

LECTURE 15: GASTROINTESTINAL SYSTEM

Objectives

1. Discuss the digestive system.

2. Describe neural innervation of the GI tract.

3. Explore gastrointestinal motility, chewing and swallowing.

(Pages 886- 901 of the reference)

THE DIGESTIVE SYSTEM

- The digestive system contributes to homeostasis by breaking down food into forms that can be absorbed and used by body cells. It also absorbs water, vitamins, and minerals, > lipid > forty acid, protein > amino acid, carbohydrate > monosaccharide > storch (polysaccharide) -> disaccharide -> monosaccharide and it eliminates wastes from the body.
- The food we eat consists of molecules that are too large to be used by body cells. Therefore, foods must be broken down into molecules that are small enough to enter body cells, a process known as digestion. (main function of digestive system)
- It extends from the mouth to the anus, forms an extensive surface area in contact with the external environment, and is closely associated with the cardiovascular system. The gastrointestinal (GI) tract or alimentary canal is a continuous tube that extends from the mouth to the anus through the thoracic and abdominopelvic cavities. > the structure divide into two main groups.
- Organs of the gastrointestinal tract include the mouth, most of the pharynx, esop Laingestion

stomach, small intestine, and large intestine.

Lathe parts of pharmy between respiratory and digestive

THE DIGESTIVE SYSTEM

The accessory digestive organs include the teeth, tongue, salivary glands, liver, gallbladder, and pancreas. Laccessory oraph in mouth La then esophagus (main), stamach (main) La three accessory digestive organ between stomach and small intestine

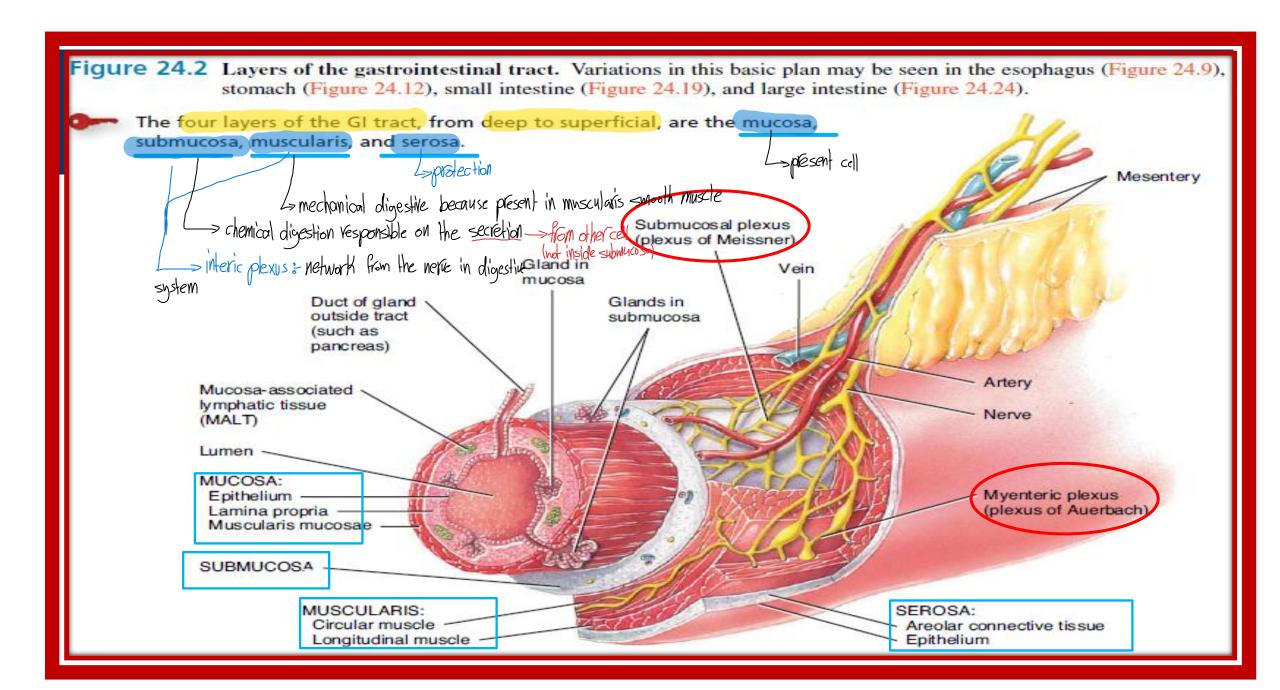
FUNCTIONS OF THE DIGESTIVE SYSTEM - to maintain homeostoses

two type of gland in Mouth

Osaliva gland→saliva

@lingual gland->lingual lipase

Secretion: release of water, acid, buffers, and enzymes into lumen of GI tract. > saliva+food+ l'impual lipase


stre first function to maintain nomens buses butaince

3. Mixing and propulsion: churning and movement of food through GI tract. -esophorus

- secretion + contraction to smooth muscle 4. Digestion: mechanical and 1. Ingestion: taking food into mouth. chemical breakdown of food. > Very Pluid wass > in stomach La gov. digestion

5. Absorption: passage of digested products from GI tract into blood and lymph. ~> happen mainly in small intestine and complete in large intestine

6. Defecation: elimination of feces from GI tract. Syly The (output) from the amus

NEURAL INNERVATION OF THE GITRACT

The gastrointestinal tract is regulated by an intrinsic set of nerves known as the enteric nervous system and by an extrinsic set of nerves that are part of the autonomic

nervous system. w> he digestive system controlled by these navous system

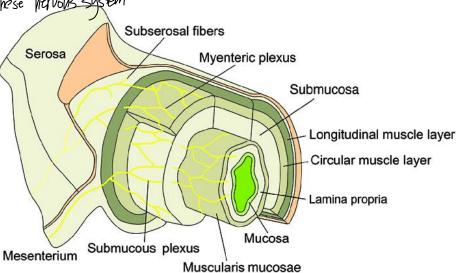
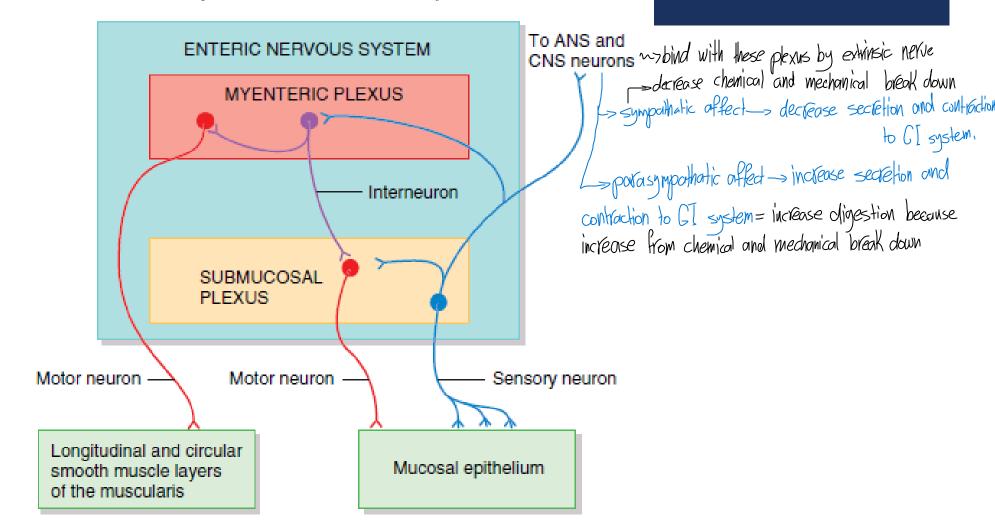



Figure 24.3 Organization of the enteric nervous system.

The enteric nervous system consists of neurons arranged into the myenteric and submucosal plexuses.

ENTERIC NERVOUS SYSTEM

The neurons of the ENS are arranged into two plexuses: the myenteric plexus and submucosal plexus.

In submucosal layer (GI secretion) to make the balus -> port of fluidity.

- The myenteric plexus is located between the longitudinal and circular smooth muscle layers of the muscularis.
- The submucosal plexus is found within the submucosa.
- * The plexuses of the ENS consist of motor neurons, interneurons, and sensory neurons. chemoreceptor -> submucosal plexus (secretion) -> chemical break down

 mechanoreceptor -> myentric plexus (contraction) -> mechanical break down

ENTERIC NERVOUS SYSTEM

- Because the motor neurons of the myenteric plexus supply the longitudinal and circular smooth muscle layers of the muscularis, this plexus mostly controls GI tract motility (movement), particularly the frequency and strength of contraction of the muscularis.
- The motor neurons of the submucosal plexus supply the secretory cells of the mucosal epithelium, controlling the secretions of the organs of the GI tract.

-> =acretion (submucosal plexus)

* The interneurons of the ENS interconnect the neurons of the myenteric and submucosal plexuses. The wall of the GI tract contains two major types of sensory receptors: (1) chemoreceptors, which respond to certain chemicals in the food present in the lumen, and (2) mechanoreceptors, such as stretch receptors, that are activated when food distends (stretches) the wall of a GI organ.

Sexample on Mechanoreceptors

AUTONOMIC NERVOUS SYSTEM

- ✓ Although the neurons of the ENS can function independently, they are subject to regulation by the neurons of the autonomic nervous system.
- ✓ The vagus (X) nerves supply parasympathetic fibers to most parts of the GI tract, with the exception of the last half of the large intestine, which is supplied with parasympathetic fibers from the sacral spinal cord.
- ✓ The parasympathetic nerves that supply the GI tract form neural connections with the ENS.

AUTONOMIC NERVOUS SYSTEM

In general, stimulation of the parasympathetic nerves that innervate the GI tract causes an increase in GI secretion and motility by increasing the activity of ENS neurons.

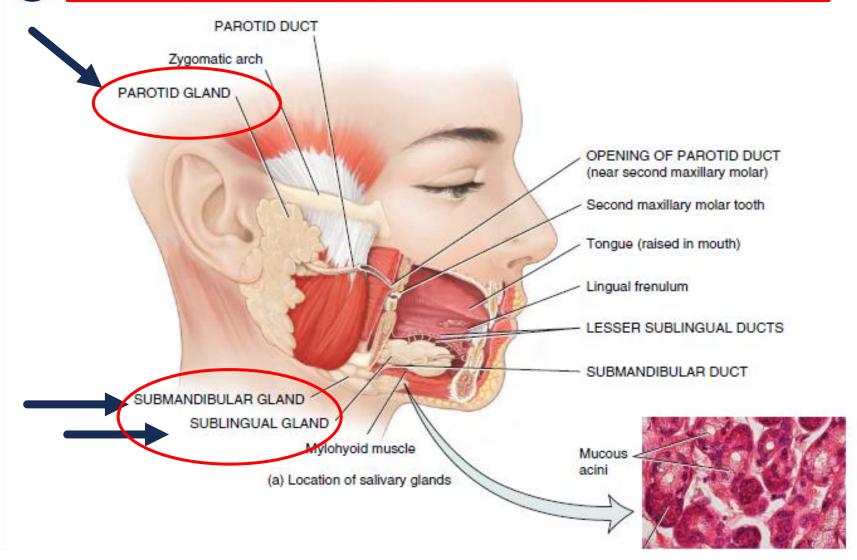
Laenteric nervous system

In general, the sympathetic nerves that supply the GI tract cause a decrease in GI secretion and motility by inhibiting the neurons of the ENS. Emotions such as anger, fear, and anxiety may slow digestion because they stimulate the sympathetic nerves that supply the GI tract.

