INTRODUCTION TO INSTRUMENTAL ANALYSIS

OUTLINE:

Classification of Analytical Methods

Types of Instrumental Methods

Instruments for Analysis

Selecting an Analytical Method

Calibration of an Instrumental Methods

Definitions

Analytical Chemistry: The Science of Chemical Measurements.

Analyte: The compound or chemical species to be measured, separated or studied.

<u>Qualitative</u> instrumental analysis is that measured property that indicates <u>presence</u> of analyte in matrix

Quantitative instrumental analysis is that magnitude of measured property that is proportional to *concentration* of analyte in matrix

CLASSICAL AND INSTRUMENTAL METHODS

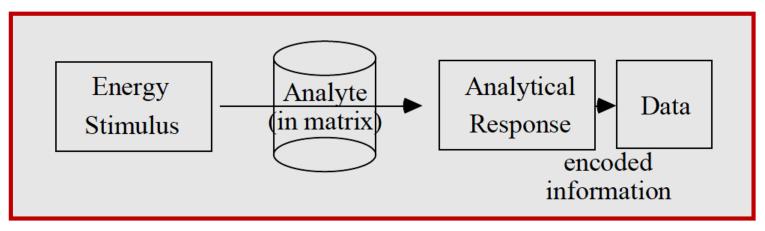
CLASSICAL:

Qualitative - identification by color, indicators, boiling points, odors

Quantitative - mass or volume (e.g. gravimetric, volumetric)

INSTRUMENTAL:

<u>Qualitative-</u> chromatography, electrophoresis and identification by measuring physical property (e.g. spectroscopy, electrode potential)


Quantitative- measuring property and determining relationship to concentration (e.g. spectrophotometry, mass spectrometry). Often, same instrumental method used for qualitative and quantitative analysis.

Types of Instrumental Methods

Example methods

Spectroscopy Technique	Radiation emission	Emission spectroscopy, fluorescence, phosphorescence, luminescence
	Radiation absorption	Absorption spectroscopy spectrophotometry, photometry, nuclear magnetic resonance NMR
Electrical Technique	Electrical potential	Potentiometry
	Electrical charge	Coulometry
	Electrical current	Voltammetry - amperometry, polarography
	Electrical resistance	Conductometry
Thermal Technique	Thermal	Thermal gravimetry, calorimetry

Instrumental Methods

Block diagram for the overall process of instrumental measurement.

