Cholinergic Antagonists

- Also called:
- ✓ Cholinergic Blocker
- ✓ Parasympatholytics
- ✓ Anticholinergic drugs

- ➤ Bind to cholinoceptors, but they
 do not trigger the usual receptor-mediated
 intracellular effects
- > Fall into:
- 1. Muscarinic Antagonists
- 2. Nicotinic Antagonist (clinically irrelevant)
- 3. Neuromuscular Blocking Agents (Skeletal muscle relaxants)

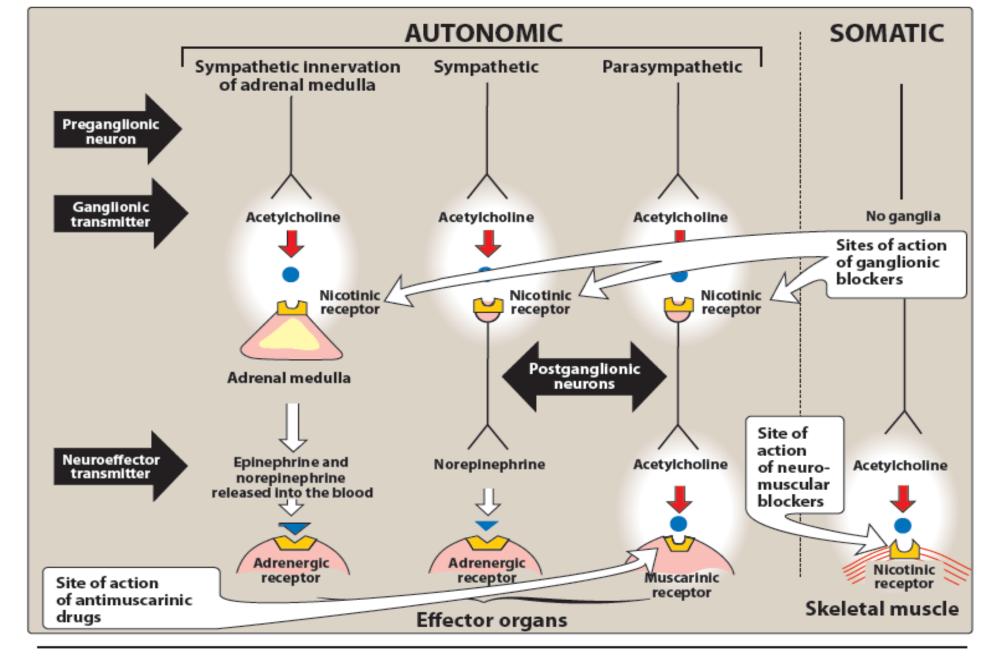


Figure 5.2
Sites of actions of cholinergic antagonists.

ANTIMUSCARINIC AGENTS

Atropine

- ✓ Tertiary amine Belladona Alkaloid
- ✓ Competitive Antagonist to Ach on the muscarinic receptor
- ✓ Acts both centrally and peripherally
- ✓ Its general actions last about 4 hours
- ✓ Topical eye application renders it effective for days
- ✓ Mostly effective in bronchial tissues

