# Chapter 14 Application of Ultraviolet/Visible Molecular Absorption Spectrometry

Absorption measurements based upon ultraviolet and visible radiation find widespread application for the identification and determination of myriad inorganic and organic species. Molecular ultraviolet/visible absorption methods perhaps the most widely used of all quantitative analysis techniques in chemical and clinical laboratories throughout the world.

## Absorptivity (a or ε)

Defines how much radiation will be absorbed by a molecule at a given concentration and wavelength

- Is termed molar absorptivity (ε) if concentration is expressed in molarity (M, mol/L)
- Can be calculated using Beer's Law  $(A = abc = \epsilon bc)$
- If units of b is cm and c is M then  $\varepsilon$  is  $M^{-1}cm^{-1}$  or  $Lmol^{-1}cm^{-1}$
- Magnitude of  $\varepsilon$  is an indication of the probability of the electronic transition

# The magnitude of Molar Absorptivities

Molar absorptivities range from zero up to a maximum on the order of 10<sup>5</sup> are observed. The magnitude of ε depends upon the probability for an energy-absorbing transition to occur. Peaks having molar absorptivities less than about 10<sup>3</sup> are classified as being of low intensity. They result from so-called forbidden transitions, which have probabilities of occurrence that are less than 0.01.

## **ABSORBING SPECIES**

The absorption of ultraviolet or visible radiation by a molecular species M can be considered to be a two-step process, excitation

$$M + h\nu \longrightarrow M^*$$

The lifetime of the excited species is brief (10<sup>-8</sup> to 10<sup>-9</sup> s). Relaxation involves conversion of the excitation energy to heat.

$$M^* \longrightarrow M + heat$$

The absorption of ultraviolet or visible radiation generally results from excitation of bonding electrons.

## **Electronic Transitions**

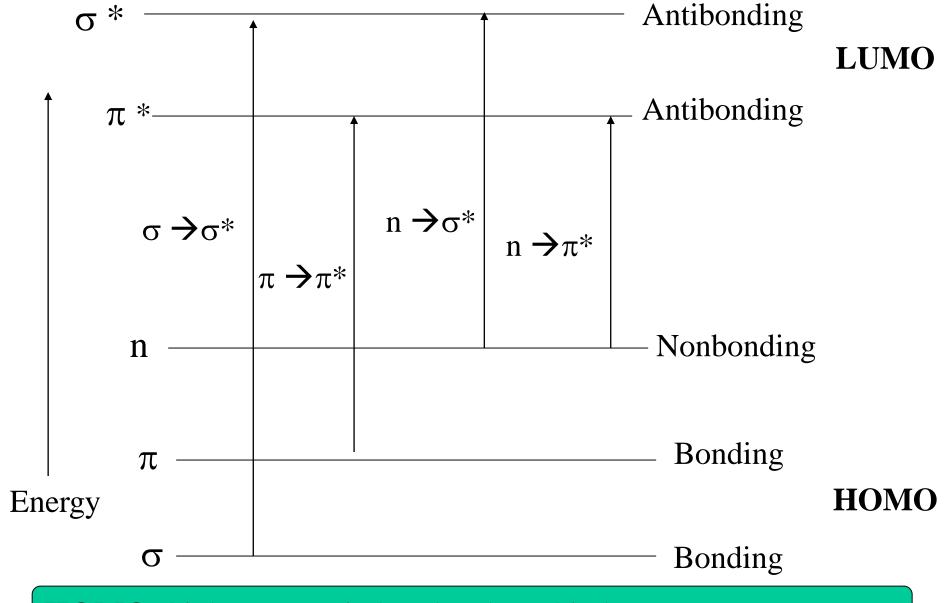
There are three types of electronic transitions. The three include transitions involving:

- (1)  $\pi$ ,  $\sigma$ , and n electrons
- (2) d and f electrons
- (3) charge transfer electrons.

## **Types of Absorbing Electrons**

The electrons that contribute to absorption by a molecule are: (1) those that participate directly in bond formation between atoms; (2) nonbonding or unshared outer electrons that are largely localized about such atoms as oxygen, the halogens, sulfur, and nitrogen. The molecular orbitals associated with single bonds are designated as sigma ( $\sigma$ ) orbitals, and the corresponding electrons are  $\sigma$  electrons.

# **Types of Absorbing Electrons**


The double bond in a molecule contains two types of molecular orbitals: a sigma  $(\sigma)$  orbital and a pi  $(\pi)$  molecular orbital. Pi orbitals are formed by the parallel overlap of atomic p orbitals. In addition to  $\sigma$  and  $\pi$ electrons, many compounds contain nonbonding electrons. These unshared electrons are designated by the symbol n.