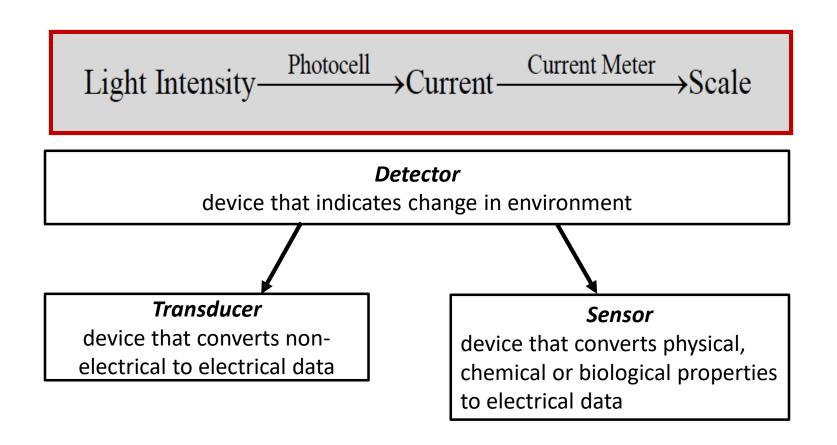
Example: spectrophotometry

Instrument: spectrophotometer

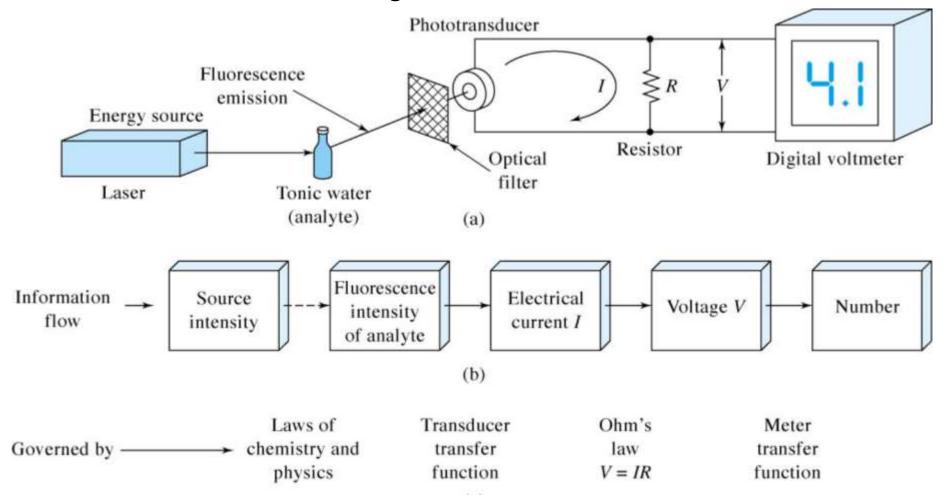
Stimulus: monochromatic light energy

Analytical response: light absorption

Transducer: photocell


Data: electrical current

Data processor: current meter


Readout: meter scale

DATA DOMAINS: way of encoding analytical response in electrical or non-electrical signals.

Interdomain conversions: transform information from one domain to another.

Block diagram of a fluorometer

FIGURE 1-3 A block diagram of a fluorometer showing (a) a general diagram of the instrument, (b) a diagrammatic representation of the flow of information through various data domains in the instrument, and (c) the rules governing the data domain transformations during the measurement process.

Figures of Merit

Performance Characteristics: Figures of Merit

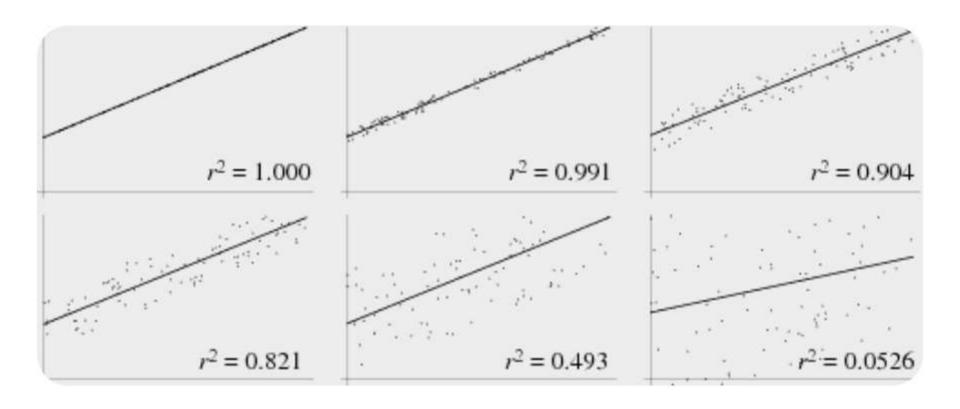
How to choose an analytical method? How good is measurement?

How well a calibration curve follows a straight line?- Linearity.

How reproducible? – **Precision**

How close to true value? - Accuracy/Bias

How small a difference can be measured? – Sensitivity


What range of amounts? - **Dynamic Range**

How much interference? - Selectivity

FIGURES OF MERIT: Linearity

- How well a calibration curve follows a straight line.
- R² (Square of the correlation coefficient)

$$R^{2} = \frac{\left[\sum (x_{i} - \overline{x})(y_{i} - \overline{y})\right]^{2}}{\sum (x_{i} - \overline{x})^{2} \sum (y_{i} - \overline{y})^{2}}$$

