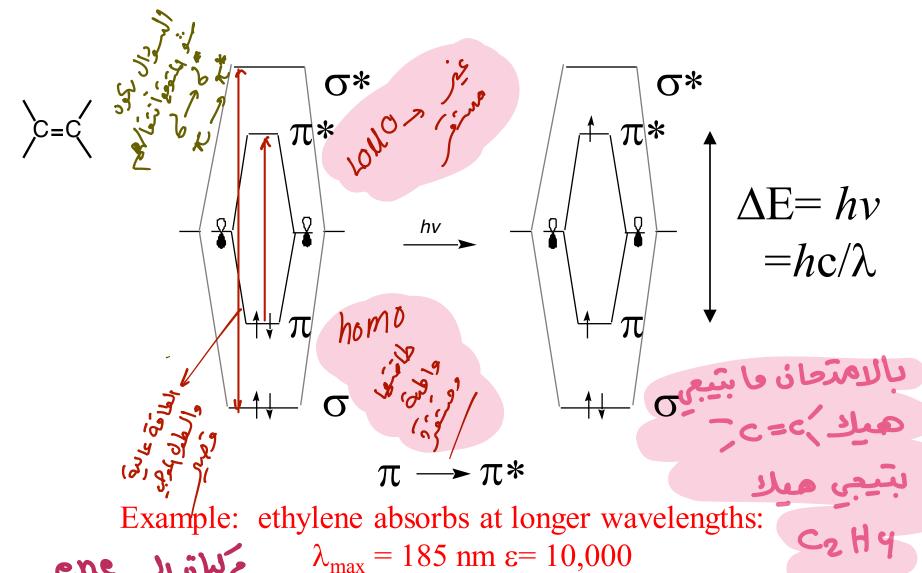
The n to π^* transition is at even lower wavelengths but is not as strong as π to π^* transitions. It is said to be "forbidden."

Example:

Acetone: $\pi - \pi * \lambda_{max} = 188 \text{ nm}$; $\epsilon = 1860 \text{ m}$

(cH3)2 -0

 $n-\pi*$ $\lambda_{max} = 279 \text{ nm}$; $\epsilon = 15$ χ


TABLE 14-2 Absorption by Organic Compounds Containing Heteroatoms with Nonbonding Electrons

Compound λ_{max} , nm	$oldsymbol{arepsilon}_{ ext{max}}$
CH ₃ OH $(CH_3)_2O$ $(CH_3)_2$	1480 2520 200

© 2007 Thomson Higher Education

$n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Transitions

Most applications of absorption spectroscopy are based upon transitions for n or π electrons to the π^* excited state because the energies required for these processes bring the absorption peaks into an experimentally convenient spectral region (200 to 780 nm). Both transitions require the presence of an unsaturated functional group to provide the π orbitals. The molar absorptivities for peaks associated with excitation to the n, π^* state are generally low and ordinarily range from 10 and 100 L cm⁻¹ mol ⁻¹; values for $\pi \rightarrow \pi^*$ transitions are normally take place in the range between 1000 and 10,000. 17

رب ۱۱ من المسؤال منو المتوقع انتقالاً بكون مم وسم و المسؤال منو المتوقع انتقالاً بكون مم وسم و المحلم و المح

TABLE 14-1 Absorption Characteristics of Some Common Chromophores

Chromophore	Example	Solvent	λ_{\max} , nm	$oldsymbol{arepsilon}_{ ext{max}}$	Transition Type
Alkene	$C_6H_{13}CH=CH_2$	n-Heptane	177	13,000	$\pi \to \pi^*$
Alkyne	$C_5H_{11}C \equiv C - CH_3$	n-Heptane	178	10,000	$\pi \rightarrow \pi^*$
			196	2000	_
			225	160	_
Carbonyl	CH ₃ CCH ₃	n-Hexane	186	1000	$n \rightarrow \sigma^*$
	Ö		280	16	$n \to \pi^*$
	CH₃CH	n-Hexane	180	large	$n \rightarrow \sigma^*$
	O		293	12	$n \rightarrow \pi^*$
Carboxyl	CH₃COOH	Ethanol	204	41	$n \to \pi^*$
Amido	CH ₃ CNH ₂	Water	214	60	$n \to \pi^*$
	O				
Azo	$CH_3N=NCH_3$	Ethanol	339	5	$n \rightarrow \pi^*$
Nitro	CH ₃ NO ₂	Isooctane	280	22	$n \rightarrow \pi^*$
Nitroso	C ₄ H ₉ NO	Ethyl ether	300	100	-
			665	20	$n \rightarrow \pi^*$
Nitrate	C ₂ H ₅ ONO ₂	Dioxane	270	12	$n ightarrow \pi^*$

© 2007 Thomson Higher Education

Olefins and aromatics

 $\sigma \rightarrow \sigma^* < 185 \text{ nm}$

 $\pi \rightarrow \pi^*$ $n \rightarrow \pi^*$ 200-700 nm