# **Energy**

The energies for the various types of molecular orbitals differ significantly. The energy level of a nonbonding electron lies between the energy levels of the bonding and the antibonding  $\pi$  and  $\sigma$  orbitals. Electronic transitions among certain of the energy levels can be brought about by the absorption of radiation. Four types of transitions are possible:

 $\sigma \rightarrow \sigma^*$ ,  $n \rightarrow \sigma^*$ ,  $n \rightarrow \pi^*$ , and  $\pi \rightarrow \pi^*$ .

### LUMO: lowest unoccupied molecular orbital



**HOMO:** highest occupied molecular orbital

For convenience of reference, definitions of the various spectral regions have been set by the Joint Committee on Nomenclature in Applied Spectroscopy:

| Region           | Wavelength (nm)       |
|------------------|-----------------------|
| Far ultraviolet  | 10-200                |
| Near ultraviolet | 200-380               |
| Visible          | 380-780               |
| Near infrared    | 780-3000              |
| Middle infrared  | 3000-30,000           |
| Far infrared     | 30,000-300,000        |
| Microwave        | 300,000-1,000,000,000 |

## $\sigma \rightarrow \sigma^*$ Transition

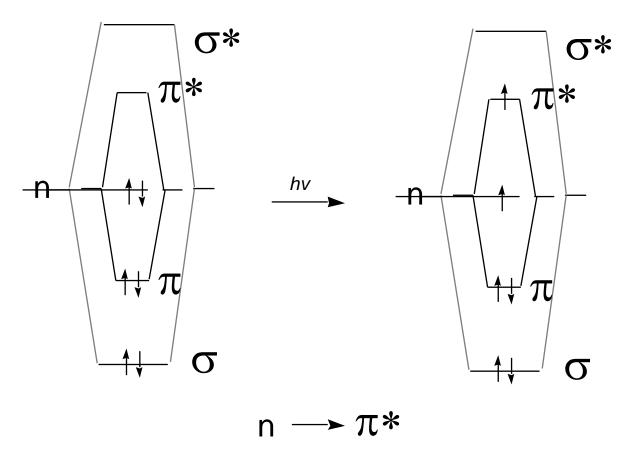
An electron in a bonding  $\sigma$  orbital of a molecule is excited to the corresponding antibonding orbital by the absorption of radiation. The energy required to induce a  $\sigma \rightarrow \sigma^*$  transition is large. Methane (CH<sub>4</sub>) can undergo only  $\sigma \rightarrow \sigma^*$ transitions, exhibits an absorption maximum  $\lambda_{\text{max}}$  at 125 nm. Absorption maxima due to  $\sigma$  $\rightarrow \sigma^*$  transitions are never observed in the ordinarily accessible ultraviolet region (Far UV) range).

Ethane y--



$$Q \longrightarrow Q*$$

 $\lambda_{\text{max}} = 135 \text{ nm}$  (a high energy transition)


Absorptions having  $\lambda_{max}$  < 200 nm are difficult to observe because everything (including quartz glass and air) absorbs in this spectral region.

## $n \rightarrow \sigma^*$ Transitions

Saturated compounds containing atoms with unshared electrons are capable of n  $\rightarrow \sigma^*$  transitions. These transitions require less energy than the  $\sigma \rightarrow \sigma^*$  type and can be brought about by radiation in the region of between 150 and 250 nm, with most absorption peaks appearing below 200 nm. The molar absorptivities are low to intermediate in magnitude and range between 100 and 3000 L cm<sup>-1</sup> mol <sup>-1</sup>.

14

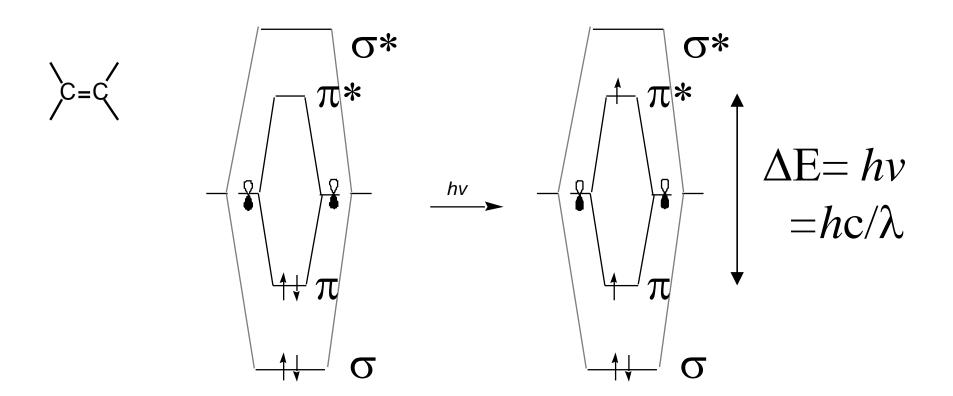




The n to  $\pi^*$  transition is at even lower wavelengths but is not as strong as  $\pi$  to  $\pi^*$  transitions. It is said to be "forbidden."

