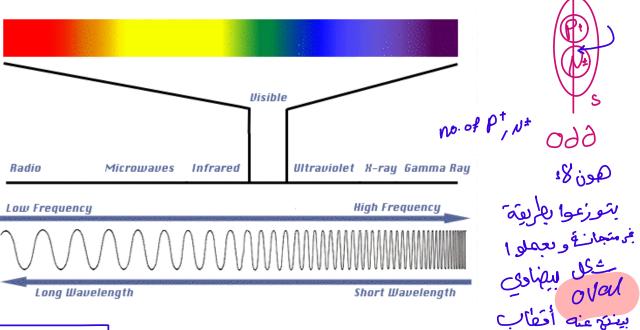


Qualitative Not destructive

Nuclear Magnetic Resonance Spectroscopy


nucleus
nutrons & Proton

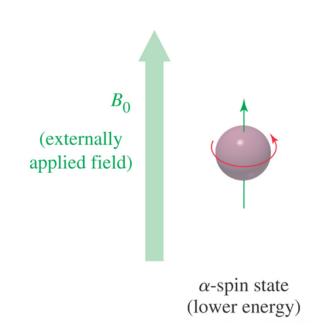
NMR Spectroscopy

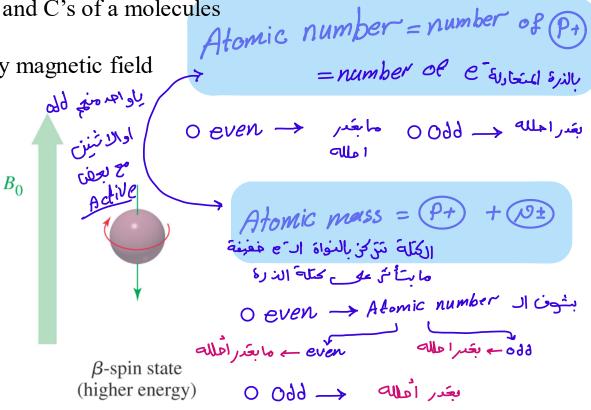
ازا اختلف توزيع الكتلة هسب الشكل

NMR spectroscopy is a form of **absorption** spectrometry.

oval عند چنیب involve nich

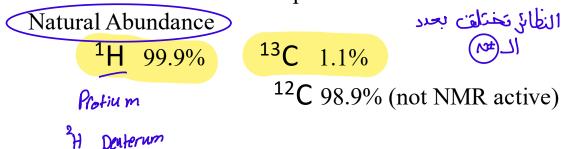
Most absorption techniques (e.g. – Ultraviolet-Visible and Infrared) involve the electrons... in the case of NMR, it is the <u>nucleus</u> of the atom which determines the response.

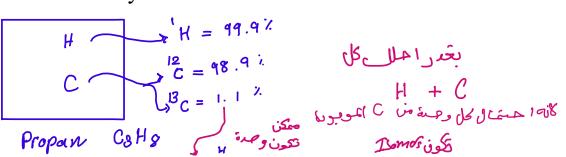

An applied (magnetic) field is necessary for the absorption to occur.


Northyte South wife * switch

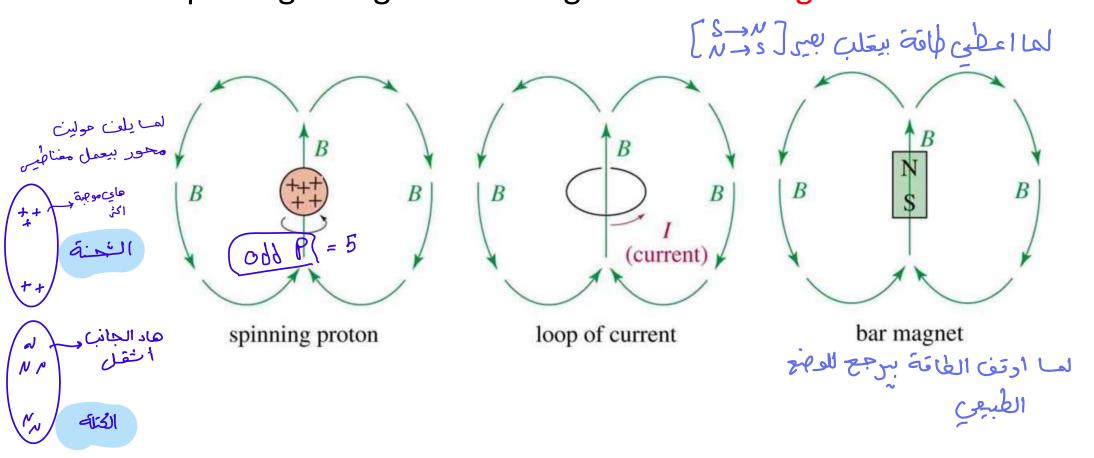
Nuclear Magnetic Resonance (NMR) Spectroscopy