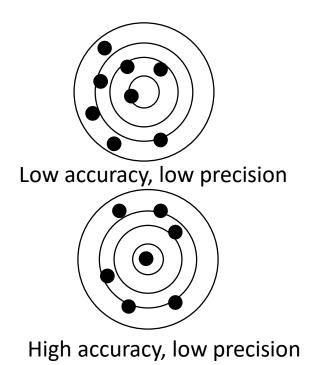
FIGURES OF MERIT: PRECISION

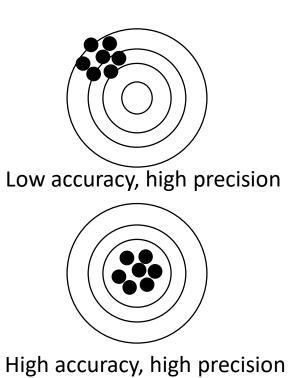
INDETERMINATE OR RANDOM ERRORS

Standard deviation:
$$s = \sqrt{\frac{\sum_{i=0}^{i=N} (x_i - \overline{x})^2}{N-1}}$$

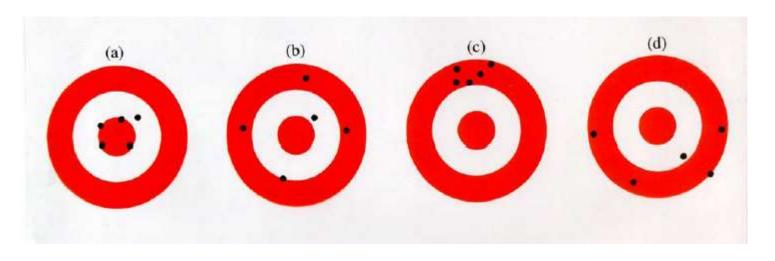
Variance: s²

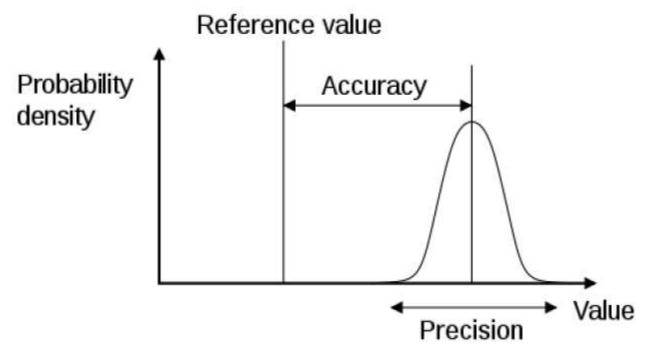
Relative standard deviation: RSD = $\frac{s}{\overline{x}}$


Standard deviation of mean: $s_m = \frac{s}{\sqrt{N}}$


FIGURES OF MERIT: ACCURACY

DETERMINATE ERRORS (operator, method, instrumental)


Bias: bias = $\overline{x} - x_{\text{true}}$


Illustrating the difference between "accuracy" and "precision"

Accuracy vs Precision

FIGURES OF MERIT: SENSITIVITY

Indicates the response of the instrument to changes in analyte concentration or a measure of a method's ability to distinguish between small differences in concentration in different samples. Effected by slope of calibration curve.

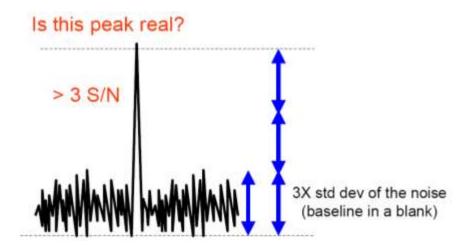
```
Sensitivity = \gamma= m/Ss
m = slope;
Ss is the standard deviation of measurement
```

(larger slope of calibration curve m, more sensitive measurement)

FIGURES OF MERIT: LIMIT of DETECTION (LOD)

Signal must be bigger than random noise of blank

Minimum signal: $Signal_{min} = Av. Signal_{blank} + ks_{blank}$


From statistics k=3 or more (at 95% confidence level)

Typically 3 times the signal-to-noise (based on standard deviation of the noise)

or

LOD =3 x Standard deviation of blank/ Slope

LOD=3 xSb/m

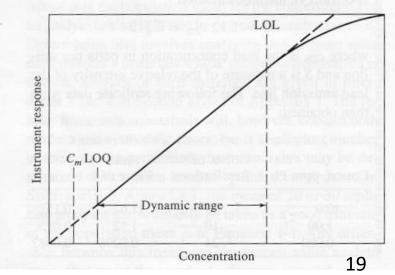
FIGURES OF MERIT: DYNAMIC RANGE

At limit of detection we can say confidently analyte is present <u>but</u> cannot perform reliable quantitation