La decrease activation of entric nervous system

MOUTH Latwo type of opland HARD PALATE (bony) forms most of the root of the mouth. lingual gland the rest of the mouth's roof. salivary amyluse lingual lipase Saliva from entering the nasal cavity. break down the break CHEEK forms lateral wall of carbohydrate to the lipids oral cavity. Sorcharide MOLARS grind food. I first nutrient start the break down from the mouth to monosacchartole PREMOLARS crush and grind food. CANINES tear food. > the differ between solivary amylase INCISORS cut food. and lingual lipose? two is break down but between the cheeks and teeth. We down the lipid in stomach (more acidic media, ph is low)

Figure 24.5 Structures of the mouth (oral cavity).


The mouth is formed by the cheeks, hard and soft palates, and tongue.

Superior lip (lifted upward) SUPERIOR LABIAL FRENULUM attaches superior lip to gum. Gingivae (gums) FAUCES is the opening between the oral cavity and oropharynx. Palatoglossal arch SOFT PALATE (muscular) forms Palatopharyngeal arch UVULA prevents swallowed food Palatine tonsil (between the arches) TONGUE (lifted upward) forms the floor of the mouth, manipulates food for chewing and swallowing, shapes food, and senses taste. LINGUAL FRENULUM limits movement of the tongue posteriorly. Opening of duct of submandibular gland GINGIVAE (GUMS) cover tooth sockets and help to anchor teeth. INFERIOR LABIAL FRENULUM attaches inferior lip to gum. ORAL VESTIBULE is the space between the cheeks, lips, gums, Inferior lip (pulled down)

Anterior view

Figure 24.5 The three major salivary glands—parotid, sublingual, and submandibular. The submandibular glands, shown in the light micrograph (b), consist mostly of serous acimi (serous fluid-secreting portions of gland) and a few mucous acimi (mucus-secreting portions of gland); the parotid glands consist of serous acimi only; and the sublingual glands consist of mostly mucous acini and a few serous acini.

Saliva lubricates and dissolves foods and begins the chemical breakdown of carbohydrates and lipids.

Extrinsic muscles Hyoglossus Genioglossus Superior longitudinal Vertical Transverse Inferior longitudinal Intrinsic muscles


TONGUE

- ☐ The tongue is an accessory digestive organ composed of skeletal muscle covered with mucous membrane.
- □ Together with its associated muscles, it forms the floor of the oral cavity.
- The extrinsic muscles of the tongue, which originate outside the tongue (attach to bones in the area) and insert into connective tissues in the tongue.

 The extrinsic muscles of the tongue, which originate outside the tongue (attach to bones in the area) and insert into connective tissues in the tongue.
 - The extrinsic muscles move the tongue from side to side and in and out to maneuver food for chewing, shape the food into a rounded mass, and force the food to the back of the mouth for swallowing. They also
 - form the floor of the mouth and hold the tongue in position.

 The intrinsic muscles of the tongue originate in and insert into connective tissue within the tongue. They alter the shape and size of the tongue for speech and swallowing.

-> orginate and insert inside tunge and contribute in speech and swallowing

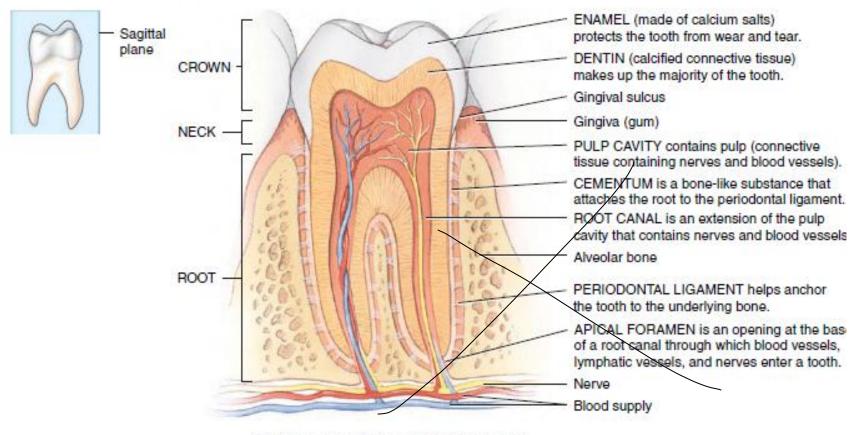

, the intrinsic and extrinsic muscle contribute in swallowlug

Figure 24.7 A typical tooth and surrounding structures.

Teeth are anchored in sockets of the alveolar processes of the mandible and maxillae.

A typical tooth has three major external regions: the crown, root, and neck.

MECHANICAL AND CHEMICAL DIGESTION IN THE MOUTH

- سے غےے وہ فالبد Mechanical digestion in the mouth results from chewing, or mastication, in which food is Manipulated by the tongue, ground by the teeth, and mixed with saliva.

 (As a result, the food is reduced to a soft, flexible, easily swallowed mass) called a bolus.
 - ->soliva amybse
 - Food molecules begin to dissolve in the water in saliva, an important activity because enzymes can react with food molecules in a liquid medium only.
- Two enzymes, salivary amylase and lingual lipase, contribute to chemical digestion in the mouth.
- Salivary amylase, which is secreted by the salivary glands, initiates the breakdown of starch. Dietary carbohydrates are either monosaccharide and disaccharide sugars or complex polysaccharides such as starches. Most of the carbohydrates we eat are starches, but only monosaccharides can be absorbed into the bloodstream. Thus, ingested disaccharides and starches must be broken down into monosaccharides.

MECHANICAL AND CHEMICAL DIGESTION IN THE MOUTH

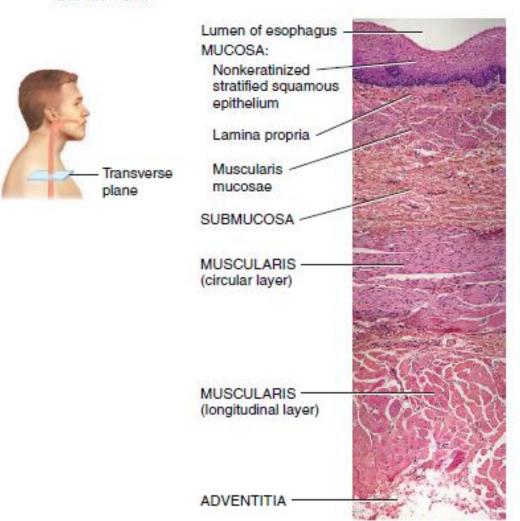
Saliva also contains lingual lipase, which is secreted by lingual glands in the tongue. This enzyme becomes activated in the acidic environment of the stomach and thus starts to work after food is swallowed. It breaks down dietary triglycerides (fats and oils) into fatty acids and diglycerides. A diglyceride consists of a glycerol molecule that is attached to two fatty acids.

TABLE 24.1			
Summary of Digestive Activities in the Mouth			
STRUCTURE	ACTIVITY	RESULT	
Cheeks and lips	Keep food between teeth.	Foods uniformly chewed during mastication.	
Salivary glands	Secrete saliva.	Lining of mouth and pharynx moistened and lubricated. Saliva softens, moistens, and dissolves food and cleanses mouth and teeth. Salivary amylase splits starch into smaller fragments (maltose, maltotriose, and α -dextrins).	
Tongue			
Extrinsic tongue muscles	Move tongue from side to side and in and out.	Food maneuvered for mastication, shaped into bolus, and maneuvered for swallowing.	
Intrinsic tongue muscles	Alter shape of tongue.	Swallowing and speech.	
Taste buds	Serve as receptors for gustation (taste) and presence of food in mouth.	Secretion of saliva stimulated by nerve impulses from taste buds to salivatory nuclei in brain stem to salivary glands.	
Lingual glands	Secrete lingual lipase.	Triglycerides broken down into fatty acids and diglycerides.	
Teeth	Cut, tear, and pulverize food.	Solid foods reduced to smaller particles for swallowing.	

PHARYNX

- When food is first swallowed, it passes from the mouth into the pharynx, a funnel-shaped tube that extends from the internal nares to the esophagus posteriorly and to the larynx anteriorly.
- The pharynx is composed of skeletal muscle and lined by mucous membrane, and is divided into three parts: the nasopharynx, the oropharynx, and the laryngopharynx.
- The nasopharynx functions only in respiration, but both the oropharynx and laryngopharynx have digestive as well as respiratory functions.
- > Swallowed food passes from the mouth into the oropharynx and laryngopharynx; the muscular contractions of these areas help propel food into the esophagus and then into the stomach.

ESOPHAGUS


function of esophagus?

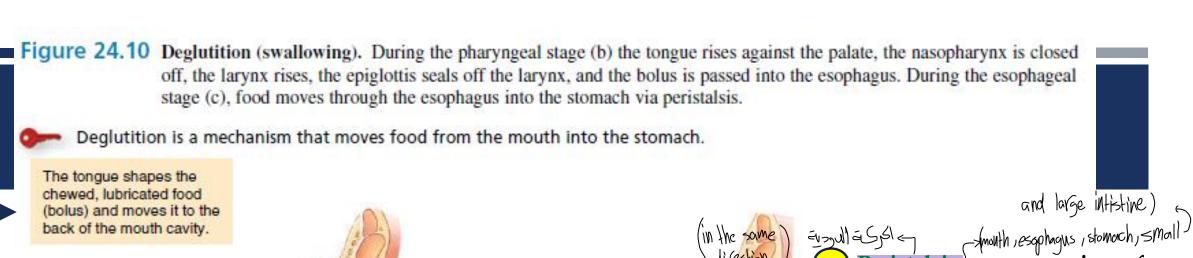

The esophagus secretes mucus and transports food into the stomach. It does not produce digestive enzymes, and it does not carry on absorption.

Figure 24.9 Histology of the esophagus. A highermagnification view of nonkeratinized stratified squamous epithelium is shown in Table 4.1F.

The esophagus secretes mucus and transports food to the stomach.

Nasopharynx Hard palate Soft palate Bolus Uvula -Lawhen enter the bolus is close Tongue Oropharynx Epiglottis Laryngopharynx

Peristalsis: a progression of coordinated contractions and relaxations of the circular and longitudinal layers of the muscularis, pushes the bolus onward.

La same direction (1,9) epiplo

- The tongue rises against the palate and closes the nasopharynx.
- The uvula and palate seal off the nasal cavity.
- The epiglottis covers the larynx.

Breathing is temporarily interrupted.

