

LOD -36B/slope Calibration Techniques

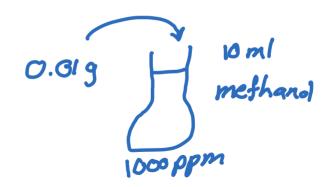
Calibration Techniques

• 1. External Calibration Curve Method

2. Standard Additions Method

3. Internal Standard Method

External Calibration Curve Method


1. Most convenient when a <u>large number</u> of similar samples are to be analyzed.

2. Most common technique.

3. Facilitates calculation of Figures of Merit.

Carled the

2-Standerd Solution ndiluction

Stock
$$10 ML$$

Blank
 $10 ML$
 $10 ML$

بخلع للجهاز-3

$$\begin{array}{cccc} X & \longrightarrow & y & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

 $m = \underbrace{sy}_{Sry} \rightarrow OD = 3SDB/M \qquad y_{7} \rightarrow y_{7}$ $b = \widehat{y} - m\widehat{x} \qquad |OO = 10SDB/M \qquad y_{7} \rightarrow y_{7}$ $y = mx + b \qquad R^{2}$

المعن عينة من المروة و بعملها بالمهاز و باحند العراءة ومن المعادلة بلع x وباحد العراءة ومن المعادلة بلع x و +

External Calibration Curve ما بعتر بوکیری الا ۱ ما بیتر بوکیری الا ۱ ما میتر بوکیری الا

1. Prepare a series of standard solutions (analyte solutions with known concentrations).

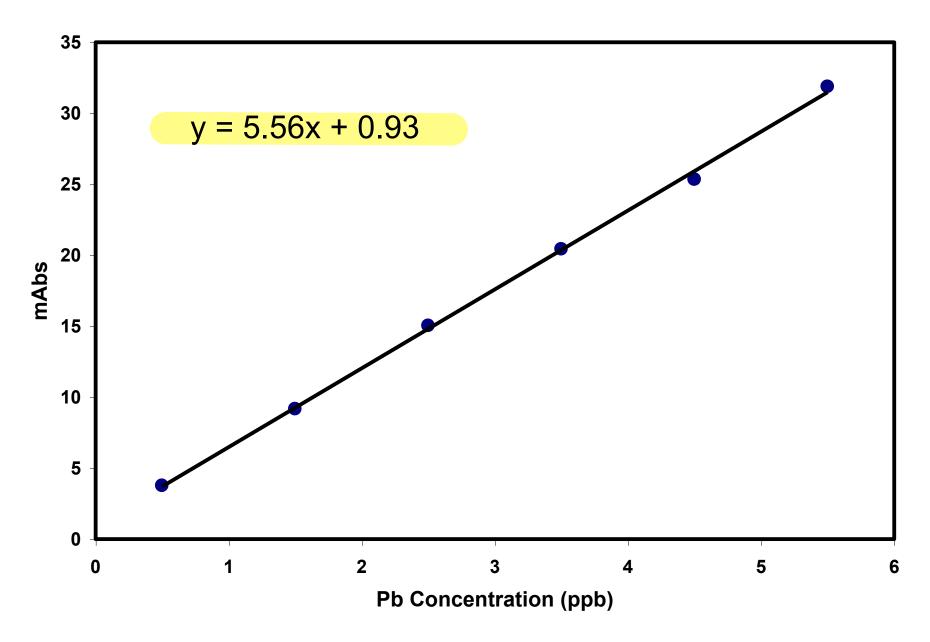
2. Plot [analyte] vs. Analytical Signal.

3. Use signal for unknown to find [analyte].

Example: Pb in Blood by GFAAS

Atomic	absorbtion
ومحرون	absorbtion bies el

	X	y
il	إِجْ [Pb] ر (ppb)	Signal .
Chy2,	(ppb)	(mAbs)
۱ کو هو چ		
	0.50	3.76
	1.50	9.16
	2.50	15.03
	3.50	20.42
	4.50	25.33
	5.50	31.87