LOQ (limit of quantification): [lowest] at which quantitative measurements can reliably be made. Equal to 10 x Average Signal for blank i.e. 10Sbl. or $LOQ = 10 \times Standard deviation of blank/ Slope$ $LOQ = 10 \times Sb/m$

Limit of linearity (LOL): when signal is no longer proportional to concentration

Dynamic range: the maximum range over which an accurate


measurement can be made

From limit of quantitation to limit of linearity

LOQ: 10 s of blank

LOL: 5% deviation from linear

Dynamic range: $\frac{LOL}{LOQ}$ 10^2 to > 10^6

Example:

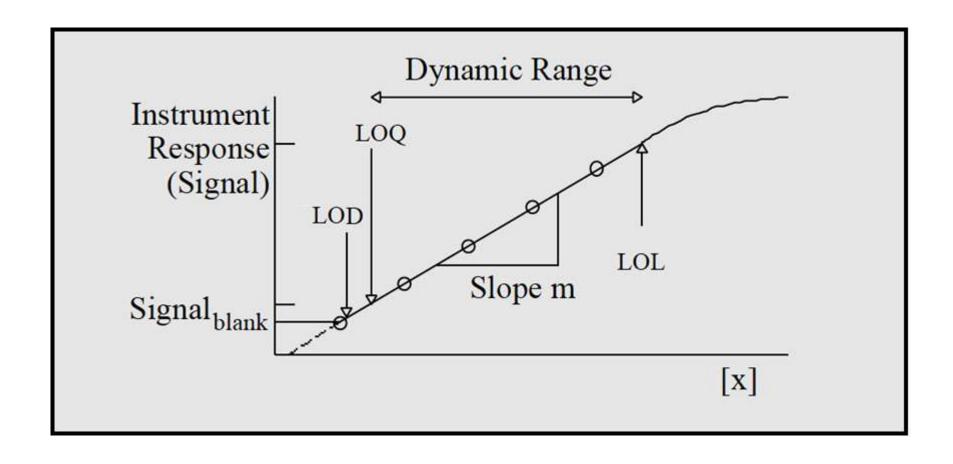
An analysis of the calibration data for the determination of lead based upon its flame emission spectrum yielded an equation: S = 1.12C + 0.312 where C is the Pb concn in ppm and S is a measure of the relative emission intensity. The following replicate data were obtained:

Concn (C), ppm	No. of replicate s	Mean value of S	Std. dev.
10.0	10	11.62	0.15
1.00	10	1.12	0.025
0.000	24	0.0296	0.0082

Calculate (a) the calibration sensitivity, (b) the analytical sensitivity at 1 and 10 ppm of Pb,(c) the limit of detection limit (LOD), and ,(d) the limit of quantification limit (LOQ)

Example Solution:

- a) calibration sensitivity is the slope of the calibration curve = 1.12
- b) Using $\gamma = m/S_s$: at 10 ppm $\gamma = 1.12 / 0.15 = 7.5$ at 1 ppm $\gamma = 1.12 / 0.025 = 45$
- c) LOD= 3 x Sb/ slope= 3 x 0.0082/1.12 = 0.0219
- d) LOQ= $10 \times \text{Sb/slope} = 10 \times 0.0082/1.12 = 0.0732$


CALIBRATION METHODS

Basis of *quantitative* analysis is magnitude of *measured* property is proportional to *concentration* of analyte

Signal
$$\infty[x]$$
 or Signal = $m[x]$ + Signal $_{blank}$

$$[x] = \frac{Signal - Signal}_{m} \frac{blank}{m}$$

CALIBRATION CURVES (WORKING or ANALYTICAL)

SAMPLE PROBLEM:

Analyte Concentration (ppm*)	Absorbance
0.0 (blank)	0.05
0.9	0.15
2.0	0.24
3.1	0.33
4.1	0.42