(a) Position of structures during voluntary stage

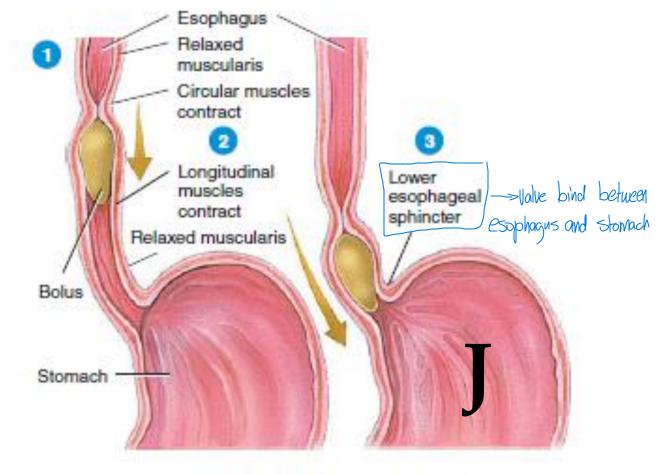

(b) Pharyngeal stage of swallowing

TABLE 24.2			
Summary of Digestive Activities in the Pharynx and Esophagus			
STRUCTURE	ACTIVITY	RESULT	
Pharynx	Pharyngeal stage of deglutition.	Moves bolus from oropharynx to laryngopharynx and into esophagus; closes air passageways.	
Esophagus	Relaxation of upper esophageal sphincter.	Permits entry of bolus from laryngopharynx into esophagus.	
	Esophageal stage of deglutition (peristalsis).	Pushes bolus down esophagus.	
	Relaxation of lower esophageal sphincter.	Permits entry of bolus into stomach.	
	Secretion of mucus.	Lubricates esophagus for smooth passage of bolus.	

STOMACH

The stomach is a J-shaped enlargement of the GI tract directly inferior to the diaphragm in the abdomen. The stomach connects the the esophagus duodenum, the first part of the small intestine. >first part of the small intestine

STOMACH

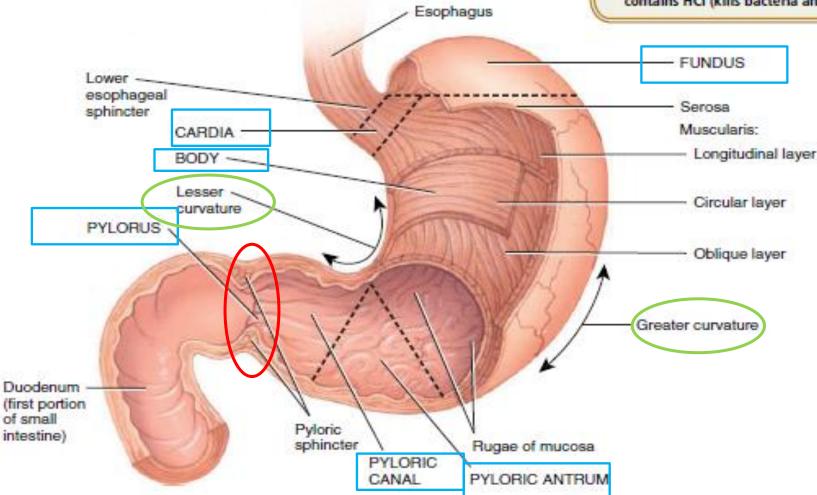
- Because a meal can be eaten much more quickly than the intestines can digest and absorb it, one of the functions of the stomach is to serve as a mixing chamber and holding reservoir. المادة المادة
- At appropriate intervals after food is ingested, the stomach forces a small quantity of material into the first portion of the small intestine.

Lodudenum

- * The position and size of the stomach vary continually; the diaphragm pushes it inferiorly with each inhalation and pulls it superiorly with each exhalation. Empty, it is about the size of a large sausage, but it is the most distensible part of the GI tract and can accommodate a large quantity of food.
- In the stomach, digestion of starch and triglycerides continues, digestion of proteins begins, the semisolid bolus is converted to a liquid, and certain substances are absorbed.

Figure 24.11 External and internal anatomy of the stomach.

-


The four regions of the stomach are the cardia, fundus, body, and pyloric part.

FUNCTIONS OF THE STOMACH = important

- Mixes saliva, food, and gastric juice to form chyme.
- Serves as reservoir for food before release into small intestine.
- Secretes gastric juice, which contains HCl (kills bacteria and

denatures proteins), pepsin (begins the digestion of proteins), intrinsic factor (aids absorption of vitamin B₁₂), and gastric lipase (aids digestion of triglycerides).

4. Secretes gastrin into blood.

(a) Anterior view of regions of stomach

The pylorus
communicates
with the duodenum of the
small intestine via a
smooth muscle sphincter
called the pyloric
sphincter.

The concave medial border of the stomach is called the lesser curvature; the convex lateral border is called the greater curvature.

STOMACH

* The stomach wall is composed of the same basic layers as the rest of the GI tract, with certain modifications. The surface of the mucosa is a layer of simple columnar epithelial cells called surface mucous cells. ~> secretion mucous (basic) and mucous neck cell

-> degradation to carbohydrate in mouth by saliva annylase -> degradation to lipid by active lingual lipase in stomach -> degradation to protein by pepsin in stomach

* Parietal cells produce intrinsic factor (needed for absorption of vitamin B12) and 6 absorpation vilamine b/2 hydrochloric acid. ~> (HCI) Lathe first part become absorption

=> G-cell: produce gastrin that make control of HCI level

(small amount) in stomach by intensic factor that produce by parietal cell * The chief cells secrete pepsinogen and gastric lipase. ... the lipase responsible to beak down the lipid? Olingual lipase in the tunge Ogastric lipase in stomach Sinactive form of pepsin

Sinactive form of

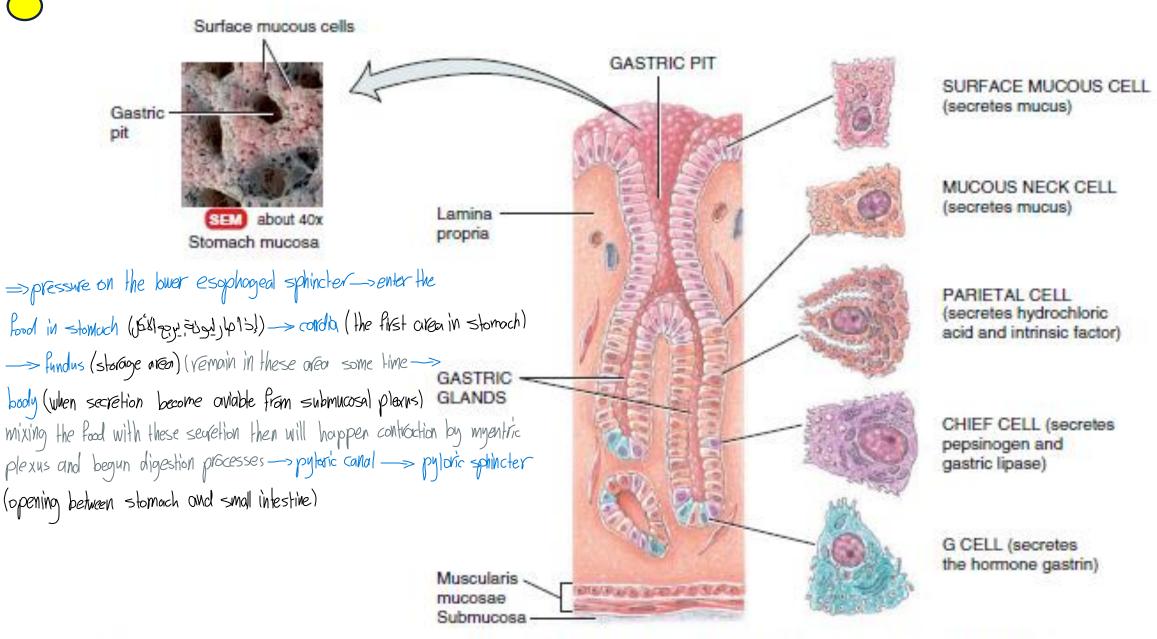

La secretion of chief cell, parietal cell and totals 2000–3000 mL per day.

Figure 24.12 Histology of the stomach.

layer of muscle

Gastric juice is the combined secretions of mucous cells, parietal cells, and chief cells. Lumen of stomach Gastric pits -Surface mucous cell Lamina - MUCOSA propria Mucous neck cell Parietal cell Chief cell Gastric glands -G cell SUBMUCOSA Lymphatic nodule Muscularis mucosae Lymphatic vessel -- MUSCULARIS Venule -Arteriole Oblique layer of muscle Circular layer of muscle SEROSA. Enteric neurons in muscularis Longitudinal

(b) Sectional view of the stomach mucosa showing gastric glands and cell types

MECHANICAL AND CHEMICAL DIGESTION IN THE STOMACH

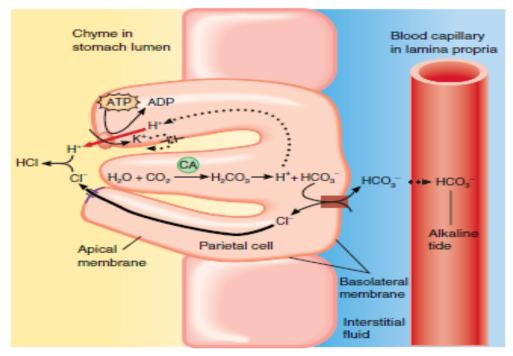
- ✓ Several minutes after food enters the stomach, waves of peristalsis pass over the stomach every 15 to 25 seconds.
- ✓ Few peristaltic waves are observed in the fundus, which primarily has a storage function.
- ✓ Instead, most waves begin at the body of the stomach and intensify as they reach the antrum.
- ✓ Each peristaltic wave moves gastric contents from the body of the stomach down into the antrum, a process known as propulsion.
- ✓ The pyloric sphincter normally remains almost, but not completely, closed. Because most food particles in the stomach initially are too large to fit through the narrow pyloric sphincter, they are forced back into the body of the stomach, a process referred to as retropulsion.

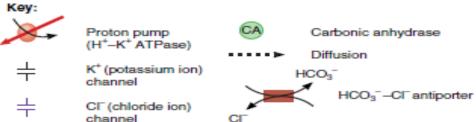
MECHANICAL AND CHEMICAL DIGESTION IN THE STOMACH

- Another round of propulsion then occurs, moving the food particles back down into the antrum. If the food particles are still too large to pass through the pyloric sphincter, retropulsion occurs again as the particles are squeezed back into the body of the stomach. Then yet another round of propulsion occurs, and the cycle continues to repeat. The mement of the large particle from food to book to the body in the stomach.
- The net result of these movements is that gastric contents are mixed with gastric juice, eventually becoming reduced to a soupy liquid called chyme. Once the food particles in chyme are small enough, they can pass through the pyloric sphincter, a phenomenon known as gastric emptying. Gastric emptying is a slow process: only about 3 mL of chyme moves through the pyloric sphincter at a time.

 The amount of food that exit from showach win pyloric sphinctor to small intestine

MECHANICAL AND CHEMICAL DIGESTION IN THE STOMACH


Foods may remain in the fundus for about an hour without becoming mixed with gastric juice. During this time, digestion by salivary amylase from the salivary glands continues. Soon, however, the churning action mixes chyme with acidic gastric juice, inactivating salivary amylase and activating lingual lipase.


Figure 24.13 Secretion of HCl (hydrochloric acid) by parietal cells in the stomach.