قاءة المهاز

Results of linear regression:

$$S = mC \pm b$$

$$m = 5.56$$
 mAbs/ppb

$$b = 0.93 \text{ mAbs}$$

Calculate the LOD for Pb

20 blank measurements gives an average signal

with a standard deviation (Sb) of صورة وا جذرت المحراداح

$$\sigma_{\rm bl}$$
 = 0.36 mAbs

LOD = $\sqrt{3}$ Sb/m = 3 x 0.36 mAbs / 5.56 mAbs/ppb

$$LOD = 0.2 ppb$$

$$100 = 10 + 0.36$$
 = PPB

مطلب عماى

R=0.87

R2<0.88

الله يغة

Lower end = LOD = 0.2 ppb

(include this point on the calibration curve)

$$S_{LOD} = 5.56 \times 0.2 + 0.93 = 2.0 \text{ mAbs}$$

Imearity I see

(0.2 ppb (X), 2.0 mAbs (Y))

النقطة إلى بهرعنا $\rho^2 \langle 0.88 \Rightarrow 10/$

Find the LOL for Pb

עניים ולינילי Upper end = collect points beyond the linear region and estimate the 95% point.

Suppose a standard containing 18.5 ppb gives rise to s signal of (Y practical= 98.52 mAbs) *

This is approximately 5% below the expected value

لما يرتفع النكين of (Y theoretical=103.71 mAbs)

بنص الجرينات تحجب الفوء من بجفيها ٤ مَراءة

(18.50 ppb , 98.52 mAbs)

وبوجد لا (heory) وبعمل العربة وباعد عم إذا كان الغرى سنع على العربة وباعد عم إذا كان الغرى سنع التركيز مشي داخل معى

Standard Addition Method Reduce matrix effect

Plasma of Rout.

1. Most convenient when a small number of samples are to be analyzed.

2. Useful when the analyte is present in a complicated matrix and no ideal blank is available.

Stock
Loooppm

Pb in water

distellet

nonly

Nonly

Sample

S

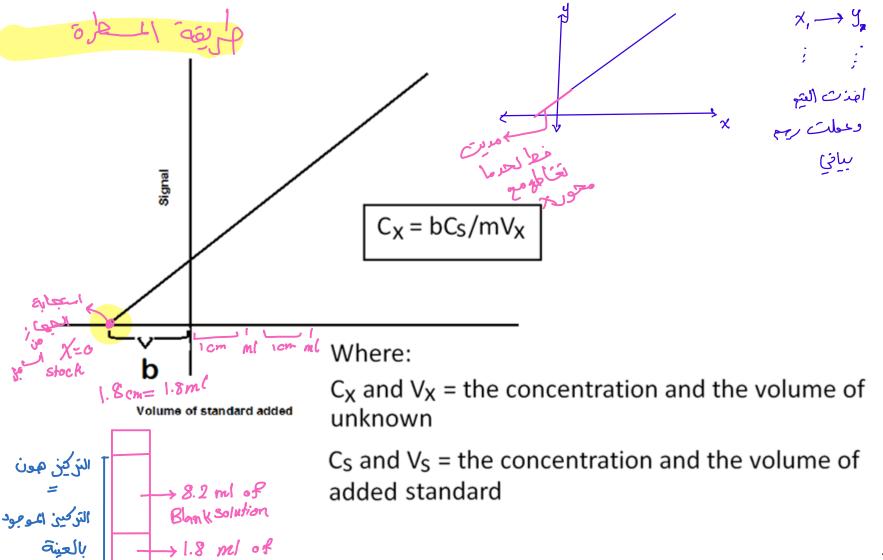
0.019	N M	,	1	1) موة	بكر
Stock	XI Oml	X2 M	32ml	X4 3	الا الا Volume الا Volume	\ / / / / / /
Samble Jacob	lm Xi	x ₂	x3 ↓ y3	×e J Ye	Xs at least £	K Sample
Stock J	91 whe		nl = y0		Sample Con Stock Slop Slop Cx = b x CS/m.V Sample Con Stock Slop Slop Cy = b x CS/m.V Slop Cy = b x CS/m.V	

Stock Stock & Stock &

Standard Addition Procedure

الزيادات

1. Add one or more increments of a standard solution to sample aliquots of the same size. Each mixture is then diluted to the same volume.


- 2. Prepare a plot of Analytical Signal versus:
 - a) volume of standard solution added, or
 - b) concentration of analyte added.

Standard Addition Procedure

3. The x-intercept of the standard addition plot corresponds to the amount of analyte that must have been present in the sample (after accounting for dilution).