Example:

Acetone: 
$$\pi - \pi * \lambda_{max} = 188 \text{ nm}$$
;  $\epsilon = 1860$   
 $n - \pi * \lambda_{max} = 279 \text{ nm}$ ;  $\epsilon = 15$ 


# TABLE 14-2 Absorption by Organic Compounds Containing Heteroatoms with Nonbonding Electrons

| Compound           | λ <sub>max</sub> , nm | $oldsymbol{arepsilon}_{	ext{max}}$ |
|--------------------|-----------------------|------------------------------------|
| CH <sub>3</sub> OH | 167                   | 1480                               |
| $(CH_3)_2O$        | 184                   | 2520                               |
| CH <sub>3</sub> Cl | 173                   | ow! 200                            |
| CH <sub>3</sub> I  | 258                   | 365                                |
| $(CH_3)_2S$        | 229                   | 140                                |
| $CH_3NH_2$         | 215                   | 600                                |
| $(CH_3)_3N$        | 227                   | 900                                |

© 2007 Thomson Higher Education

## $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Transitions

Most applications of absorption spectroscopy are based upon transitions for n or  $\pi$  electrons to the  $\pi^*$  excited state because the energies required for these processes bring the absorption peaks into an experimentally convenient spectral region (200 to 780 nm). Both transitions require the presence of an unsaturated functional group to provide the  $\pi$ orbitals. The molar absorptivities for peaks associated with excitation to the n,  $\pi^*$  state are generally low and ordinarily range from 10 and 100 L cm<sup>-1</sup> mol <sup>-1</sup>; values for  $\pi \rightarrow \pi^*$  transitions are normally take place in the range between 1000 and 10,000. 17



Example: ethylene absorbs at longer wavelengths: 
$$\lambda_{max} = 185 \text{ nm } \epsilon = 10,000$$

 $\pi \longrightarrow \pi *$ 

TABLE 14-1 Absorption Characteristics of Some Common Chromophores

| Chromophore | Example                                        | Solvent     | $\lambda_{ m max}$ , nm | $\varepsilon_{\mathrm{max}}$ | Transition Type          |
|-------------|------------------------------------------------|-------------|-------------------------|------------------------------|--------------------------|
| Alkene      | $C_6H_{13}CH=CH_2$                             | n-Heptane   | 177                     | 13,000                       | $\pi \to \pi^*$          |
| Alkyne      | $C_5H_{11}C \equiv C - CH_3$                   | n-Heptane   | 178                     | 10,000                       | $\pi \to \pi^*$          |
|             |                                                |             | 196                     | 2000                         | -                        |
|             |                                                |             | 225                     | 160                          | _                        |
| Carbonyl    | CH₃ÇCH₃                                        | n-Hexane    | 186                     | 1000                         | $n \rightarrow \sigma^*$ |
|             | o                                              |             | 280                     | 16                           | $n \rightarrow \pi^*$    |
|             | СН₃СН                                          | n-Hexane    | 180                     | large                        | $n \rightarrow \sigma^*$ |
|             | O                                              |             | 293                     | 12                           | $n \to \pi^*$            |
| Carboxyl    | CH <sub>3</sub> COOH                           | Ethanol     | 204                     | 41                           | $n \rightarrow \pi^*$    |
| Amido       | CH₃CNH₂<br>□<br>O                              | Water       | 214                     | 60                           | $n \rightarrow \pi^*$    |
| Azo         | CH <sub>3</sub> N=NCH <sub>3</sub>             | Ethanol     | 339                     | 5                            | $n \rightarrow \pi^*$    |
| Nitro       | CH <sub>3</sub> NO <sub>2</sub>                | Isooctane   | 280                     | 22                           | $n \rightarrow \pi^*$    |
| Nitroso     | C <sub>4</sub> H <sub>9</sub> NO               | Ethyl ether | 300                     | 100                          | -                        |
|             |                                                |             | 665                     | 20                           | $n \rightarrow \pi^*$    |
| Nitrate     | C <sub>2</sub> H <sub>5</sub> ONO <sub>2</sub> | Dioxane     | 270                     | 12                           | $n \rightarrow \pi^*$    |