•

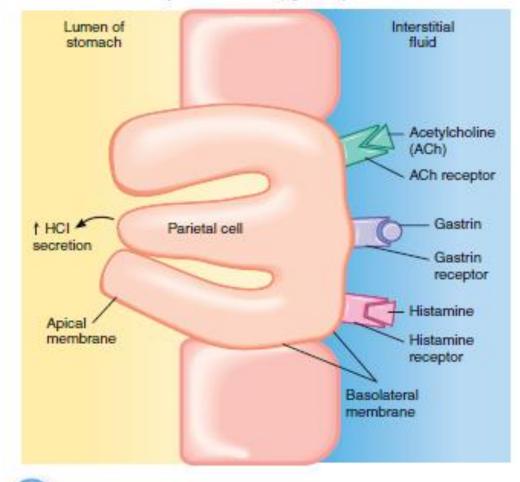

 Proton pumps, powered by ATP, secrete the H⁺; Cl⁻ diffuses into the stomach lumen through Cl⁻ channels.

Figure 24.14 Regulation of HCl secretion.

HCl secretion by parietal cells can be stimulated by several sources: acetylcholine (ACh), gastrin, and histamine.

REGULATION OF HCL SECRETION

- three receptor in the surface area

HCl secretion by parietal cells can be stimulated by several sources:

- 1. Acetylcholine (ACh) is released by parasympathetic neurons.
- 2. Gastrin secreted by G cells.—in pyloric antium in stomach
- 3. **<u>Histamine</u>**, which is a paracrine substance released by mast cells in the nearby lamina propria.
- -> these three make controlling to level of HCI -> stimulate produce HCI when bind with their receptor on the swrface of the partietal cell
- * Acetylcholine and gastrin stimulate parietal cells to secrete more HCl in the presence of histamine. In other words, histamine acts synergistically, enhancing the effects of acetylcholine and gastrin. Receptors for all three substances are present in the plasma membrane of parietal cells.

REGULATION OF HCL SECRETION

- The strongly acidic fluid of the stomach kills many microbes in food.
- > HCl partially denatures (unfolds) proteins in food and stimulates the secretion of hormones that promote the flow of bile and pancreatic juice.
- Enzymatic digestion of proteins also begins in the stomach. and |ingna| lipose that break down the lipid
- The only proteolytic (protein-digesting) enzyme in the stomach is pepsin, which is secreted by chief cells.
- Pepsin severs certain peptide bonds between amino acids, breaking down a protein chain of many amino acids into smaller peptide fragments.
- Pepsin is most effective in the very acidic environment of the stomach (pH 2); it becomes inactive at a higher pH.

WHAT KEEPS PEPSIN FROM DIGESTING THE PROTEIN IN STOMACH CELLS ALONG WITH THE FOOD?

- *First, pepsin is secreted in an inactive form called pepsinogen; in this form, it cannot digest the proteins in the chief cells that produce it.
- *Pepsinogen is not converted into active pepsin until it comes in contact with (hydrochloric acid) secreted by parietal cells or active pepsin molecules.

 pepsin molecules.
- Second, the stomach epithelial cells are protected from gastric juices by a layer 1–3 mm thick of alkaline mucus secreted by surface mucous cells and mucous neck cells.

 Let here give protection to stomach epithelium from acity

REGULATION OF HCL SECRETION

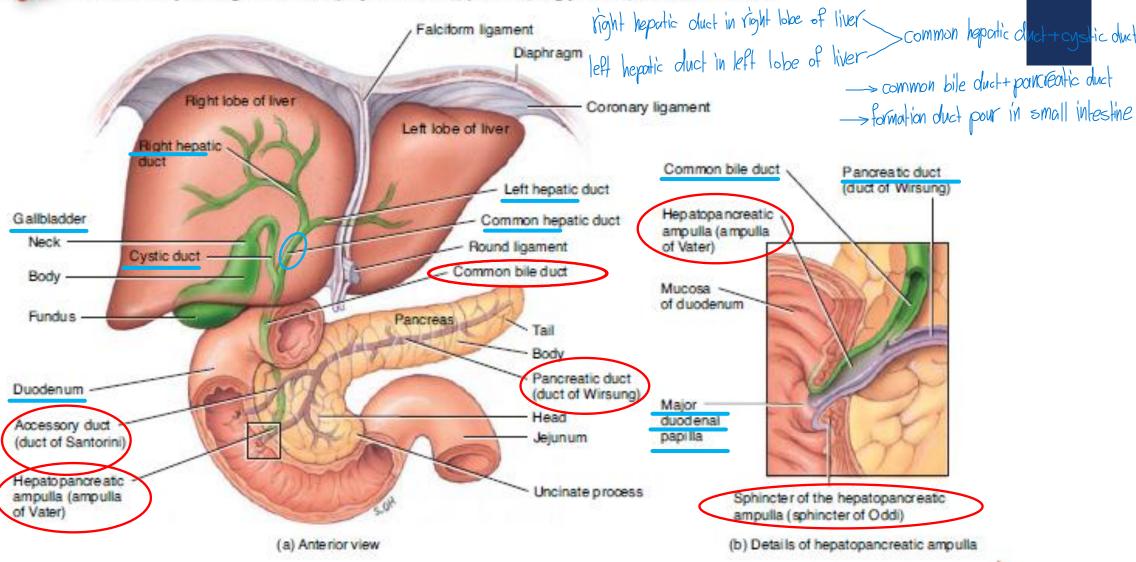
- Another enzyme of the stomach is gastric lipase, which splits triglycerides (fats and oils) in fat molecules (such as those found in milk) into fatty acids and monoglycerides.
- This enzyme, which has a limited role in the adult stomach, operates best at a pH of 5–6. More important than either lingual lipase or gastric lipase is pancreatic lipase, an enzyme secreted by the pancreas into the small intestine.
- Within 2 to 4 hours after eating a meal, the stomach has emptied its contents into the duodenum. Foods rich in carbohydrates spend the least time in the stomach; high-protein foods remain somewhat longer, and emptying is slowest after a fat-laden meal containing large amounts of triglycerides.

TABLE 24.:	3		ı.	4	2	- 5	Е	Ц	Ŧ	Е	V		T.	5
------------	---	--	----	---	---	-----	---	---	---	---	---	--	----	---

Summary of Digestive Activities in the Stomach

STRUCTURE	ACTIVITY	RESULT
Mucosa		
Surface mucous cells and mucous neck cells	Secrete mucus.	Forms protective barrier that prevents digestion of stomach wall.
	Absorption.	Small quantity of water, ions, short-chain fatty acids, and some drugs enter bloodstream.
Parietal cells	Secrete intrinsic factor.	Needed for absorption of vitamin B ₁₂ (used in red blood cell formation, or erythropoiesis).
	Secrete hydrochloric acid.	Kills microbes in food; denatures proteins; converts pepsinogen into pepsin.
Chief cells	Secrete pepsinogen.	Pepsin (activated form) breaks down proteins into peptides.
	Secrete gastric lipase.	Splits triglycerides into fatty acids and monoglycerides.
G cells	Secrete gastrin.	Stimulates parietal cells to secrete HCl and chief cells to secrete pepsinogen; contracts lower esophageal sphincter, increases motility of stomach, and relaxes pyloric sphincter.
Muscularis	Mixing waves (gentle peristaltic movements).	Churns and physically breaks down food and mixes it with gastric juice, forming chyme. Forces chyme through pyloric sphincter.
Pyloric sphincter	Opens to permit passage of chyme into duodenum.	Regulates passage of chyme from stomach to duodenum; prevents backflow of chyme from duodenum to stomach.

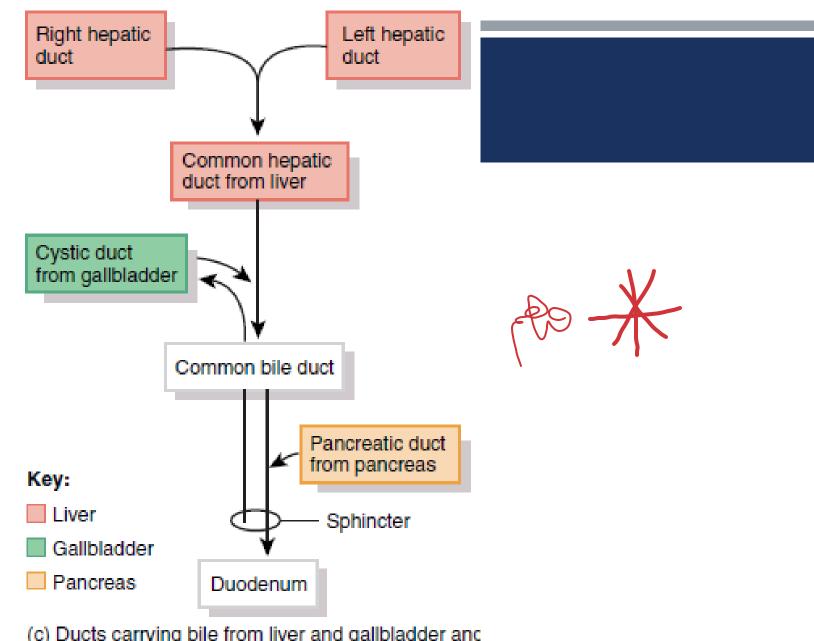
PANCREAS


From the stomach, chyme passes into the small intestine. Because chemical digestion in the small intestine depends on activities of the pancreas, liver, and gallbladder, we first consider the activities of these accessory digestive organs and their contributions to digestion in the small intestine.

المرقيقة مريخين الأشراء الي بنعل مهنم الأفعاء الدقيقة

Figure 24.15 Relationship of the pancreas to the liver, gallbladder, and duodenum. The inset (b) shows details of the common bile duct and pancreatic duct forming the hepatopancreatic ampulla and emptying into the duodenum.

Pancreatic enzymes digest starches (polysaccharides), proteins, triglycerides, and nucleic acids.


PANCREAS

The pancreas, a retroperitoneal gland that is about 12–15 cm (5–6 in.) long and 2.5 cm (1 in.) thick, lies posterior to the greater curvature of the stomach.

The pancreas consists of a head, a body, and a tail and is usually connected to the duodenum by two ducts.

La Main and accessory pancreatic duct

➤ The head is the expanded portion of the organ near the curve of the duodenum; superior to and to the left of the head are the central body and the tapering tail.