- 4. The standard addition method assumes:
 - a) the curve is linear over the concentration range
 - b) the y-intercept of a calibration curve would be 0

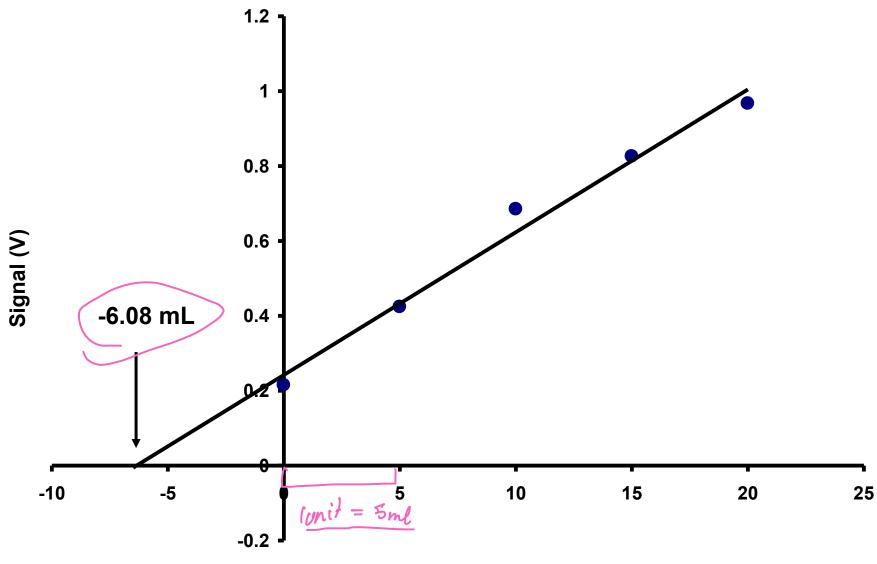
Calculation of standard addition

Sample

مكرية العسابات

Example: Fe in Drinking Water

/		
. / .	1/	
がららい	(/	1 - A
0,5 Cm	Š	الهـول


	> 30	
Sample	Standard	
Volume	Volume	
(mL)	(mL)	Signal (V)
٧×		
10	0	0.215
10	5	0.424
10	10	0.685
10	15	0.826
10	20	0.967

The concentration of the Fe standard solution is 11.1 ppm

All solutions are diluted to a final volume of 50 mL

$$C_{x} = 10 C_{5} / m \sqrt{x}$$
 $C_{x} = 6.08, 11.1 / + 10$

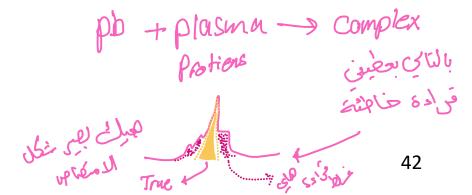
in 1919 Standard Standard at differ

Volume of standard added (mL)

$$[Fe] = ?$$

$$x$$
-intercept = -6.08 mL

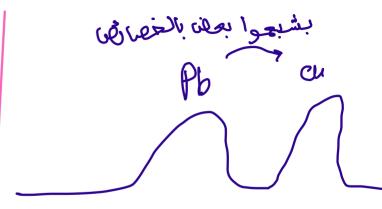
Therefore, 10 mL of sample diluted to 50 mL would give a signal equivalent to 6.08 mL of standard diluted to 50 mL.


$$V_{sam} \times [Fe]_{sam} = V_{std} \times [Fe]_{std}$$

$$10.0 \text{ mL x [Fe]} = 6.08 \text{ mL x } 11.1 \text{ ppm}$$

$$[Fe] = 6.75 ppm$$

Internal Standard Method Reduce matrix and instrument effects


- 1. Most convenient when variations in analytical sample size, position, or matrix limit the precision of a technique.
- 2. May correct for certain types of noise.

هون توکيز مش کٍ	Xı	X ₂	×s	Xu	
Conc Pb -PPm-	20	40	60	100	
Conc Cu - ppm-	100	100	100	100	100
y final	y= 3 Pb (8	y ₂ = y Pb ycu	• -		- 1

فبمنيف النحاس على العينة وبطلع مراءة الدمام بدلالة مراءة النحاس

Internal Standard Procedure

1. Prepare a set of standard solutions for analyte (A) as with the calibration curve method, but add a constant amount of a second species (B) to each solution.