© 2007 Thomson Higher Education

#### Olefins and aromatics

$$\sigma \rightarrow \sigma^* < 185 \text{ nm}$$

$$n \rightarrow \sigma^*$$
 150-250 nm

$$n \rightarrow \pi^*$$
 $n \rightarrow \pi^*$  200-700 nm

#### **Absorption by Organic Compounds**

- All organic compounds are capable of absorbing electromagnetic radiation since all contain valence electrons that can be excited to higher energy levels
- The energies associated with electrons in single bonds are sufficiently high  $(\sigma \rightarrow \sigma^*)$  that absorption occurs in the Far-UV ( $\lambda$ < 185 nm). Components of the atmosphere also absorb in this region.
- This is the reason why normal n-alkanes organic compounds can be utilized as solvents in the UV/Vis region.
- Because of experimental difficulties association with the Far-ultraviolet region, most spectrophotometric investigations of organic compounds involves the longer wavelengths ( $\lambda$ >185 nm)
- Most applications of Absorption spectroscopy are based on transitions for  $n \to \pi^*$  or  $\pi \to \pi^*$ . (UV/VIS 200-780nm)
- Both  $n \to \pi^*$  or  $\pi \to \pi^*$  require the presence of unsaturated functional groups (double bonds) to provide the  $\pi$  orbitals. Molecule containing these functional groups are also referred to as "chromophores"

## **Absorption Definitions**

### Chromophore

A group of atoms that gives rise to electronic absorption

Or

A functional group capable of having characteristic electronic transitions is called a **chromophore** (color loving)

Or

The **chromophore** is a region in the molecule where the energy difference between two different molecular falls within the range of the visible spectrum

#### **Auxochrome**

A substituent that contains unshared electron pairs (OH, NH, X)

An auxochrome attached to a chromophore with  $\pi$  electrons shifts the  $\lambda_{max}$  to longer wavelengths

# **Common functional groups**

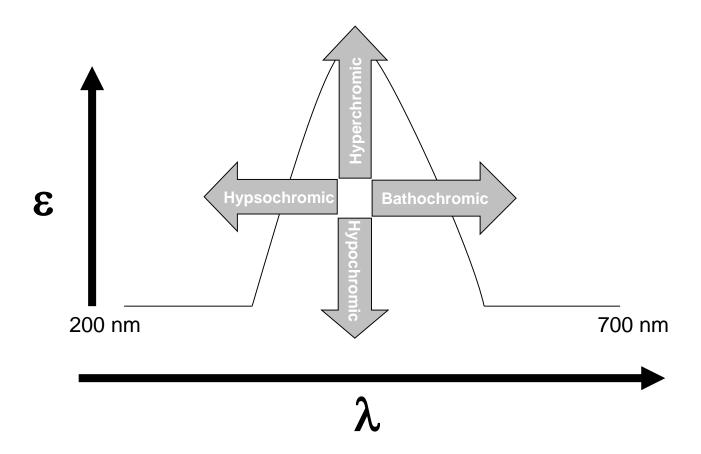
| Compound                           | λ(nm) | Intensity/ε | transition with lowest<br>energy |
|------------------------------------|-------|-------------|----------------------------------|
| $\mathrm{CH_4}$                    | 122   | intense     | σ-σ*(C-H)                        |
| CH <sub>3</sub> CH <sub>3</sub>    | 130   | intense     | $\sigma$ - $\sigma$ * (C-C)      |
| CH <sub>3</sub> OH                 | 183   | 200         | n-σ* (C-O)                       |
| CH <sub>3</sub> SH                 | 235   | 180         | $n-\sigma^*$ (C-S)               |
| CH <sub>3</sub> NH <sub>2</sub>    | 210   | 800         | n-σ* (C-N)                       |
| CH <sub>3</sub> Cl                 | 173   | 200         | $n-\sigma^*$ (C-Cl)              |
| CH <sub>3</sub> I                  | 258   | 380         | n-σ* (C-I)                       |
| CH <sub>2</sub> =CH <sub>2</sub>   | 165   | 16000       | $\pi$ - $\pi$ * (C=C)            |
| CH <sub>3</sub> COCH <sub>3</sub>  | 187   | 950         | $\pi$ - $\pi$ * (C=O)            |
|                                    | 273   | 14          | $n-\pi^*$ (C=O)                  |
| CH <sub>3</sub> CSCH <sub>3</sub>  | 460   | weak        | $n-\pi^*$ (C=S)                  |
| CH <sub>3</sub> N=NCH <sub>3</sub> | 347   | 15          | $n-\pi^*$ (N=N)                  |