(c) Ducts carrying bile from liver and gallbladder and pancreatic juice from pancreas to the duodenum

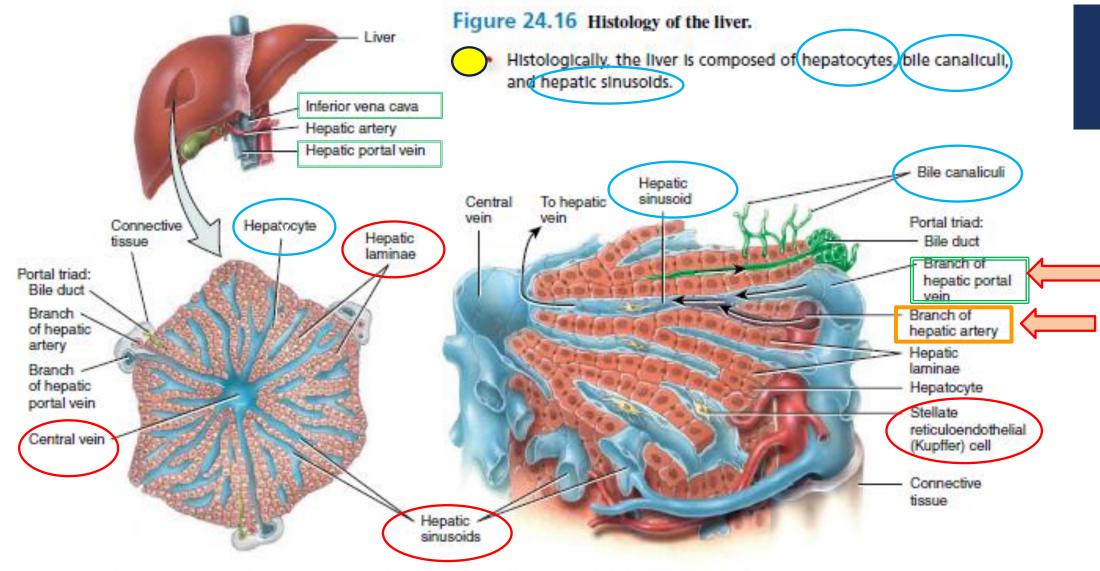
PANCREAS

- The protein-digesting enzymes of the pancreas are produced in an inactive form just as pepsin is produced in the stomach as pepsinogen. Because they are inactive, the enzymes do not digest cells of the pancreas itself. The pencients lipose that been down lipose —> Not outline in pancreas
- Trypsin is secreted in an inactive form called trypsinogen.

 The form trypsinogen in small intestine > become active > inactive term from trypsin break down protein to peptide
 - Pancreatic acinar cells also secrete a protein called trypsin inhibitor that combines with any trypsin formed accidentally in the pancreas or in pancreatic juice and blocks its enzymatic activity.
- When trypsinogen reaches the lumen of the small intestine, it encounters an activating brush-border enzyme called enterokinase, which splits off part of the trypsinogen molecule to form trypsin. I while perticular to example example for the sound of small intestine (related with cilial secretion by intestinal cell in small intestine (example: entertimase that activation to typsinogen)

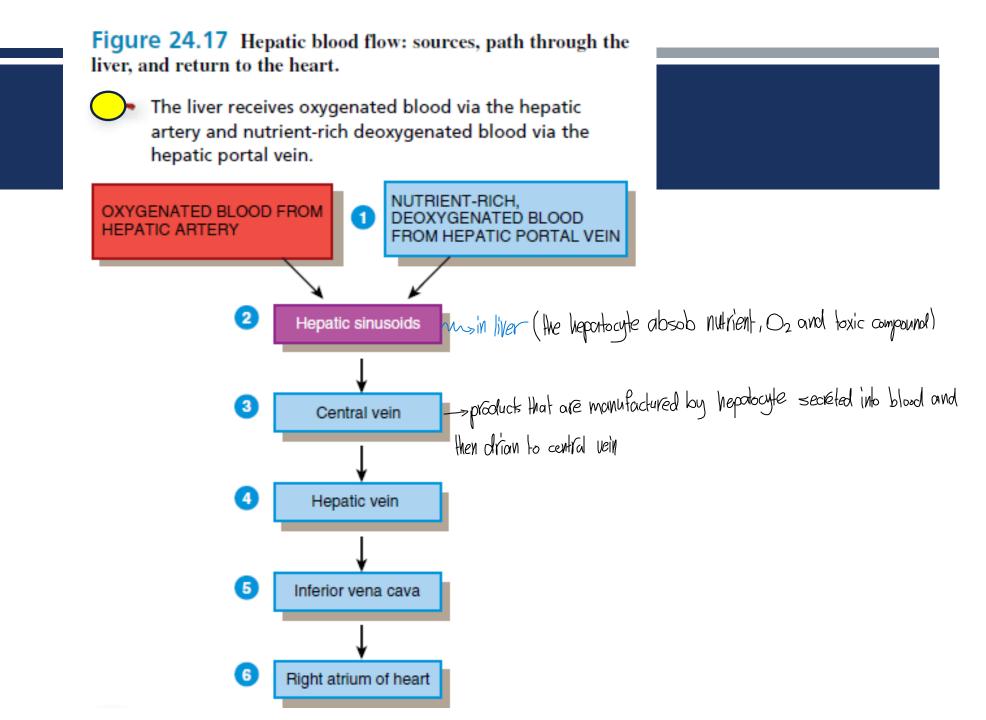
Reminder (for protein digestion)

in stomach: Pepsinogen -> pepsin (active form) by HCL


in intestine: Trypsinogen -> trypsin (active form) by enterokinase

LIVER AND GALLBLADDER

Ladeoxitifation organ

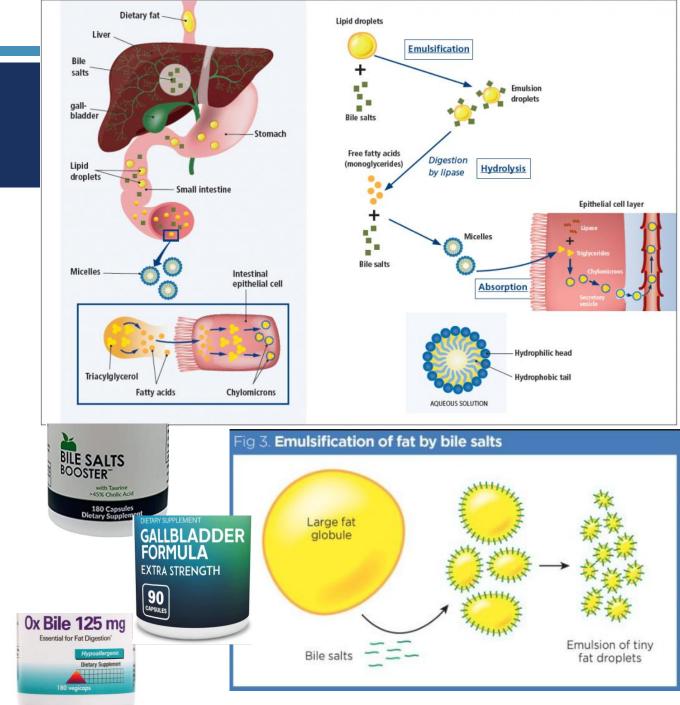

- The liver is the heaviest gland of the body, weighing about 1.4 kg (about 3 lb) in an average adult. Of all of the organs of the body, it is second only to the skin in size.
- ➤ The liver is inferior to the diaphragm and occupies most of the right hypochondriac and part of the epigastric regions of the abdominopelvic cavity.

➤ <u>The gallbladder</u> is a pear-shaped sac that is located in a depression of the posterior surface of the liver. It is 7–10 cm (3–4 in.) long and typically hangs from the anterior inferior margin of the liver.

(a) Overview of histological components of liver

(b) Details of histological components of liver

LIVER AND GALLBLADDER


- From the hepatic artery it obtains oxygenated blood, and from the hepatic portal vein it receives deoxygenated blood containing newly absorbed nutrients, drugs, and possibly microbes and toxins from the gastrointestinal tract.
- > Branches of both the hepatic artery and the hepatic portal vein carry blood into hepatic sinusoids, where oxygen, most of the nutrients, and certain toxic substances are taken up by the hepatocytes.
- Products manufactured by the hepatocytes and nutrients needed by other cells are secreted back into the blood, which then drains into the central vein and eventually passes into a hepatic vein.
- Because blood from the gastrointestinal tract passes through the liver as part of the hepatic portal circulation, the liver is often a site for metastasis of cancer that originates in the GI tract. why ??

L> elimination detaxification substance

- Each day, hepatocytes secrete 800–1000 mL (about 1 qt) of bile, a yellow, brownish, or olive-green liquid. It has a pH of 7.6–8.6 and consists mostly of water, bile salts, cholesterol, a phospholipid called lecithin, bile pigments, and several ions.
- The principal bile pigment is bilirubin.
- The phagocytosis of aged red blood cells liberates iron, globin, and bilirubin (derived from heme).
- The iron and globin are recycled; the bilirubin is secreted into the bile and is eventually broken down in the intestine. One of its breakdown products—stercobilin—gives feces their normal brown color.
- > Bile is partially an excretory product and partially a digestive secretion.
- Bile salts, which are sodium salts and potassium salts of bile acids play a role in emulsification, the breakdown of large lipid globules into a suspension of small lipid globules.
- The small lipid globules present a very large surface area that allows pancreatic lipase to more rapidly accomplish digestion of triglycerides. Bile salts also aid in the absorption of lipids following their digestion.

GALLBLADDER REMOVAL

- Impact of Gallbladder Removal: When the gallbladder is removed, bile flows directly from the liver into the small intestine. This can lead to difficulties in digesting fats, especially fatty meals.
- Bile Salt Supplements: Bile salt supplements contain bile acids, which aid in fat emulsification and absorption. These supplements can help improve fat digestion and reduce symptoms like diarrhoea, bloating, and gas that may occur after gallbladder removal

Digestion and absorption continue in the small intestine, bile release increases. Contribute in digestion to lipid

OBetween meals, after most absorption has occurred, bile flows into the gallbladder for storage because the sphincter of the hepatopancreatic ampulla closes off the entrance to the duodenum. The sphincter surrounds the hepatopancreatic ampulla.

> the bile produces in liver by hepatocyte and storage in gallbladder (not produce in gallbladder)

- In addition to secreting bile, which is needed for absorption of dietary fats, the liver performs many other vital functions.

 | Vital functions | Vital fun
- 1. <u>Carbohydrate metabolism</u>: The liver is especially important in <u>maintaining a normal blood glucose</u> level. When blood glucose is low, the liver can break down glycogen to glucose and release the glucose into the bloodstream. When blood glucose is high, as occurs just after eating a meal, the liver converts glucose to glycogen and triglycerides for storage.
- 2. <u>Lipid metabolism: Hepatocytes store some triglycerides, synthesize cholesterol; and use cholesterol to make bile salts.</u> deglodation of lipid
- Protein metabolism: Hepatocytes deaminate (remove the amino group, NH2, from) amino acids, the resulting toxic ammonia (NH3) is then converted into the much less toxic urea, which is excreted in urine.

 Hepatocytes also synthesize most plasma proteins, such as alpha and beta globulins, albumin, prothrombin, and fibrinogen.

 Hydogen authorized in the much less toxic urea, which is excreted in urine.

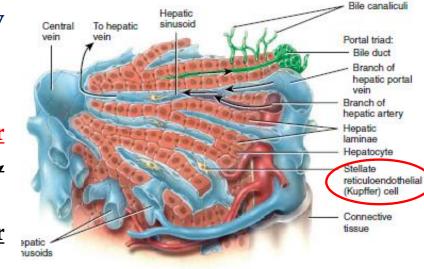
 Hydogen authorized in the much less toxic urea, which is excreted in urine.

 Hydogen authorized in the much less toxic urea, which is excreted in urine.

 Hydogen authorized in the much less toxic urea, which is excreted in urine.