11 101

Define Variance and Covariance:

$$\begin{split} S_{xx} &= \frac{\sum (x_i - \overline{x})^2}{N - 1} \quad S_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1} \\ \overline{x} &= 2.02 \quad \overline{y} = 0.238 \\ S_{xx} &= \frac{\left(2.02^2 + 1.12^2 + 0.02^2 + 1.08^2 + 2.08^2\right)}{4} = \frac{10.828}{4} = 2.707 \\ S_{xy} &= \frac{(-2.02 \times -0.188) + (-1.12 \times -0.088) + (-0.02 \times 0.002) + \dots}{4} \\ &= \frac{0.9562}{4} = 0.23905 \end{split}$$

Slope:
$$m = \frac{S_{xy}}{Sx} = \frac{0.23905}{2.707} = 0.0883$$

$$b = \overline{y} - m\overline{x}$$

Intercept:
$$= 0.238 - (0.0883 \times 2.02)$$

$$= 0.0596$$

Calibration expression is

Absorbance=0.0883[Analyte (ppm)]+0.0596

Calibration Techniques

Calibration Techniques

1. External Calibration Curve Method

2. Standard Additions Method

3. Internal Standard Method

External Calibration Curve Method

1. Most convenient when a large number of similar samples are to be analyzed.

2. Most common technique.

3. Facilitates calculation of Figures of Merit.

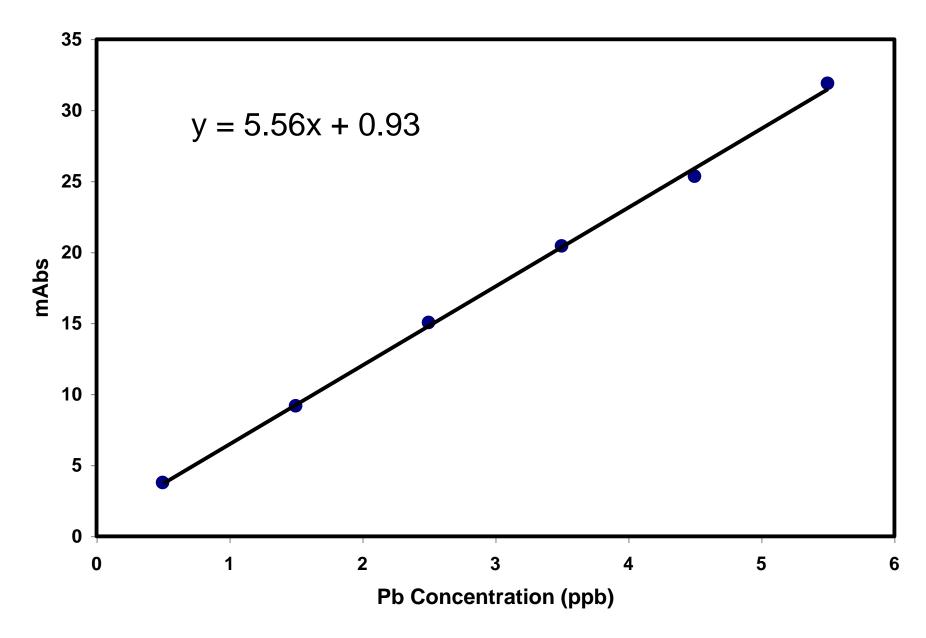
External Calibration Curve Procedure

1. Prepare a series of standard solutions (analyte solutions with known concentrations).

2. Plot [analyte] vs. Analytical Signal.

3. Use signal for unknown to find [analyte].

Example: Pb in Blood by GFAAS


[Pb]	Signal	
(ppb)	(mAbs)	
0.50	3.76	
1.50	9.16	
2.50	15.03	
3.50	20.42	
4.50	25.33	
5.50	31.87	

Results of linear regression:

$$S = mC \pm b$$

$$m = 5.56 \text{ mAbs/ppb}$$

$$b = 0.93 \text{ mAbs}$$

Calculate the LOD for Pb

20 blank measurements gives an average signal

0.92 mAbs

with a standard deviation (Sb) of

$$\sigma_{\rm bl}$$
 = 0.36 mAbs

 $LOD = 3 Sb/m = 3 \times 0.36 mAbs / 5.56 mAbs/ppb$

$$LOD = 0.2 ppb$$

Find the LOL for Pb

Lower end =
$$LOD = 0.2 ppb$$

(include this point on the calibration curve)

$$S_{LOD} = 5.56 \times 0.2 + 0.93 = 2.0 \text{ mAbs}$$

(0.2 ppb (X), 2.0 mAbs (Y))

Find the LOL for Pb

Upper end = collect points beyond the linear region and estimate the 95% point.