direct observation of the H's and C's of a molecules


Nuclei are positively charged and spin on an axis; they create a tiny magnetic field

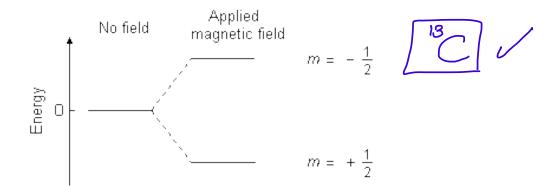


Not all nuclei are suitable for NMR.


¹H and ¹³C are the most important NMR active nuclei in organic chemistry

Nuclear Spin

- A nucleus with an odd atomic number or an odd mass number has a nuclear spin.
- The spinning charged nucleus generates a magnetic field.


Spectral Properties, Application and Interactions of Electromagnetic Radiation

Ener	rgy	Wave Number V	Wavelength λ	Frequency v				
Kcal/mol	Electron volts, eV	cm ⁻¹	cm	Hz	Type Radiation	Type spectroscopy	Typ Quantum T	
9.4 x 10 ⁷	4.9 x 10 ⁶	3.3 x 10 ¹⁰	3 x 10 ⁻¹¹	10 ²¹	Gamma ray	Gamma ray emission	Nuclear	^
9.4 x 10 ³	4.9 x 10 ²	3.3 x 10 ⁶	3 x 10 ⁻⁷	10 ¹⁷	_ X-ray	X-ray absorption, emission	*	Electronic (inner shell)
9.4 x 10 ¹	4.9 x 10 ⁰	3.3 x 10 ⁴	3 x 10 ⁻⁵	10 ¹⁵	Ultra violet Visible	UV absorption	†	Electronic (outer shell)
9.4 x 10 ⁻¹	4.9 x 10 ⁻²	3.3 x 10 ²	3 x 10 ⁻³	10 ¹³	_Infrared	IR absorption	Molecular vibration	Molecular rotation
9.4 x 10 ⁻³	4.9 x 10 ⁻⁴	3.3 x 10 ⁰	3 x 10 ⁻¹	1011	_ Micro-	Microwave absorption	†	▼ Magnetically
9.4 x 10 ⁻⁷	4.9 x 10 ⁻⁸	3.3 x 10 ⁻⁴	3 x 10 ³	107	Radio	Nuclear magnetic resonance	Microu	induced spin states مربين
						المقنعي عليارة	P	adio

Spin Quantum Numbers

Energy levels for a nucleus with spin quantum number 1/2

The number of spin states is 2I + 1, where I is the spin quantum number.

- If the number of neutrons and the number of protons are both even, then the nucleus has **NO** spin.
- If the number of neutrons **plus** the number of protons is odd, then the nucleus has a half-integer spin (i.e. 1/2, 3/2, 5/2)
- If the number of neutrons and the number of protons are both odd, المعت المعتد عليه المعتد المعتدد عليه المعتدد المعتدد

SPIN QUANTUM NUMBERS OF SOME COMMON NUCLEI

I	ne most a	abundan	it isotopes	of Ca	and O do r	not nave	spin.
_				somere.	3		
	P=1, N=0	P=1, N=1	P=6, N=6	P=6, N=7	P=7, N=7	P=8, N=8	P=9, N=10
Element	¹ H	² H	12 C	13 C	14 N	160	19 F
Atomic Number	099	099	even	even	019	even	099
Atomic mass	099	even	even	099	even	even	099
Nuclear Spir	/	V	X	V	V	X	V
Quantum No	1/2	1	0	1/2	1	0	1/2
(I)		2+1+1	2 x 0+1				
No. of Spin	(2)	<u>-3</u>	0	2	3	0	2
States	up, dow	1					
<u> </u>							

ment abundant instance of C and O do not belo ani

Elements with either odd number of protons or neutrons (odd mass number or odd atomic number) have the property of nuclear "spin".