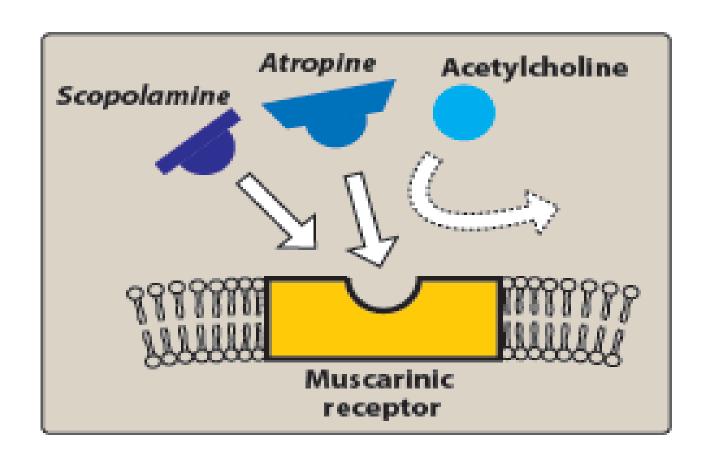
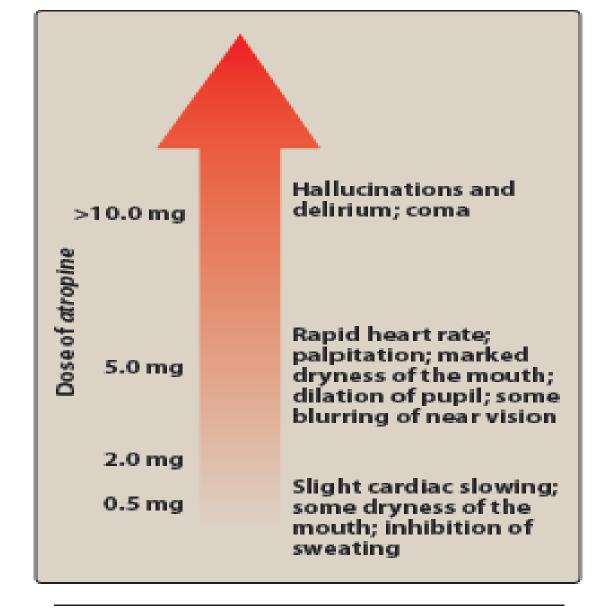



Figure 5.3

Competition of atropine and scopolamine with acetylcholine for the muscarinic receptor.

Atropine Actions

- persistent mydriasis
- caution in glucoma
 The most potent antispasmodic
- Decrease bladder contraction
- Inhibit secretion of saliva and sweat

Figure 5.4Dose-dependent effects of *atropine*.

Atropine Actions

- Cardiovascular :
- At low doses : Bradycardia
- At higher doses: Tachycardia
- Arterial blood pressure is unaffected
- Atropine is the Antidot for cholinergic agonist
- treatment of overdoses of cholinesterase inhibitor as insecticides
- some types of mushroom poisoning

Adverse effects

- Dry mouth
- ❖ Blurred vision
- Urinary retention
- Constipation
- CNS related : restlessnes , hallucnations,,,
- exacerbate glucoma
- increase body temperature

Scopolamine

- ✓ another tertiary amine plant alkaloid
- ✓ scopolamine has greater action on the CNS
- ✓ Scopolamine is one of the most effective anti-motion sickness drugs available
- ✓ In contrast to *atropine*, *scopolamine* produces sedation.

- ✓ it is much more effective prophylactically than for treating motion sickness once it occurs.
- ✓ administered as patches

Ipratropium and tiotropium

- Quaternary derivatives of atropine
- ☐ Inhaled products
- ☐ Approved as bronchodilators for maintenance treatment of
- COPD
- Chronic bronchitis
- Emphysema

➤ Tiotropium is administered once daily, a major advantage over ipratropium, which requires dosing up to four times daily.

Muscarinic blockers	
Trihexyphenidyl Benztropine	 Treatment of Parkinson disease
Darifenacin Fesoterodine Oxybutynin Solifenacin Tolterodine Trospium	 Treatment of overactive urinary bladder
Cyclopentolate Tropicamide Atropine*	 In ophthalmology, to produce mydriasis and cycloplegia prior to refraction
Atropine*	 To treat spastic disorders of the Gl and lower urinary tract To treat organophosphate poisoning To suppress respiratory secretions prior to surgery
Scopolamine	 In obstetrics, with morphine to produce amnesia and sedation To prevent motion sickness
lpratropium	 Treatment of COPD
Ganglionic blockers	
Nicotine	None

GANGLIONIC BLOCKERS

- Nicotine :
 - A component of cigarette smoke
 - It is without therapeutic benefit and is deleterious to health.
- depolarizes autonomic ganglia, causing stimualtion (increase release of NTs) and then paralysis of all ganglia

- Nicotin has complex stimulatory action
- Effects include:
- Increase BP & HR
- Loss of apetite
- Sexual Arousal
- Mood modulation

NEUROMUSCULAR-BLOCKING DRUGS

- Block choliergic transmission between motor nerve endings and cholinergic receptors in the skeletal muscles on the endplate NMJ
- They include :
- **❖** Nondepolarizing (competitive) blockers
- Depolarizing agents

Nondepolarizing (competitive) blockers

- Curare : a toxin used to primarily to paralyse animals
- Pancuronium (long acting)
- Atracurium and vecuronium(intermediate acting)

- binds to nicotinic recptors at NMJ and inhibit Ach binding.
- Inhibits muscle contraction
- Its action can be reverse (competively) by increasing Ach dose or using AchE inhibitors
- High doses lead to further irreversible blockade

- Paralysis starts with muscles of the face and eyes
- Then subsequently spreads to fingers, neck trunck
- Finally the diaphragm becomes paralyzed

 These blockers are used therapeutically as adjuvant drugs in anesthesia during surgery to relax skeletal muscle.