 Hydogen authorized in the much less toxic urea, which is excreted in urine.

Representation of a Amino Acid


Urea O

> protein synthase and protein catabolism

-detexification organ

- > In addition to secreting bile, which is needed for absorption of dietary fats, the liver performs many other vital functions.
- 4. Processing of drugs and hormones: The liver can detoxify substances such as alcohol and excrete drugs such as penicillin, erythromycin, and sulfonamides into bile. It can also chemically alter or excrete thyroid hormones and steroid hormones such as estrogens and aldosterone.
- 5. Excretion of bilirubin: As previously noted, bilirubin, derived from the heme of aged red blood cells, is absorbed by the liver. Most of the bilirubin in bile is metabolized in the small intestine by bacteria and eliminated in feces.
- 6. Synthesis of bile salts: Bile salts are used in the small intestine for the emulsification and absorption of lipids. Sodium and potassium soll

- In addition to secreting bile, which is needed for absorption of dietary fats, the liver performs many other vital functions.
- 7. Storage: In addition to glycogen, the liver is a prime storage site for certain vitamins (A, B12, D, E, and K) and minerals (iron and copper), which are released from the liver when needed elsewhere in the body.
- 8. Phagocytosis: The stellate reticuloendothelial (Kupffer) cells of the liver phagocytize aged red blood cells, white blood cells, and some bacteria.
- 9. <u>Activation of vitamin D:</u> The skin, liver, and kidneys participate in synthesizing the active form of vitamin D.

(b) Details of histological components of liver

the same function between Kidney and liver?

Osynthose chdesterol

Ostorage glosse

-after progocytoses produces globin, iron and bilimbin

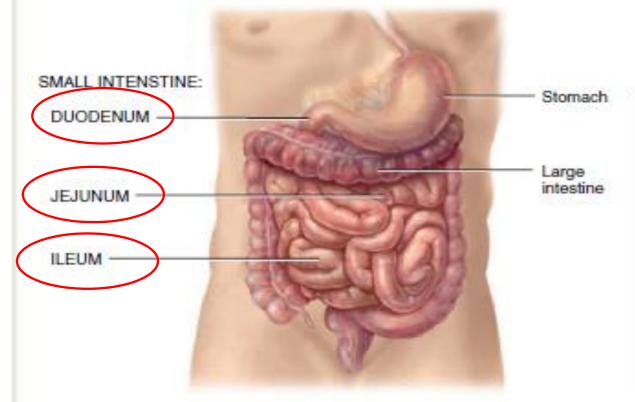
Ly exit to small intestive and when arrive to large intestine (present bedden work on fementation the billimbin to produce sterobilin)

Lagive feces it's

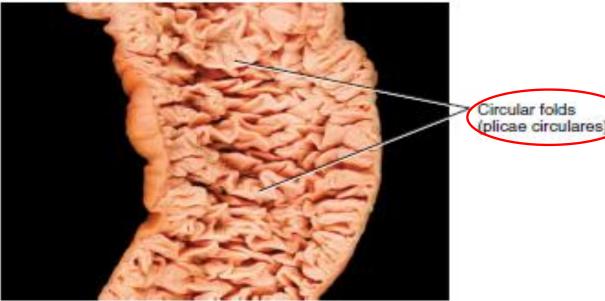
SMALL INTESTINE

➤ Most digestion and absorption of nutrients occur in a long tube called the small intestine.

Its length alone provides a large surface area for digestion and absorption, and that area is further increased by circular folds, villi, and microvilli.


Figure 24.18 Anatomy of the small intestine. (a) Regions of the small intestine are the duodenum, jejunum, and ileum. (b) Circular folds increase the surface area for digestion and absorption in the small intestine.

Most digestion and absorption occur in the small intestine.


FUNCTIONS OF THE SMALL INTESTINE

- Segmentations mix chyme with digestive juices and bring food into contact with mucosa for absorption; peristalsis propels chyme through small intestine.
- Completes digestion of carbohydrates, proteins, and

- lipids; begins and completes digestion of nucleic acids.
- Absorbs about 90% of nutrients and water that pass through digestive system.

(a) Anterior view of external anatomy

(b) Internal anatomy of jejunum

SMALL INTESTINE

➤ Most digestion and absorption of nutrients occur in a long tube called the small intestine.

*Its length alone provides a large surface area for digestion and absorption, and that area is further increased by circular folds, villi, and microvilli.

Figure 24.19 Histology of the small intestine.

Circular folds, villi, and microvilli increase the surface area of the small intestine for digestion and absorption.

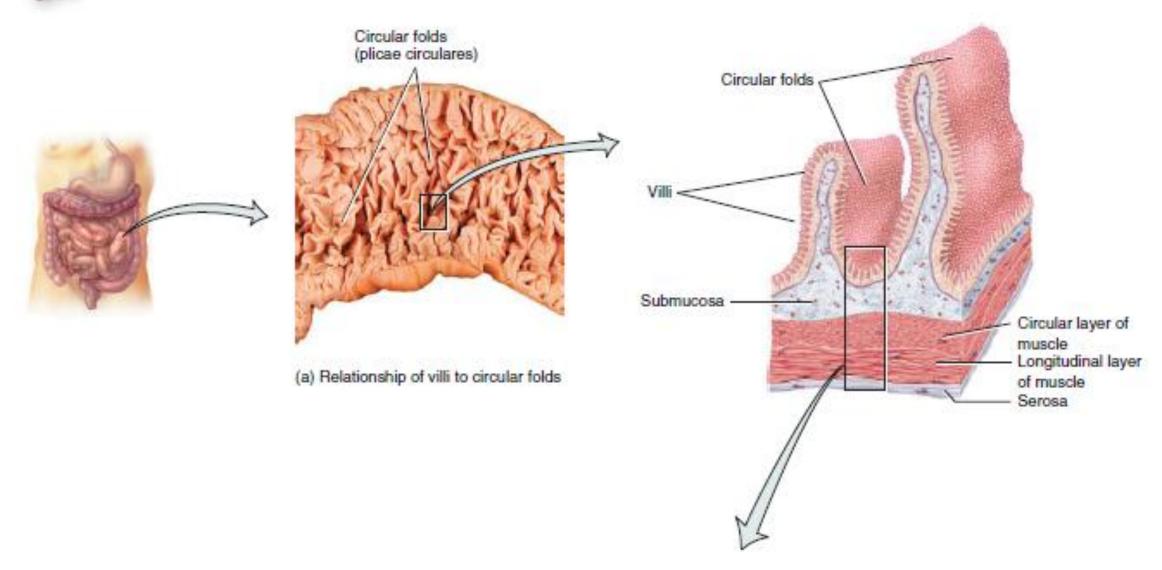
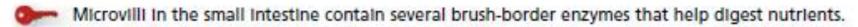
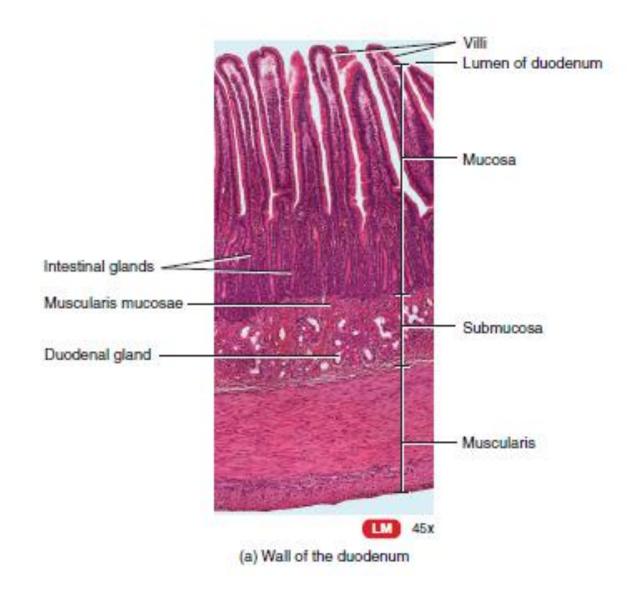




Figure 24.20 Histology of the duodenum and ileum.

ROLE OF INTESTINAL JUICE AND BRUSH-BORDER ENZYMES

About 1–2 liters of intestinal juice, a clear yellow fluid, is secreted each day. Intestinal juice contains water and mucus and is slightly alkaline (pH 7.6).

Les becouse présent high amuont from bicarbonne ion

The alkaline pH of intestinal juice is due to its high concentration of bicarbonate ions.

The alkaline pH of intestinal juice is due to its high concentration of bicarbonate ions.

-> complete digestion for protien by trypsin, peptidases, nucleopeptidases

somplete digestion for corbanydate by sucrase, loctose

The absorptive cells of the small intestine synthesize several digestive enzymes, called brush-border enzymes, and insert them in the plasma membrane of the microvilli.

ROLE OF INTESTINAL JUICE AND BRUSH-BORDER ENZYMES

Thus, some enzymatic digestion occurs at the surface of the absorptive cells that line the villi, rather than in the lumen exclusively, as occurs in other parts of the GI tract. Among the brush-border enzymes are four carbohydrate-digesting enzymes called α-dextrinase, maltase, sucrase, and lactase; protein-digesting enzymes called peptidases (aminopeptidase and dipeptidase); and two types of nucleotide-digesting enzymes, nucleosidases and phosphatases.

MECHANICAL DIGESTION IN THE SMALL INTESTINE

The two types of movements of the small intestine segmentations hile from live and a type of peristalsis called migrating motility complexes—are and other governed mainly by the myenteric plexus. The movement along small intestine after mixing segmintation

Segmentations are localized, mixing contractions that occur in portions of intestine distended by a large volume of chyme. Segmentations mix chyme with the digestive juices and bring the particles of food into contact with the mucosa for absorption; they do not push the intestinal contents along the tract.

MECHANICAL DIGESTION IN THE SMALL INTESTINE

- > <u>Segmentations occur most rapidly in the duodenum</u>, about 12 times per minute, and progressively slow to about 8 times per minute in the ileum.
- After most of a meal has been absorbed, which lessens distension of the wall of the small intestine, segmentation stops and peristalsis begins.
- The type of peristalsis that occurs in the small intestine, termed a migrating motility complex (MMC), begins in the lower portion of the stomach and pushes chyme forward along a short stretch of small intestine before dying out.
- The MMC slowly migrates down the small intestine, reaching the end of the ileum in 90–120 minutes. Then another MMC begins in the stomach. Altogether, chyme remains in the small intestine for 3–5 hours.

CHEMICAL DIGESTION IN THE SMALL INTESTINE

- 1. In the mouth, salivary amylase converts starch (a polysaccharide) to maltose (a disaccharide), maltotriose (a trisaccharide), and α -dextrins (short-chain, branched fragments of starch with 5–10 glucose units).
- 2. In the stomach, pepsin converts proteins to peptides (small fragments of proteins), and lingual and gastric lipases convert some triglycerides into fatty acids, diglycerides, and monoglycerides.
- 3. Thus, chyme entering the small intestine contains partially digested carbohydrates, proteins, and lipids.
- 4. The completion of the digestion of carbohydrates, proteins, and lipids is a collective effort of pancreatic juice, bile, and intestinal juice in the small intestine.