The number of spin states is 2I + 1, where I is the spin quantum number.

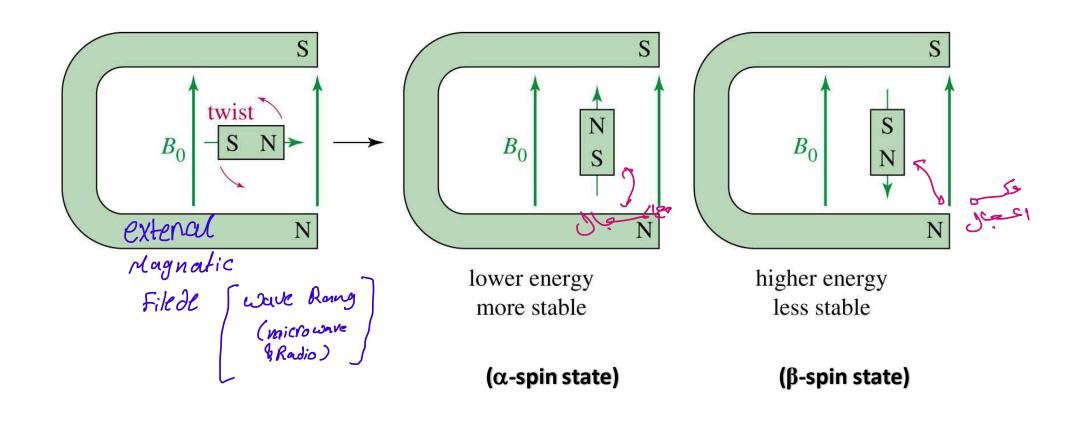
Table. General rules for determination of nuclear spin quantum numbers

Even Even Odd Odd Even Odd	l Integer (1,2,) ² H
Odd Odd	
Even Odd	Half-Integer (1/2 3/2) 13 (
Odd	1 1 mil-meger (1/2,5/2,)
Odd Ever	Half-Integer (1/2, 3/2,) $P = 7 N - 8 $ $V \rightarrow \alpha$ $P = 7 N$

Atoms active in NMR

I = 1/2: ¹H, ¹³C, ¹⁹F, ³¹P

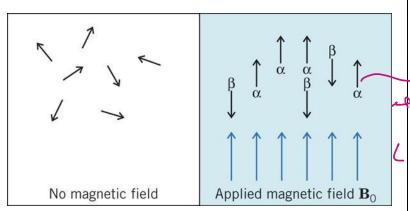
 $I = 1: {}^{2}H, {}^{14}N$

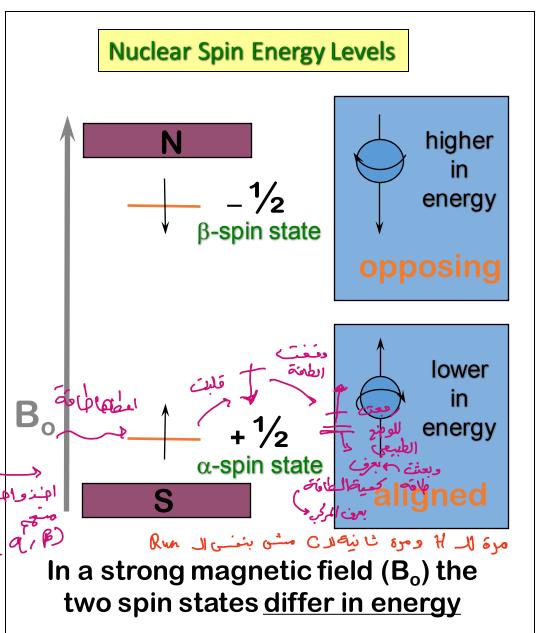

I = 3/2: 15**N**

Atoms active in NMR

$$I = 0: {}^{12}C, {}^{16}O$$

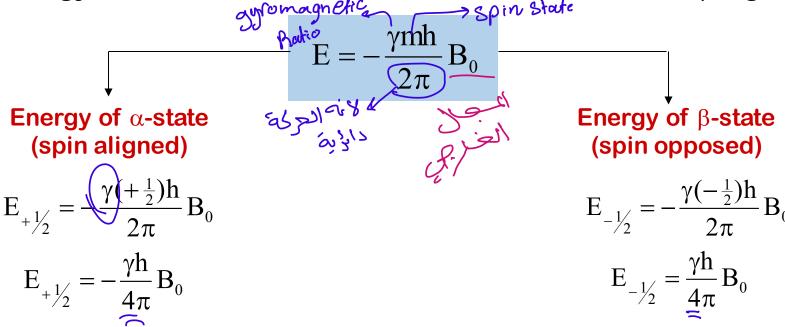
No magnetic field Applied magnetic field \mathbf{B}_{O} (a) (b)