- NM blockers are adminstered IV.
- Poor penetration of cells , BBB
- Poorly metabolized agents
- pancuronium is excreted unchanged in urine.

❖ S/E : hyperkalemia,IOP,

Drug interactions

- AchE inhibitors
- Aminoglycosides
- CCB

Depolarizing agents

- Act as Ach, but with longer duration of action due to more resistance to AchE
- Succinylcholine is the only depolarizing agent is used.

• The depolarizing agent first causes the opening of the sodium channel associated with the nicotinic receptors, which results in depolarization of the receptor (**Phase I**). (fasciculations).

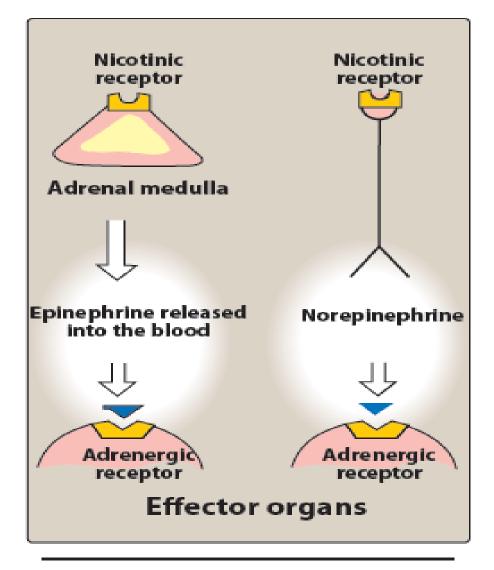
- Continued binding of the depolarizing agent renders the receptor incapable of transmitting further impulses.
- With time, continuous depolarization gives way to gradual repolarization as the sodium channel closes or is blocked. This causes a resistance to depolarization (Phase II) and flaccid paralysis.

- the respiratory muscles are paralyzed last
- Normally, the duration of action of *Succinylcholine* is extremely short, because this drug is rapidly broken down by plasma pseudocholinesterase.
- Because of its rapid onset and short duration of action, succinylcholine is useful when rapid endotracheal intubation is required

- Succinylcholine is injected intravenously
- sometimes given by continuous infusion to maintain a longer duration of effect. Drug effects rapidly disappear upon discontinuation

Adverse effects

- Hyperthermia
- Apnea (in genetically suseptable patients)
- Hyperkalemia


Adrenergic Agonists

Adrenergic Agonists

- ☐ Neurotransmission at adrenergic neurons
- Norepinephrine is the neurotransmitter instead of acetylcholine
- The process involves:
- 1.Synthesis
- 2. Storage
- 3.Release
- 4.receptor binding
- 5. removal of the neurotransmitter from the synaptic gap

1. Synthesis of norepinephrine

- Tyrosine entry to the adrenergic neuron via Na+ dependent carrier
- Tyrosine hydoxylation ** RLS
- DOPA decarboxyation
- Dopamine hydroxylation(inside the vesicles)

Figure 6.2Sites of actions of adrenergic agonists.

2. Storage of norepinephrine in vesicles

- Dopamine is then transported into synaptic vesicles by an amine transporter system that is also involved in the reuptake of preformed norepinephrine.
- This carrier system is blocked by reserpine
- Dopamine is hydroxylated to form norepinephrine by the enzyme, dopamine b-hydroxylase
- Stored in the vesicle untill released

• In the adrenal medulla, norepinephrine is methylated to yield epinephrine, which is stored in chromaffin cells along with norepinephrine.