## **Absorption Definitions**

#### **Bathochromic**

A shift to longer wavelengths or red shift (increase in  $\lambda$ )

### Hypsochromic


A shift to shorter wavelengths or blue shift (decrease in  $\lambda$ )

#### Hyperchromism

An increase in intensity of an absorption band (increase in  $\varepsilon_{max}$ )

#### Hypochromism

A decrease in intensity of an absorption band (decrease in  $\varepsilon_{max}$ )

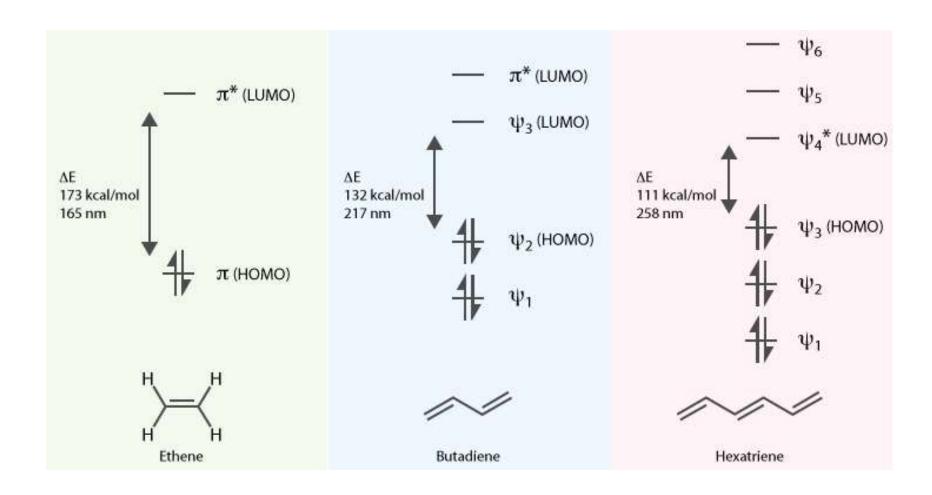


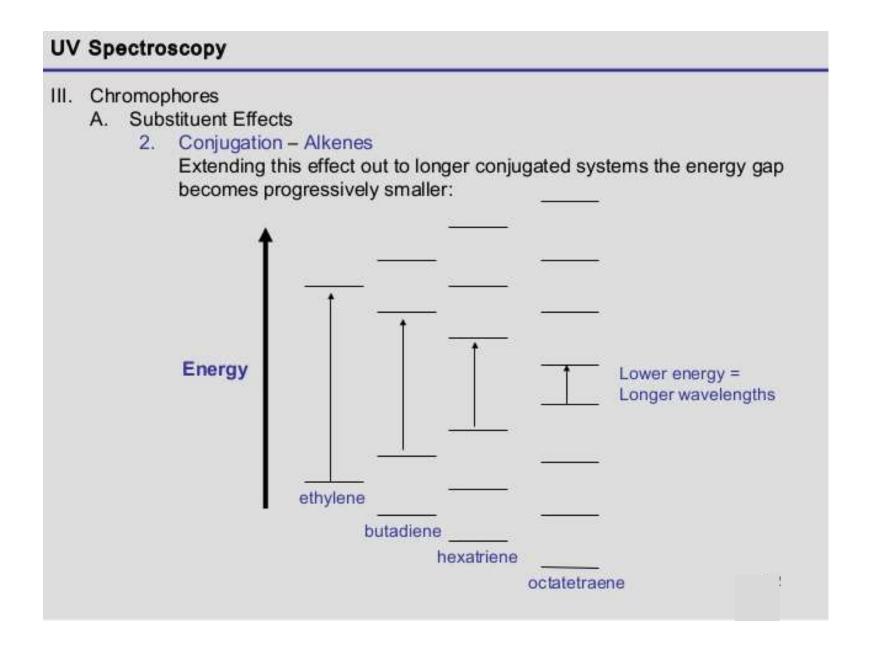
## **Solvent Effects**

A compound that contains both  $\pi$  and n electrons may exhibit two absorption maxima with change in solvent polarity

- $\pi \to \pi^*$  transitions absorb ~10 x more strongly than n  $\to \pi^*$  transition
- n  $\rightarrow \pi^*$  transition occur at longer wavelengths than  $\pi \rightarrow \pi^*$
- Such a compound will exhibit two characteristic peaks in a <u>nonpolar</u> solvent such as hexane
- The two peaks will be shifted closer to each other in a <u>polar and</u> <u>hydrogen bonding solvent</u> such as ethanol