Behavior of spinning protons with external magnetic field



THE NUCLEUS IN A MAGNETIC FIELD

الطاقة اللازمة = الطاقة اللازمة اللازمة الماقة اللازمة الازمة اللازمة الازمة الازمة الازمة الازمة الازمة الازمة الازمة الازمة الازمة الازمة

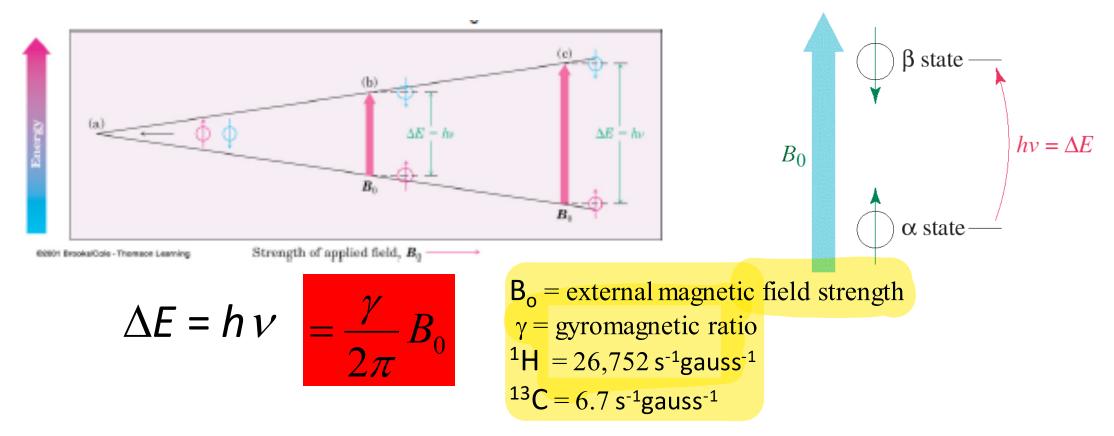

When nuclei are exposed to external magnetic field of strength B_0 , their spins <u>line up</u> <u>parallel</u> to the applied field, either <u>spin aligned</u> (α -spin state) or <u>spin opposed</u> (β -spin state) to the external field.

Energy of spinning nuclei

The energy of the nucleus in these two states (orientations) is given by:

Energy difference between the two state

$$\Delta E = \frac{\gamma h}{4\pi} B_0 - \left(-\frac{\gamma h}{4\pi} B_0\right) = \frac{\gamma h}{2\pi} B_0$$


Absorption of electromagnetic radiation of frequency ν that correspond to in energy to $\Delta \textbf{E}$

$$\Delta E = hv = \frac{\gamma h}{2\pi} B_0$$

ΔE and Magnet Strength

The energy difference between aligned and opposed to the external magnetic field (Bo) is generally small and is dependent upon Bo

Applied EM radiation (radio waves) causes the spin to flip and the nuclei are said to be in *resonance* with Bo

- . In a 14,092 gauss field, a 60 MHz (60,000,000) photon is required to flip a proton.
- . Low energy, radio frequency.

V = 60.026 gauss gan 35 7) = 15.02 Dhy? ے نواہ ال (ال مسعنہ لے مریبین من بعان منان هيرت بدهم طاعة عالية هت اعدر احلال كل <u>H</u> بينما بؤاه عالم الحيرة العمالة المحارة بعاد من بعلى فبقدر اقلبها واحلاجا بأمّل لهامّه من H Abundance Litil بى كىية كىنة كى قائمة كى تائم ك بكية طامة اقل بجدر الملك لانه حسب الما خيم ومزيتها داخل اعوكب عليلة على عكس ال وبهاى العالة ال بنجلك طائة اقل بكير من الـ H

•