ABSORPTION IN THE SMALL INTESTINE

- □ All of the chemical and mechanical phases of digestion from the mouth through the small intestine are directed toward changing food into forms that can pass through the absorptive epithelial cells lining the mucosa and into the underlying blood and lymphatic vessels.
- These forms are monosaccharides (glucose, fructose, and galactose) from carbohydrates; single amino acids, dipeptides, and tripeptides from proteins; and fatty acids, glycerol, and monoglycerides from triglycerides.
- Passage of these digested nutrients from the gastrointestinal tract into the blood or lymph is called absorption.

ABSORPTION IN THE SMALL INTESTINE

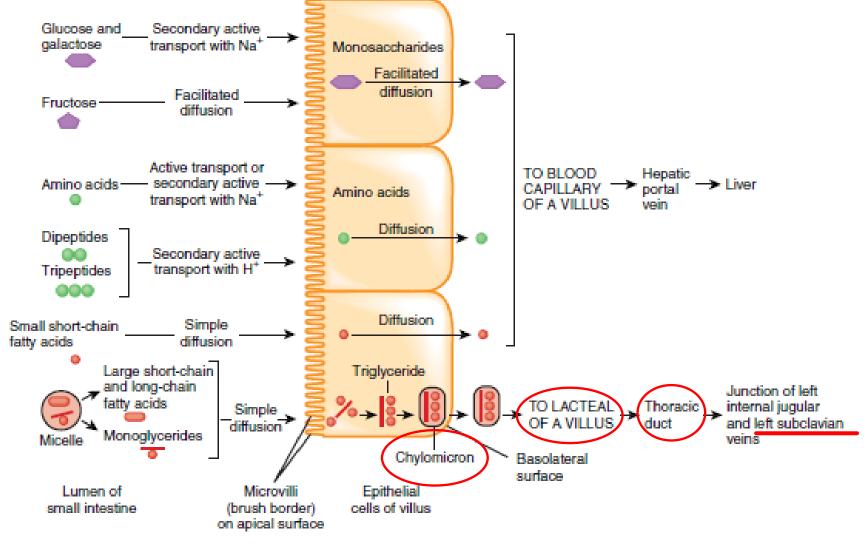
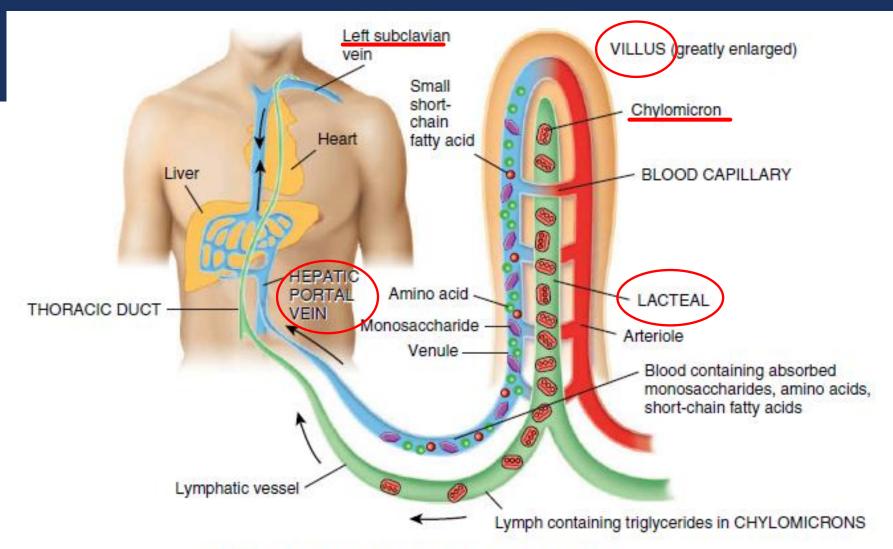
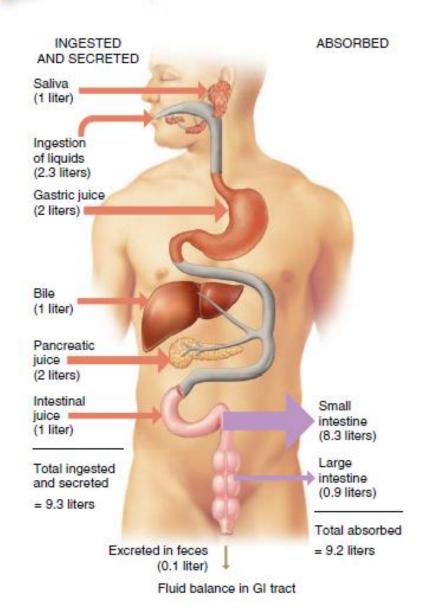

- Absorption of materials occurs via diffusion, facilitated diffusion, osmosis, and active transport.
- About 90% of all absorption of nutrients occurs in the small intestine; the other 10% occurs in the stomach and large intestine.
- OAny undigested or unabsorbed material left in the small intestine passes on to the large intestine.

Figure 24.21 Absorption of digested nutrients in the small intestine. For simplicity, all digested foods are shown in the lumen of the small intestine, even though some nutrients are digested by brush-border enzymes.



Long-chain fatty acids and monoglycerides are absorbed into lacteals; other products of digestion enter blood capillaries.

(a) Mechanisms for movement of nutrients through absorptive epithelial cells of villi



(b) Movement of absorbed nutrients into blood and lymph

Figure 24.22 Daily volumes of fluid ingested, secreted, absorbed, and excreted from the GI tract.

All water absorption in the GI tract occurs via osmosis.

	Æ	2	

Summary of Digestive Activities in the Pancreas, Liver, Gallbladder, and Small Intestine

STRUCTURE	ACTIVITY
Pancreas	Delivers pancreatic juice into duodenum via pancreatic duct to assist absorption (see Table 24.5 for pancreatic enzymes and their functions).
Liver	Produces bile (bile salts) necessary for emulsification and absorption of lipids.
Gallbladder	Stores, concentrates, and delivers bile into duodenum via common bile duct.
Small Intestine	Major site of digestion and absorption of nutrients and water in gastrointestinal tract.
Mucosa/submucosa	
Intestinal glands	Secrete intestinal juice to assist absorption.
Absorptive cells	Digest and absorb nutrients.
Goblet cells	Secrete mucus.
Enteroendocrine cells (S, CCK, K)	Secrete secretin, cholecystokinin, and glucose-dependent insulinotropic peptide.
Paneth cells	Secrete lysozyme (bactericidal enzyme) and phagocytosis.
Duodenal (Brunner's) glands	Secrete alkaline fluid to buffer stomach acids, and mucus for protection and lubrication.
Circular folds	Folds of mucosa and submucosa that increase surface area for digestion and absorption.
VIIII	Fingerlike projections of mucosa that are sites of absorption of digested food and increase surface area for digestion and absorption.
Microvilli	Microscopic, membrane-covered projections of absorptive epithelial cells that contain brush-border enzymes (listed in Table 24.5) and that increase surface area for digestion and absorption.
Muscularis	
Segmentation	Type of peristalsis: alternating contractions of circular smooth muscle fibers that produce segmentation and resegmentation of sections of small intestine; mixes chyme with digestive juices and brings food into contact with mucosa for absorption.
Migrating motility complex (MMC)	Type of peristalsis: waves of contraction and relaxation of circular and longitudinal smooth muscle fibers passing the length of the small intestine; moves chyme toward ileocecal sphincter.

TA	RI	Т	6	2	4	5
-	•	_	-	4	-	-

Summary	of Di	gestive	Enzymes	5
		,		

ENZYME SOURCE SUBSTRATES	PRODUCTS
	Maltose (disaccharide), maltotriose (trisaccharide), and α-dextrins.
	Fatty acids and diglycerides.
GASTRIC JUICE	
PepsIn (activated from Stomach chief cells. Proteins. I pepsinogen by pepsin and hydrochloric acid)	Peptides.
Gastric lipase Stomach chief cells. Triglycerides (fats and oils).	Fatty acids and monoglycerides.
PANCREATIC JUICE	
	Maltose (disaccharide), maltotriose (trisaccharide), and α-dextrins.
TrypsIn (activated from Pancreatic acinar cells. Proteins. I trypsinogen by enterokinase)	Peptides.
ChymotrypsIn (activated from Pancreatic acinar cells. Proteins. I chymotrypsinogen by trypsin)	Peptides.
Elastase (activated from Pancreatic acinar cells. Proteins.	Peptides.
CarboxypeptIdase (activated Pancreatic acinar cells. Amino acid at carboxyl end from procarboxypeptidase by trypsin) Amino acid at carboxyl end of peptides.	Amino acids and peptides.
Pancreatic lipase Pancreatic acinar cells. Triglycerides (fats and oils) I that have been emulsified by bile salts.	Fatty acids and monoglycerides.
Nucleases	
Ribonuclease Pancreatic acinar cells. Ribonucleic acid.	Nucleotides.
Deoxyrlbonuclease Pancreatic acinar cells. Deoxyribonucleic acid.	Nucleotides.

TABLE 24.5

Summary of Digestive Enzymes

Nuclease	

Ribonuclease Pancreatic acinar cells. Ribonucleic acid. Nucleotides.

Deoxyrlbonuclease Pancreatic acinar cells. Deoxyribonucleic acid. Nucleotides.

BRUSH-BORDER ENZYMES IN MICROVILLI PLASMA MEMBRANE

 α -Dextrinase Small intestine. α -Dextrins. Glucose.

Maltase Small intestine. Maltose. Glucose.

Sucrase Small intestine. Sucrose. Glucose and fructose.

Lactase Small intestine. Lactose. Glucose and galactose.

Enterokinase Small intestine. Trypsinogen. Trypsin.

Peptidases

Aminopeptidase Small intestine. Amino acid at amino end of peptides. Amino acids and peptides.

Dipeptidase Small intestine. Dipeptides. Amino acids.

Nucleosidases and Small intestine. Nucleotides. Nitrogenous bases, pentoses, and

phosphatases phosphates.

LARGE INTESTINE

The large intestine is the terminal portion of the GI tract.

The overall functions of the large intestine are the completion of absorption, the production of certain vitamins, the formation of feces, and the expulsion of feces from the body

> Vitamine b and K that storage in live

Figure 24.23 Anatomy of the large intestine.

The regions of the large intestine are the cecum, colon, rectum, and anal canal.

عودين بالرائزة الحياورها (عرب العربية العيادة) عودين بالرائزة العيادة العربية العربية العيادة العربية العيادة العيادة العربية العربية

FUNCTIONS OF THE LARGE INTESTINE

- Haustral churning, peristalsis, and mass peristalsis drive contents of colon into rectum.
- Bacteria in large intestine convert proteins to amino acids, break down amino acids, and
- produce some B vitamins and vitamin K.
- Absorption of some water, lons, and vitamins.
- 4. Formation of feces.
- 5. Defecation (emptying rectum).