## **Solvent Effects**

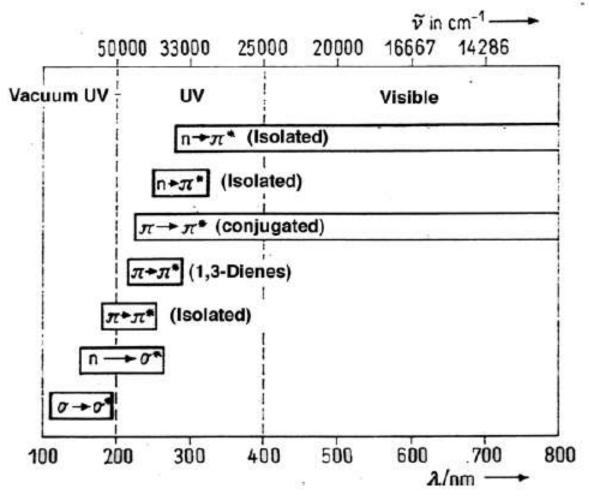

Molecules with absorption due to  $\pi \to \pi^*$  transition exhibit red shift when dissolved in polar solvents as compared to nonpolar solvents

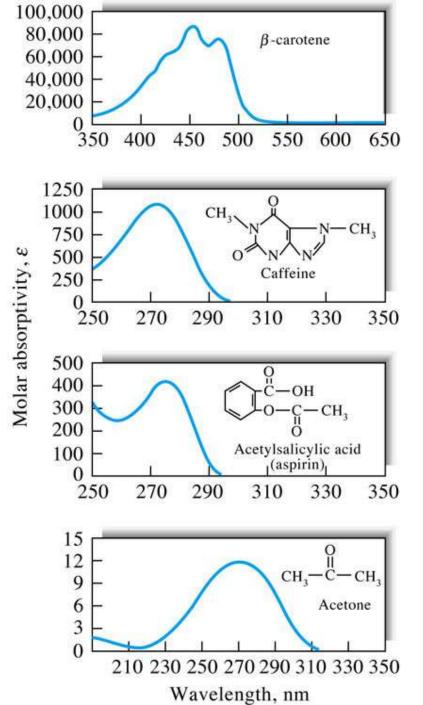

- Used to confirm the presence of  $\pi \to \pi^*$  transitions in molecules

Molecules with absorption due to  $n \to \pi^*$  transition exhibit blue shift when dissolved in solvents that are able to form <u>hydrogen bonds</u>

- Used to confirm the presence of n electrons in a molecule

 $\pi$  electrons are considered to be further delocalized by conjugation; the orbitals involve four (or more) atomic centers. The effect of this delocalization is to lower the energy level of the  $\pi^*$  orbital and give it less antibonding character. Absorption maxima are shifted to longer wavelengths as a consequence. Conjugation of chromophores, has a profound effect on spectral properties. 1,3-butadiene, CH<sub>2</sub>=CHCH=CH<sub>2</sub>, has a strong absorption band that is displaced to a longer wavelength by 20 nm compared with the corresponding peak for an unconjugated diene.

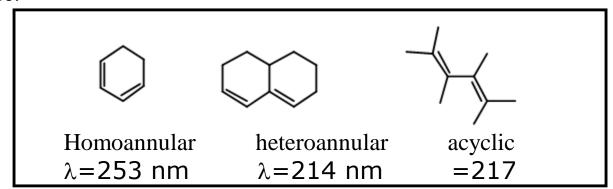



| Table 8.3 Values of $\lambda_{max}$ and $\epsilon$ for Ethylene and Conjugated Dienes |                       |                                       |
|---------------------------------------------------------------------------------------|-----------------------|---------------------------------------|
| Compound                                                                              | λ <sub>max</sub> (nm) | ε (M <sup>-1</sup> cm <sup>-1</sup> ) |
| H <sub>2</sub> C=CH <sub>2</sub>                                                      | 165                   | 15,000                                |
| ~                                                                                     | 217                   | 21,000                                |
|                                                                                       | 256                   | 50,000                                |
|                                                                                       | 290                   | 85,000                                |
|                                                                                       | 334                   | 125,000                               |
|                                                                                       | 364                   | 138,000                               |

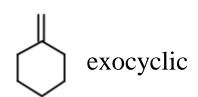
These transitions correspond to simple bonds and are common to all molecules.

 $\pi \to \pi^*$  transitions depend on the conjugation, so it can reach the visible region of radiation, causing the color of substances.