Suppose a standard containing 18.5 ppb gives rise to s signal of (Y practical= 98.52 mAbs)

This is approximately 5% below the expected value of (Y theoretical=103.71 mAbs)

(18.50 ppb, 98.52 mAbs)

Standard Addition Method Reduce matrix effect

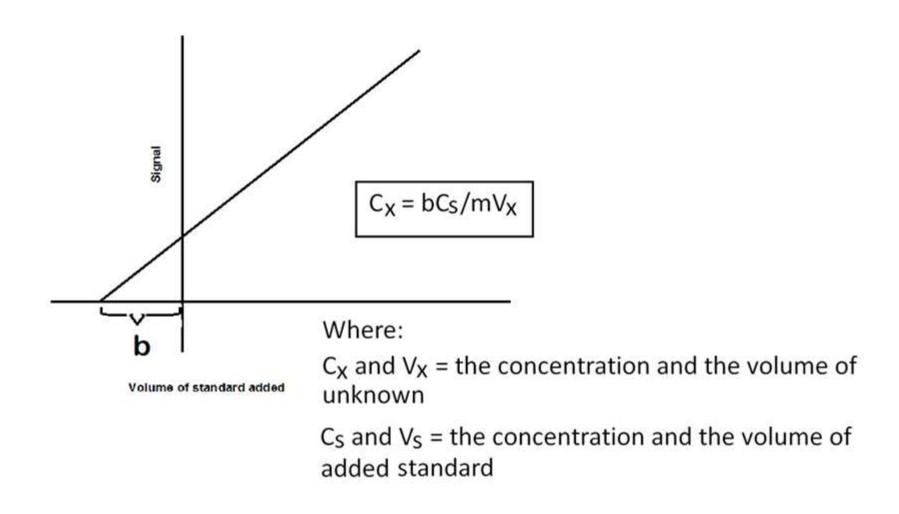
1. Most convenient when a small number of samples are to be analyzed.

2. Useful when the analyte is present in a complicated matrix and no ideal blank is available.

Standard Addition Procedure

1. Add one or more increments of a standard solution to sample aliquots of the same size. Each mixture is then diluted to the same volume.

- 2. Prepare a plot of Analytical Signal versus:
 - a) volume of standard solution added, or
 - b) concentration of analyte added.