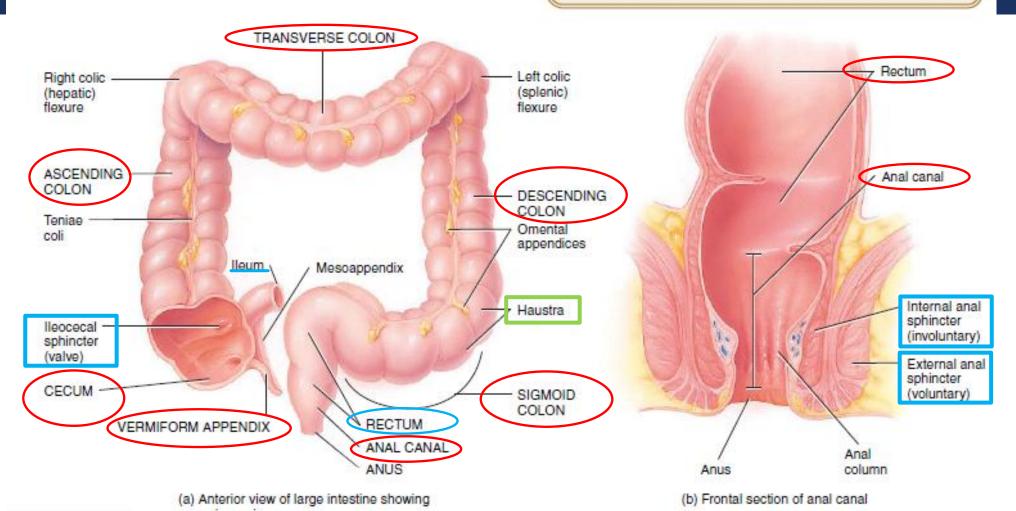
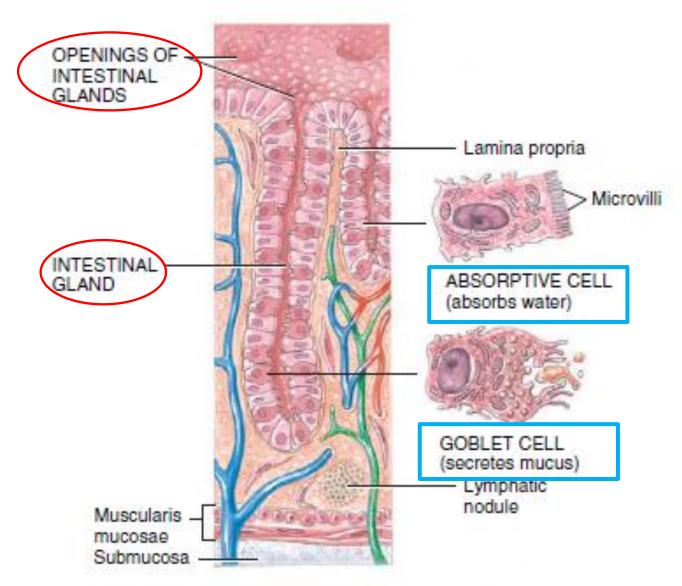



Figure 24.24 Histology of the large intestine.

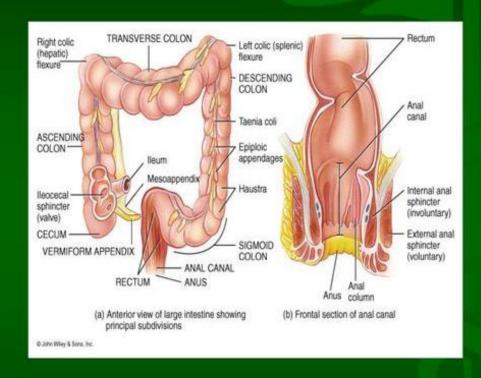
Intestinal glands formed by simple columnar epithelial cells and goblet cells extend the full thickness of the mucosa.

Lumen of large intestine OPENINGS OF -INTESTINAL GLANDS ABSORPTIVE CELL GOBLET CELL - MUCOSA INTESTINAL GLAND Lamina propria Lymphatic nodule SUBMUCOSA Muscularis mucosae Lymphatic vessel - MUSCULARIS Arteriole Venule -Circular layer of muscle Myenteric plexus -Longitudinal layer of muscle SEROSA

(b) Sectional view of intestinal glands and cell types

MECHANICAL DIGESTION IN THE LARGE INTESTINE

- □ The passage of chyme from the ileum into the cecum is regulated by the action of the ileocecal sphincter. ⊃
- □ Normally, the valve remains partially closed so that the passage of chyme into the cecum usually occurs slowly.
- ☐ Immediately after a meal, a gastroileal reflex intensifies peristalsis in the ileum and forces any chyme into the cecum.
- ☐ The hormone gastrin also relaxes the sphincter.
- Whenever the cecum is distended, the degree of contraction of the ileocecal sphincter intensifies.


 | Japend on |

MECHANICAL DIGESTION IN THE LARGE INTESTINE

- **■** Movements of the colon begin when substances pass the ileocecal sphincter.
- Because chyme moves through the small intestine at a fairly constant rate, the time required for a meal to pass into the colon is determined by gastric emptying time.
- As food passes through the ileocecal sphincter, it fills the cecum and accumulates in the ascending colon where begin hourstral churning ascending to half transverse)
- One movement characteristic of the large intestine is haustral churning. In this process, the haustra remain relaxed and become distended while they fill up. When the distension reaches a certain point, the walls contract and squeeze the contents into the next haustrum.
- Peristalsis also occurs, although at a slower rate (3–12 contractions per minute) than in more proximal portions of the tract.

> In some time hoppen the houstral churning

Haustral churning

- Each segment in large intestine is called a haustra
- Smooth muscle contractions move contents along (type of peristalsis)
- Water is absorbed in large intestine

MECHANICAL DIGESTION IN THE LARGE INTESTINE

A final type of movement is mass peristalsis, a strong peristaltic wave that begins at about the middle of the transverse colon and quickly drives the contents of the colon into the rectum.

■Because food in the stomach initiates this gastrocolic reflex in the colon, mass peristalsis usually takes place three or four times a day, during or immediately after a meal.

CHEMICAL DIGESTION IN THE LARGE INTESTINE

- □ The final stage of digestion occurs in the colon through the activity of bacteria that inhabit the lumen. Mucus is secreted by the glands of the large intestine, but no enzymes are secreted.
- Chyme is prepared for elimination by the action of bacteria, which ferment any remaining carbohydrates and release hydrogen, carbon dioxide, and methane gases.

 These gases contribute to flatus (gas) in the colon, termed flatulence when it is excessive.
- Bacteria also convert any remaining proteins to amino acids and break down the amino acids into simpler substances: indole, skatole, hydrogen sulfide, and fatty acids.
- Bacteria also decompose bilirubin to simpler pigments including stercobilin, which gives feces their brown color.
- Bacterial products that are absorbed in the colon include several vitamins needed for normal metabolism, among them some B vitamins and vitamin K.

ABSORPTION AND FECES FORMATION IN THE LARGE INTESTINE

- By the time chyme has remained in the large intestine 3–10 hours, it has become solid or semisolid because of water absorption and is now called feces.
- □ Chemically, feces consist of water, inorganic salts, sloughed-off epithelial cells from the mucosa of the gastrointestinal tract, bacteria, products of bacterial decomposition, unabsorbed digested materials, and indigestible parts of food.
- □ Although 90% of all water absorption occurs in the small intestine, the large intestine absorbs enough to make it an important organ in maintaining the body's water balance.
- ☐ The large intestine also absorbs ions, including sodium and chloride, and some vitamins.

THE DEFECATION REFLEX

Mass peristaltic movements push fecal material from the sigmoid colon into the rectum.

The resulting distension of the rectal wall stimulates stretch receptors, which initiates a defecation reflex that results in defecation, the elimination of feces from the rectum through the anus.

THE DEFECATION REFLEX

- * The amount of bowel movements that a person has over a given period of time depends on various factors such as diet, health, and stress.
- *The normal range of bowel activity varies from two or three bowel movements per day to three or four bowel movements per week.
- Diarrhea is an increase in the frequency, volume, and fluid content of the feces caused by increased motility of and decreased absorption by the intestines.
- Constipation refers to infrequent or difficult defecation caused by decreased motility of the intestines.

TABLE 24.6

Summary of Digestive Activities in the Large Intestine

	3	,
STRUCTURE	ACTIVITY	FUNCTION(S)
Lumen	Bacterial activity.	Breaks down undigested carbohydrates, proteins, and amino acids into products that can be expelled in feces or absorbed and detoxified by liver; synthesizes certain B vitamins and vitamin K.
Mucosa	Secretes mucus. Absorption.	Lubricates colon; protects mucosa. Water absorption solidifies feces and contributes to body's water balance; solutes absorbed include ions and some vitamins.
Muscularis	Haustral chuming. Peristalsis.	Moves contents from haustrum to haustrum by muscular contractions. Moves contents along length of colon by contractions of circular and longitudinal muscles.
	Mass peristalsis.	Forces contents into sigmoid colon and rectum.
	Defecation reflex.	Eliminates feces by contractions in sigmoid colon and rectum.

TABLE 24.7

Summary of Organs of the Digestive System and Their Functions

- and - specific control - speci		
ORGAN	FUNCTION(S)	
Tongue	Maneuvers food for mastication, shapes food into a bolus, maneuvers food for deglutition, detects sensations for taste, and initiates digestion of triglycerides.	
Salivary glands	Saliva produced by these glands softens, moistens, and dissolves foods; cleanses mouth and teeth; initiates the digestion of starch.	
Teeth	Cut, tear, and pulverize food to reduce solids to smaller particles for swallowing.	
Pancreas	Pancreatic juice buffers acidic gastric juice in chyme, stops the action of pepsin from the stomach, creates the proper pH for digestion in the small intestine, and participates in the digestion of carbohydrates, proteins, triglycerides, and nucleic acids.	
Liver	Produces bile, which is required for the emulsification and absorption of lipids in the small intestine.	
Gallbladder	Stores and concentrates bile and releases it into the small intestine.	
Mouth	See the functions of the tongue, salivary glands, and teeth, all of which are in the mouth. Additionally, the lips and cheeks keep food between the teeth during mastication, and buccal glands lining the mouth produce saliva.	
Pharynx	Receives a bolus from the oral cavity and passes it into the esophagus.	
Esophagus	Receives a bolus from the pharynx and moves it into the stomach; this requires relaxation of the upper esophageal sphincter and secretion of mucus.	
Stomach	Mixing waves combine saliva, food, and gastric juice, which activates pepsin, initiates protein digestion, kills microbes in food, helps absorb vitamin B ₁₂ , contracts the lower esophageal sphincter, increases stomach motility, relaxes the pyloric sphincter, and moves chyme into the small intestine.	
Small Intestine	Segmentation mixes chyme with digestive juices; peristalsis propels chyme toward the ileocecal sphincter; digestive secretions from the small intestine, pancreas, and liver complete the digestion of carbohydrates, proteins, lipids, and nucleic acids; circular folds, villi, and microvilli help absorb about 90% of digested nutrients.	
Large Intestine	Haustral churning, peristalsis, and mass peristalsis drive the colonic contents into the rectum; bacteria produce some B vitamins and vitamin K; absorption of some water, ions, and vitamins occurs; defecation.	

THANK YOU

AMJADZ@HU.EDU.JO