# Empirical Rules for Calculating Uv/Vis Absorptions


# Woodward-Fieser Rules for Calculating the $\lambda$ max of Conjugated Dienes and Polyenes

#### - Parent:

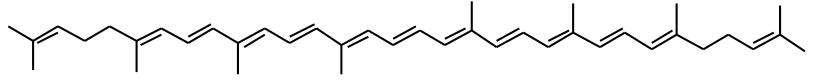


#### - Increments for:

| Double bond extending conjugation | +30 |
|-----------------------------------|-----|
| Alkyl substituent or ring residue | +5  |
| Exocyclic double bond             | +5  |
| ,                                 | _   |



#### Polar groupings:


| -OC(O)CH3 | +0  |
|-----------|-----|
| -OR       | +6  |
| -Cl, -Br  | +5  |
| -NR2      | +60 |
| -SR       | +30 |

#### For more than 4 conjugated double bonds:

 $\lambda_{max} = 114 + 5(number of alkyl groups) + n(48.0-1.7n)$ 

#### Example:

#### Lycopene:



$$\lambda_{max} = 114 + 5(8) + 11*(48.0-1.7*11) = 476 \text{ nm}$$

$$\lambda_{\text{max}}(\text{Actual}) = 474.$$

#### Example 1:

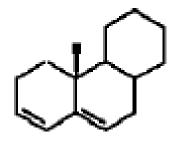
Transoid: 217 nm

Alkyl groups or ring residues: 3 x 5 = 15 nm

Calculated: 232 nm

Observed: 234 nm

Example 2:



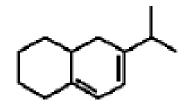

Cisoid: 253 nm

Alkyl groups or ring residues:  $2 \times 5 = 10 \text{ nm}$ 

Calculated: 263 nm

Observed: 256 nm




Transoid: 214 nm

Alkyl groups or ring residues: 3 x 5 = 15 nm

Exocyclic double bond: 5 nm

Calculated: 234 nm

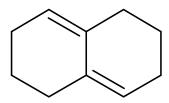
Observed: 235 nm



Cisoid: 253 nm

Alkyl groups or ring residues: 4 x 5 = 20 nm

Exocyclic double bond: 5 nm


Calculated: 278 nm

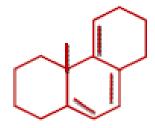
Observed: 275 nm

Calculate the  $\lambda_{max}$  for 1,4, dibenzodiene

#### Solution:

The structure is




Parent heterodiene = 214

Alkyl substituents (4x5 nm) = 20

Exocyclic double bond 2x5 = 10

 $\lambda_{max}$  = 244 nm (observed 247 nm)

Calculate the  $\lambda_{max}$  for



#### Solution:

#### The compound is a homoannular diene

Base value = 253

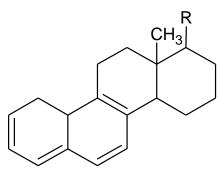
Ring residues (5x5) = 25

Exocyclic double bond 3x5 = 15

Extended C=C = 30

 $\lambda_{max}$  is 323 nm observed value is 320 nm.

#### Calculate the absorption maximum for 4 cyclohexenyl


#### It is a 2, 4 diene system

| Base value               | 217 |
|--------------------------|-----|
| 2 Alkyl substituents 2x5 | 10  |
| 2 Ring residues 2x5      | 10  |
| 1 Exocyclic bond         | 5   |

242 nm

Observed value is also 242 nm

## Calculate the $\lambda_{max}$ for the compound



#### Solution

| Base value                    |                             | 253 nm |
|-------------------------------|-----------------------------|--------|
| 2 Extended dou                | ble bonds (2x30)            | 60 nm  |
| 5 Ring residues               | (5x5)                       | 25 nm  |
| 1 Exocyclic double bond (1x5) |                             | 5 nm   |
|                               | Calculated λ <sub>max</sub> | 343 nm |
|                               | Observed                    | 345 nm |

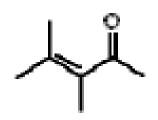
## Woodward's Rules for Conjugated Carbonyl Compounds



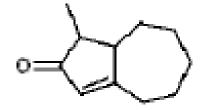
Base values:

X = R

|                 | Six-membered rin<br>enone                                            | g or acyclic parent | λ=215 nm |
|-----------------|----------------------------------------------------------------------|---------------------|----------|
|                 | Five-membered ri                                                     | ng parent enone     | λ=202 nm |
|                 | X = H                                                                |                     | λ=208 nm |
|                 | X = OH, OR                                                           |                     | λ=195 nm |
| Increments for: |                                                                      |                     |          |
|                 | Double bond extendi                                                  | ng conjugation      | 30       |
|                 | Exocyclic double bon                                                 | nd                  | 5        |
|                 | Endocyclic double bond in a 5- or 7-<br>membered ring for X = OH, OR |                     | 5        |
|                 | Homocyclic diene component                                           |                     | 39       |
|                 | Alkyl substituent or<br>ring residue                                 | α                   | 10       |
|                 |                                                                      | β                   | 12       |
|                 |                                                                      | γ or higher         | 18       |