- 2. Prepare a plot of S_A/S_B versus [A].
- 3. External calibration equation

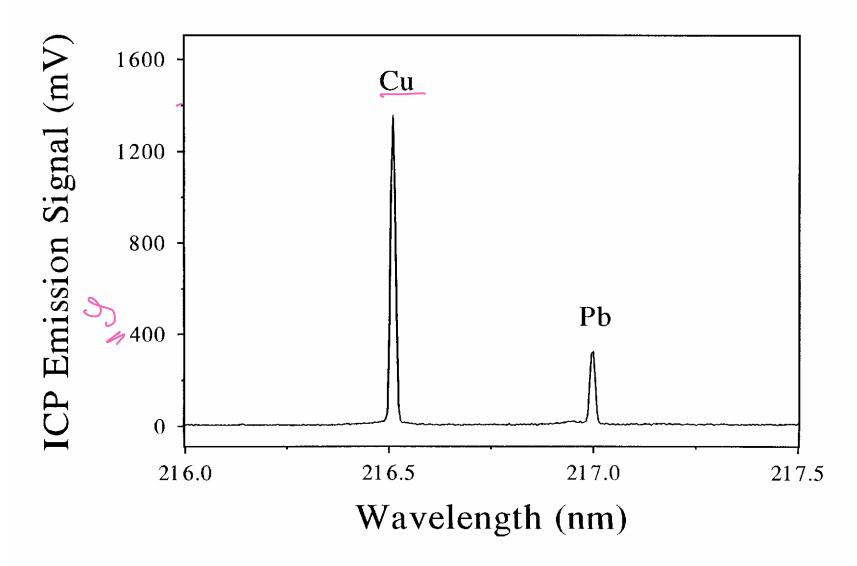
$$S_A/S_B = mC + b$$

 $Y_{final} = mc + b$

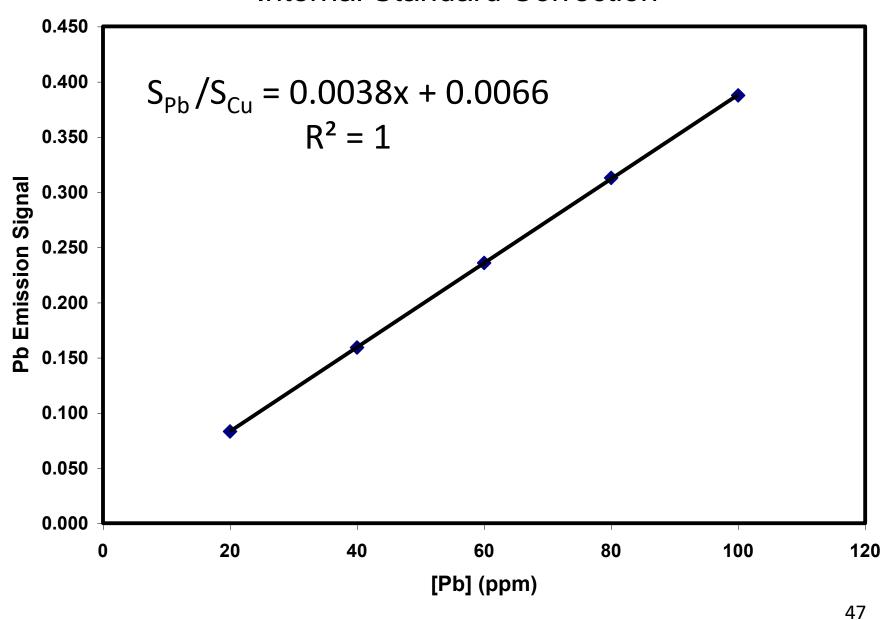
Notes

1. The resulting measurement will be independent of sample size and position.

2. Species A & B must not produce signals that interfere with each other. Usually they are separated by wavelength or time.


Example: Pb by ICP Emission

نوكى: انه هون كور التجربة واخمز الحرمن قىادة خنصمد العربية هاي بالحل


Each Pb solution contains 100 ppm Cu.