3. Release of norepinephrine

- Ca+2 influx to the cytoplasm
- Vesicles fuse with the cell membrane
- Expelling of its content

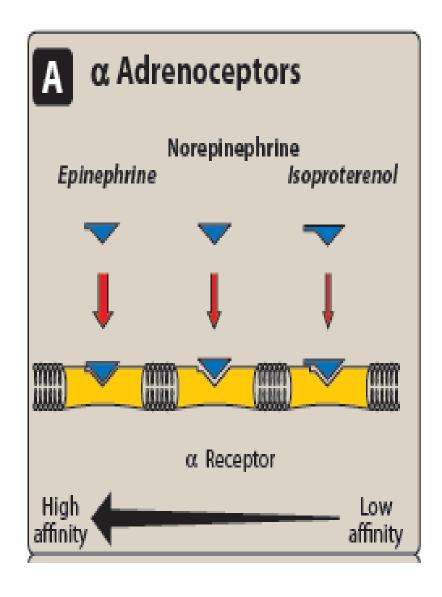
4. Binding to receptors

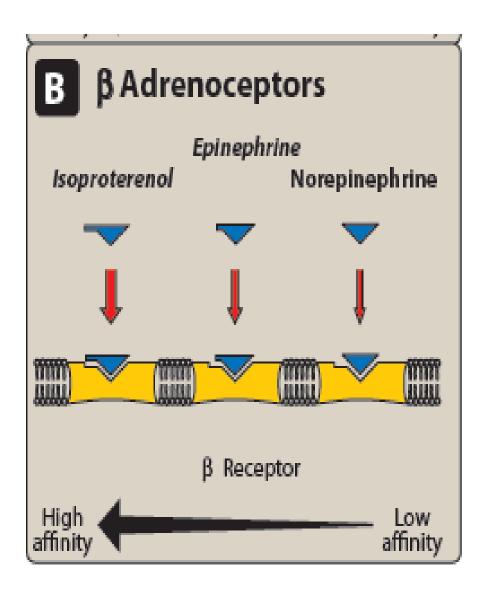
- Norepinephrine binds to postsynaptic receptors
- Elicit cascade of events including secondary messengers.
 - cyclic adenosine monophosphate cAMP
 - phosphatidylinositol cycle
- "Norepinephrine also binds to presynaptic receptors that modulate the release of the neurotransmitter"

5. Removal of norepinephrine

Possible removal mechanisms:

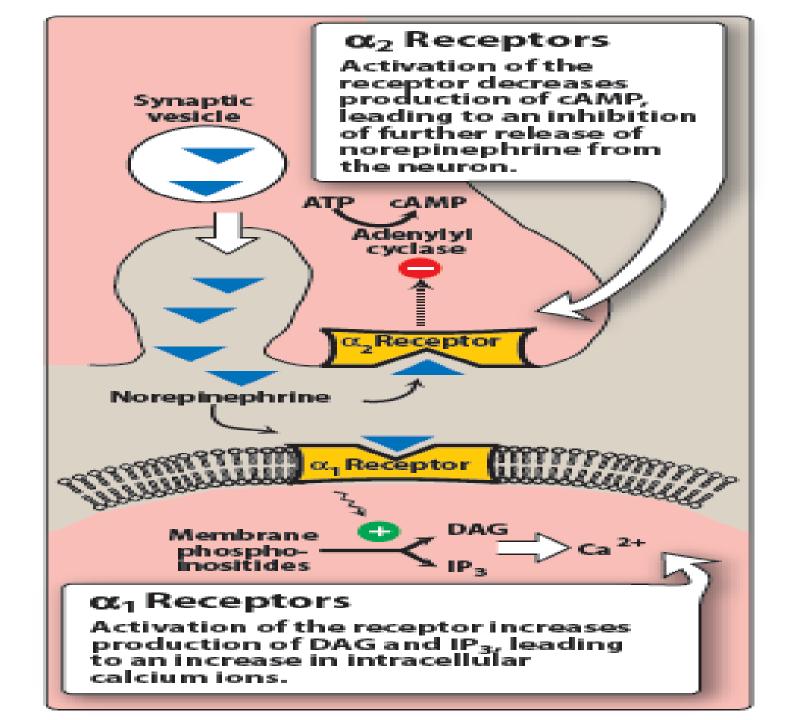
- ➤ Diffuse out of the synaptic space and enter the general circulation
- ➤ Metabolism to O-methylated derivatives by postsynaptic cell membrane—associated catechol O-methyltransferase (COMT) in the synaptic space
- ➤ Be recaptured by an uptake system that pumps the norepinephrine back into the neuron


When NE reenters Adrenergic neurons


 can be oxidized by monoamine oxidase (MAO) present in neuronal mitochondria.