## Polar groupings:

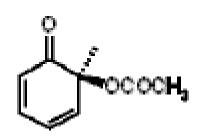
| -OH                   | α                               | 35 |
|-----------------------|---------------------------------|----|
|                       | β                               | 30 |
|                       | δ                               | 50 |
| -OC(O)CH <sub>3</sub> | $\alpha, \beta, \gamma, \delta$ | 6  |
| -OCH <sub>3</sub>     | α                               | 35 |
|                       | β                               | 30 |
|                       | γ                               | 17 |
|                       | δ                               | 31 |
| -CI                   | α                               | 15 |
|                       | β,γ,δ                           | 12 |
| -Br                   | β                               | 30 |
|                       | α,γ,δ                           | 25 |
| -NR <sub>2</sub>      | β                               | 95 |


## 'Solvent shifts for various solvents:

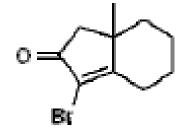
| Solvent     | $\lambda_{max}$ shift (nm) |
|-------------|----------------------------|
| water       | + 8                        |
| chloroform  | - 1                        |
| ether       | - 7                        |
| cyclohexane | - 11                       |
| dioxane     | - 5                        |
| hexane      | - 11                       |

# example

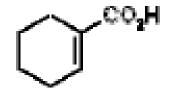



| Acyclic enone:                      |          | 215 nm       |
|-------------------------------------|----------|--------------|
| α-Alkyl groups<br>or ring residues: |          | 10 nm        |
| β-Alkyl groups<br>or ring residues: | 2 x 12 = | <u>24 nm</u> |
| Calculated:                         |          | 249 nm       |
| Observed:                           |          | 249 nm       |

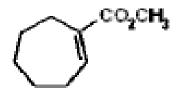



Five-membered ring parent 202 nm enone:

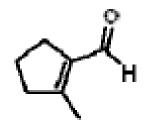
β-Alkyl groups or ring residues: 2 x 12 = 24 nm Exocyclic double bond:


Calculated: 231 nm Observed: 226 nm

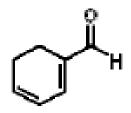



| Six-membered<br>ring or alicyclic<br>parent enone: | 215 nm       |
|----------------------------------------------------|--------------|
| Extended conjugation:                              | 30 nm        |
| Homocyclic diene component:                        | 39 nm        |
| δ-Alkyl groups<br>or ring residues:                | <u>18 nm</u> |
| Calculated:                                        | 302 nm       |
| Observed:                                          | 300 nm       |




| Five-membered<br>ring parent<br>enone: |          | 202 nm      |
|----------------------------------------|----------|-------------|
| α-Br:                                  |          | 25 nm       |
| β-Alkyl groups<br>or ring residues:    | 2 x 12 = | 24 nm       |
| Exocyclic double bond:                 |          | <u>5 nm</u> |
| Calculated:                            |          | 256 nm      |
| Observed:                              |          | 251 nm      |




| Carboxylic acid:                    | 195 nm       |
|-------------------------------------|--------------|
| α-Alkyl groups<br>or ring residues: | 10 nm        |
| β-Alkyl groups<br>or ring residues: | <u>12 nm</u> |
| Calculated:                         | 217 nm       |
| Observed:                           | 217 nm       |



Ester: 195 nm α-Alkyl groups 10 nm or ring residues: β-Alkyl groups 12 nm or ring residues: Endocyclic double bond in <u>5 nm</u> 7-membered ring: 222 nm Calculated: 222 nm Observed:



Aldehyde: 208 nm  $\alpha$ -Alkyl groups or ring residues: 10 nm  $\beta$ -Alkyl groups or ring residues:  $2 \times 12 = 24 \text{ nm}$  Calculated: 242 nm Observed: 242 nm



| Aldehyde:                           | 208 nm       |
|-------------------------------------|--------------|
| Extended conjugation:               | 30 nm        |
| Homodiene component:                | 39 nm        |
| α-Alkyl groups<br>or ring residues: | 10 nm        |
| δ-Alkyl groups<br>or ring residues: | <u>18 nm</u> |
| Calculated:                         | 304 nm       |
| Observed:                           | 302 nm       |