١ لكن في طريقة أخرى لـو اعطاني ماءة وحدم موجودة في

	Signal			
[Pb] (ppm)	Pb	100 ppm Cu	Pb/Cu	
×			\mathcal{G}	
20	112	1347	0.083	
40	243	1527	0.159	
60	326	1383	0.236	
80	355	1135	0.313	
100	558	1440	0.388	

Internal Standard Correction

Results for an unknown sample after adding 100 ppm Cu

	Signal				
Run	Pb	Cu	Pb/Cu		
	火		y		
1	346	1426	0.243		
2	297	1229	0.242		
3	328	1366	0.240		
4	331	1371	0.241		
5	324	1356	0.239		
mean	325	1350	0.241	Zy	

$$0.241 = 0.0038 X + 0.0066$$

X= 61.684 ppm of Pb

اسم الموضوع: Introduction

إعداد الصيدلاني/ــة: Sara Jaber

ادعولى العول المعلى ولكم بالمعلى

لداية المعالمن الدكور حمل المنال الساعى

Another way for Internal Standard method نوا مطاني عواده واهموه مشي جدوا داهم واهموا مشي مين عواده واهموه مسي عواده واهموه مسي عواده والمعروبة على ي

 In a single-point internal standardization, we prepare a single standard containing the analyte and the internal standard and use it to determine the value of K.

آبی امادی انجام المادی
$$K = \begin{pmatrix} C_{IS} \\ K \end{pmatrix}$$
 $K = \begin{pmatrix} C_{IS} \\ K \end{pmatrix}$ $K =$

 Where, CA is the standard concentration of the analyte, SA instrument response of analyte, CIS, and SIS the are the concentration and the response of internal added compound, respectively.

$$\bigcirc$$
 analyte = Pb^{2+}

A sixth spectrophotometric method for the quantitative analysis of Pb²⁺ in blood uses Cu²⁺ as an internal standard. A standard containing 1.75 ppb Pb²⁺ and 2.25 ppb Cu²⁺ yields a ratio of $(S_A/S_{IS})_{std}$ of 2.37. A sample of blood is spiked with the same concentration of Cu²⁺, giving a signal ratio, $(S_A/S_{IS})_{samp}$, of 1.80. Determine the concentration of Pb²⁺ in the sample of blood.

SOLUTION allows us to calculate the value of *K* using the data for the standard

$$K = \left(\frac{C_{IS}}{C_{A}}\right)_{std} \times \left(\frac{S_{A}}{S_{IS}}\right)_{std} = \frac{2.25 \text{ ppb Cu}}{1.75 \text{ ppb Pb}^{2+}} \times 2.37 = 3.05 \frac{\text{ppb Cu}^{2+}}{\text{ppb Pb}^{2+}}$$

The concentration of Pb²⁺, therefore, is

$$C_{A} = \frac{C_{IS}}{K} \times \left(\frac{S_{A}}{S_{IS}}\right)_{samp} = \frac{2.25 \text{ ppb Cu}^{2+}}{3.05 \frac{\text{ppb Cu}^{2+}}{\text{ppb Pb}^{2+}}} \times 1.80 = 1.33 \text{ ppb Cu}^{2+}$$

Standerd

analyte
$$\rightarrow 8b$$
 internal $\rightarrow Cu$

Conc $Pb = 1.75ppm$ Conc $Cu = 2.25$

$$\frac{S_A}{S_{2s}} = 2.37 \rightarrow Standard$$

لعل الحل تعلل الحل

Sample

$$\frac{SB}{SIS} = 1.80$$

فيعا لفنى تحكير ۱۱)

المعلوب: بره توكيز طاع في الساصبل

$$K = \frac{C cu}{C pb} * \frac{Spb}{Scu}$$

$$= \underbrace{2.25 ppm cu^{12}}_{1.75 ppm pb^{+2}} * 2.37$$

$$K = 3.65 \frac{ppm cu^n}{ppm Pb^{+2}}$$

$$3.05 \frac{ppm cu^{12}}{ppm Pb^{+2}} = \frac{2.25 ppm Cu^{+2}}{\chi ppm Pb^{+2}} * 1.80$$

Step 3) ij Collysip or Pb+2 1: 25 Colisi

$$x \quad ppm Pb^{+2} = \frac{4.05 - ppm Cu^{+2}}{3.05} \frac{ppm Cu^{+2}}{ppm Pb^{+2}} + \frac{3.05}{ppm Pb^{+2}}$$