• The inactive products of norepinephrine metabolism are excreted in urine as vanillylmandelic acid, metanephrine, and normetanephrine.

Adrenergic receptors (adrenoceptors)

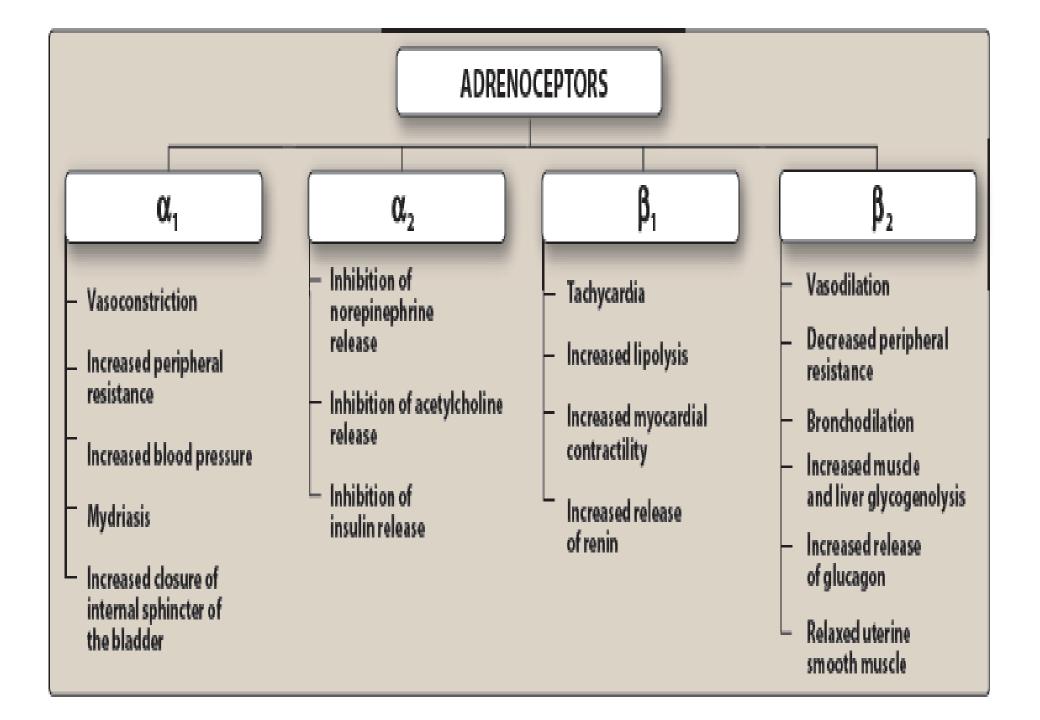


Adrenergic receptors (adrenoceptors)

α Receptors

- $\geq \alpha 1$:
 - postsynaptic effector organs
- contraction of smooth muscles
- Activation increases IP3
 and DAG and Calcium
 release from the ER to
 cytplasm

- $\geq \alpha 2$:
- located presynaptically
- Beta cell of the pancreas and on certain vascular smooth muscle cells, control adrenergic neuromediator and insulin output,
- feedback inhibition on NE
- -fall in the levels of intracellular cAMP.



- The $\alpha 1$ and $\alpha 2$ receptors are further divided into $\alpha 1A$, $\alpha 1B$, $\alpha 1C$, and $\alpha 1D$ and into $\alpha 2A$, $\alpha 2B$, and $\alpha 2C$. This extended classification is necessary for understanding the selectivity of some drugs.
- For example, tamsulosin is a selective $\alpha 1A$ antagonist that is used to treat benign prostate hyperplasia. The drug is clinically useful because it targets $\alpha 1A$ receptors found primarily in the urinary tract and prostate gland.

β Receptors

- Strong response to isoproterenol rather than to epinephrine
- The β-adrenoceptors can be subdivided into three major subgroups
- β1 (heart, kidney)
- β2 (lung, blood vessels)
- β3 (AD)

Binding of a neurotransmitter at any of the three β receptors results in increased concentrations of cAMP within the cell