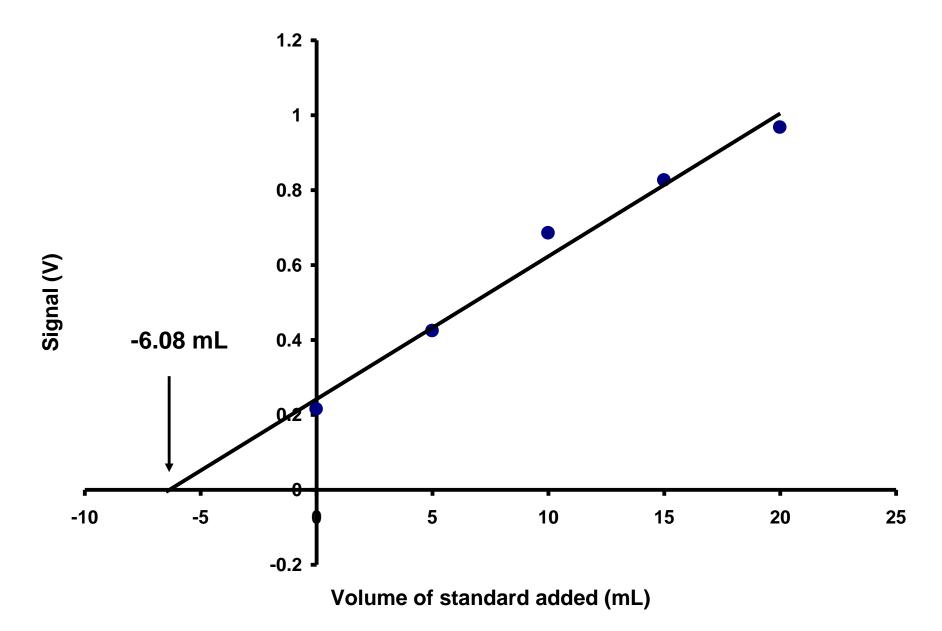

Standard Addition Procedure

 The x-intercept of the standard addition plot corresponds to the amount of analyte that must have been present in the sample (after accounting for dilution).

4. The standard addition method assumes:

- a) the curve is linear over the concentration range
- b) the y-intercept of a calibration curve would be 0

Calculation of standard addition



Example: Fe in Drinking Water

Sample	Standard		
Volume	Volume		
(mL)	(mL)	Signal (V)	
10	0	0.215	
10	5	0.424	
10	10	0.685	
10	15	0.826	
10	20	0.967	

The concentration of the Fe standard solution is 11.1 ppm

All solutions are diluted to a final volume of 50 mL

$$[Fe] = ?$$

$$x$$
-intercept = -6.08 mL

Therefore, 10 mL of sample diluted to 50 mL would give a signal equivalent to 6.08 mL of standard diluted to 50 mL.

$$V_{sam} x [Fe]_{sam} = V_{std} x [Fe]_{std}$$

10.0 mL x [Fe] =
$$6.08$$
 mL x 11.1 ppm

$$[Fe] = 6.75 ppm$$

Internal Standard Method Reduce matrix and instrument effects

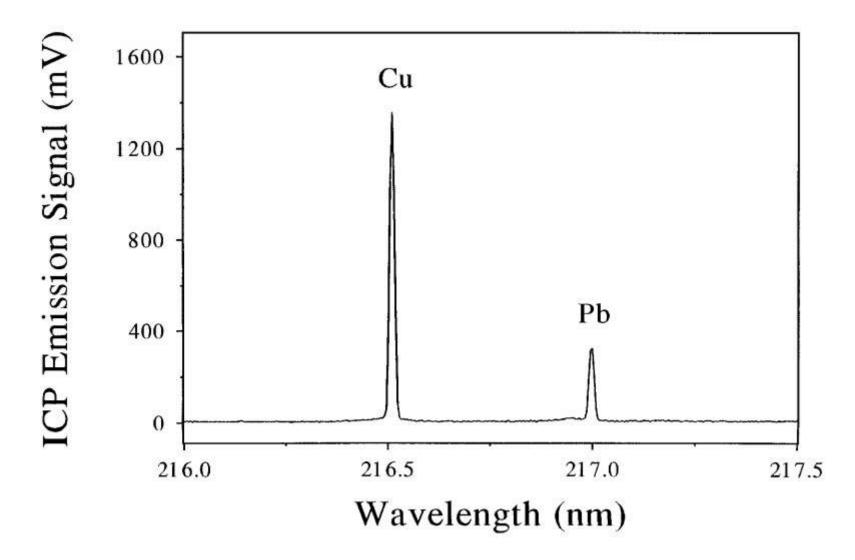
- 1. Most convenient when variations in analytical sample size, position, or matrix limit the precision of a technique.
- 2. May correct for certain types of noise.

Internal Standard Procedure

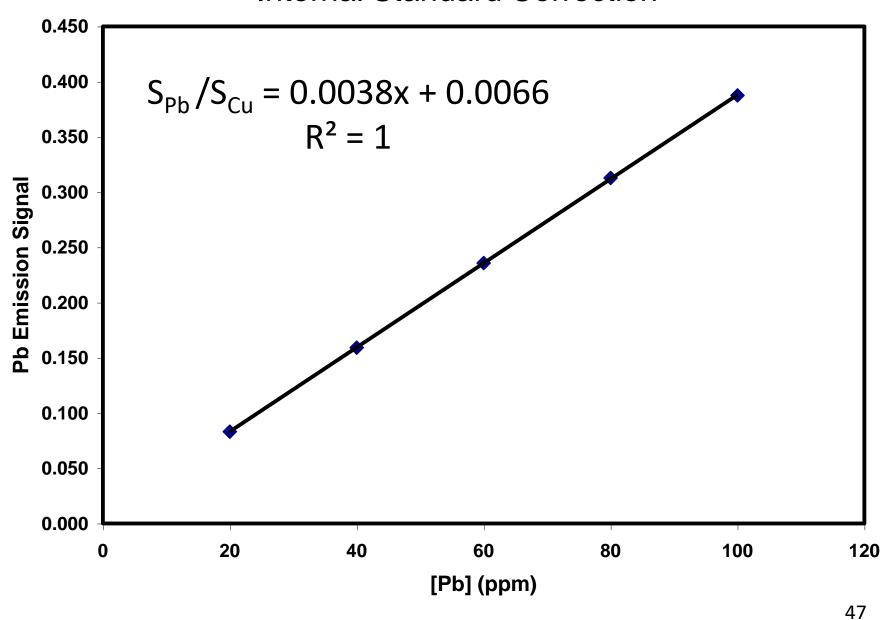
- 1. Prepare a set of standard solutions for analyte (A) as with the calibration curve method, but add a constant amount of a second species (B) to each solution.
- 2. Prepare a plot of S_A/S_B versus [A].
- 3. External calibration equation

$$S_A/S_B = mC + b$$

Notes


1. The resulting measurement will be independent of sample size and position.

2. Species A & B must not produce signals that interfere with each other. Usually they are separated by wavelength or time.


Example: Pb by ICP Emission

Each Pb solution contains 100 ppm Cu.

	Signal		
[Pb] (ppm)	Pb	100 ppm Cu	Pb/Cu
\			
20	112	1347	0.083
40	243	1527	0.159
60	326	1383	0.236
80	355	1135	0.313
100	558	1440	0.388

Internal Standard Correction

Results for an unknown sample after adding 100 ppm Cu

	Signal		
Run	Pb	Cu	Pb/Cu
1	346	1426	0.243
2	297	1229	0.242
3	328	1366	0.240
4	331	1371	0.241
5	324	1356	0.239
mean	325	1350	0.241

0.241 = 0.0038 X + 0.0066X= 61.684 ppm of Pb

Another way for Internal Standard method calculation

 In a single-point internal standardization, we prepare a single standard containing the analyte and the internal standard and use it to determine the value of K.

$$K = \left(\frac{C_{\rm IS}}{C_{\rm A}}\right)_{\rm std} \times \left(\frac{S_{\rm A}}{S_{\rm IS}}\right)_{\rm std}$$

 Where, CA is the standard concentration of the analyte, SA instrument response of analyte, CIS, and SIS the are the concentration and the response of internal added compound, respectively. A sixth spectrophotometric method for the quantitative analysis of Pb²⁺ in blood uses Cu²⁺ as an internal standard. A standard containing 1.75 ppb Pb²⁺ and 2.25 ppb Cu²⁺ yields a ratio of $(S_A/S_{IS})_{std}$ of 2.37. A sample of blood is spiked with the same concentration of Cu²⁺, giving a signal ratio, $(S_A/S_{IS})_{samp}$, of 1.80. Determine the concentration of Pb²⁺ in the sample of blood.

SOLUTION allows us to calculate the value of K using the data for the standard

$$K = \left(\frac{C_{IS}}{C_{A}}\right)_{std} \times \left(\frac{S_{A}}{S_{IS}}\right)_{std} = \frac{2.25 \text{ ppb Cu}}{1.75 \text{ ppb Pb}^{2+}} \times 2.37 = 3.05 \frac{\text{ppb Cu}^{2+}}{\text{ppb Pb}^{2+}}$$

The concentration of Pb2+, therefore, is

$$C_{A} = \frac{C_{IS}}{K} \times \left(\frac{S_{A}}{S_{IS}}\right)_{samp} = \frac{2.25 \text{ ppb Cu}^{2+}}{3.05 \frac{\text{ppb Cu}^{2+}}{\text{ppb Pb}^{2+}}} \times 1.80 = 1.33 \text{ ppb Cu}^{2+}$$