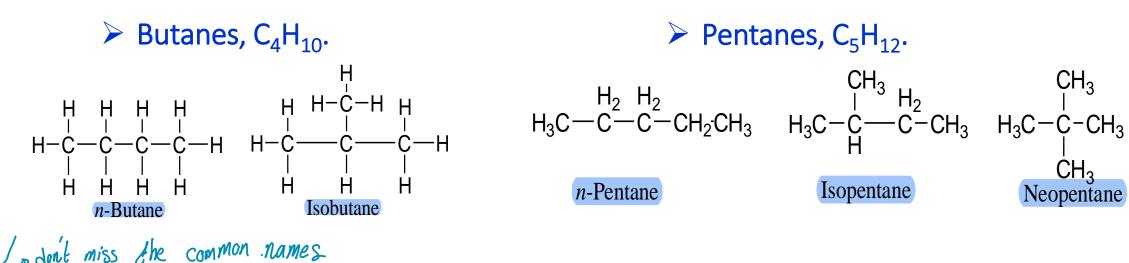
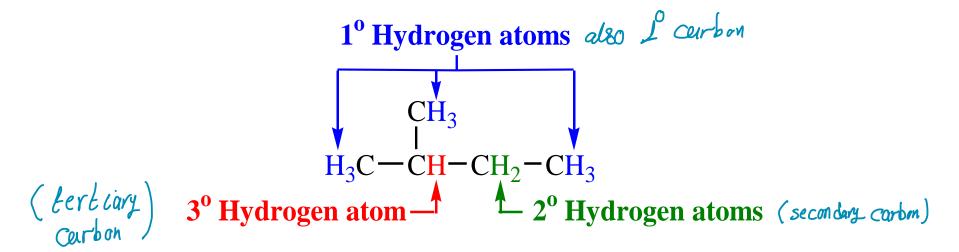
Dryanic 1

Subject: Lecture 3



Saturated Hydrocarbons

1. Alkanes


Structural Isomerism | > from 4 corbon and up.

- Isomers are different compounds with identical molecular formulas. The phenomenon is called *isomerism*.
- Structural or constitutional isomers are isomers which differ in the sequence of atoms bonded to each other.
- **Examples:**

Classes of Carbons and Hydrogen

- A primary (1°) carbon is one that is bonded to only one other carbon.
- A secondary (2°) carbon is one that is bonded to two other carbons.
- A tertiary (3°) carbon is one that is bonded to three other carbons.

O Hydrogens are also referred to as 1°, 2°, or 3° according to the type of carbon they are bonded to.

Alkane: Cn H2n+21

Alkyl Groups

- An alkyl group is an alkane from which a hydrogen has been removed.
- General formula C_nH_{2n+1}. → Sor ally
- Alky group is represented by R.
- Nomenclature of alkyl groups by

replacing the suffix – ane of the parent alkane by –yl.

- Examples:
 - > Methane

$$CH_3$$
- (Methane – ane + yl) = methyl

Alkyl Groups

> Ethane

$$CH_3CH_2$$
- (Ethane – ane + yl) = ethyl

> Propane

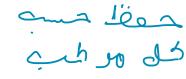
Propane – ane +
$$yl = n$$
-propyl or isopropyl

Alkyl Groups

> Butane

Alkyl Groups

Alkane		Alkyl Group	Abbreviation
CH ₃ —H Methane	becomes	CH ₃ — Methyl	Me-
CH ₃ CH ₂ —H Ethane	becomes	CH ₃ CH ₂ — Ethyl	Et–
CH ₃ CH ₂ CH ₂ —H Propane	becomes	CH ₃ CH ₂ CH ₂ — Propyl	Pr–
CH ₃ CH ₂ CH ₂ CH ₂ —H Butane	becomes	CH ₃ CH ₂ CH ₂ CH ₂ — Butyl	Bu-


Nomenclature

التسان

Most organic compounds are known by two or more names:

> The older unsystematic names, (Common names). ->

> The IUPAC names.

International <u>Union of Pure & Applied Chemistry</u> العقواني الستياق

Nomenclature

ما المول سلسلة مد دون الفطاعيم المحلم عدر تفرعات على المحلول سلسلة مع دون الفطاعيم المحلمة عدر تفرعات على المحلفة عدر تفرعات على المحلفة عدر تفرعات على المحلفة عدد تفرعات عدد فرعات المحلفة المحلفة عدد تفرعات المحلفة المحلفة عدد تفرعات المحلفة المحلفة عدد تفرعات المحلفة المحلفة

The IUPAC Rules

1) Select the parent structure.

the longest continuous chain

Ethyl hexane

Propyl pentane

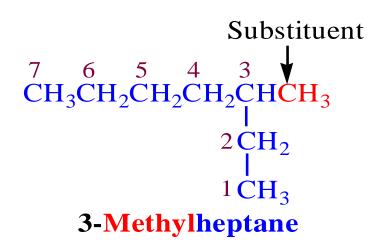
مو خرودي إذا اطور سلسلاً تكون مستقيمة

The longest continuous chain is not necessarily straight.

Nomenclature

The IUPAC Rules

2) Number the carbons in the parent chain


starting from the end which gives the lowest number for the substituent

3-Ethyl hexane

Nomenclature

The IUPAC Rules

2) Number the carbons in the parent chain

2-Methylhexane

Nomenclature

The IUPAC Rules

To name the compound;

- 1) The position of the substituent on the parent carbon chain by a number.
- 2) The number is followed by a hyphen (-).
- 3) The combined name of the substituent (ethyl).
- 4) The parent carbon chain (hexane)
 - 3 Ethyl hexane

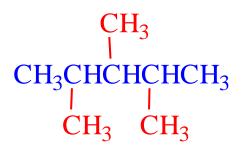
Nomenclature

The IUPAC Rules

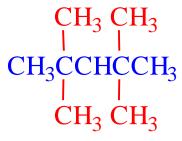
3) If the same alkyl substituent occurs more than once on the parent carbon chain, the prefixes di-, tri-, tetra-, penta-, and so on

are used to indicate two, three, four, five, and so on.

$$H_{3}^{5}C_{-}^{4}H_{3}^{3}H_{2}^{2}C_{-}^{1}CH_{3}$$
 CH_{3}
 CH_{3}


3: Comma between numbers -: after num dosh

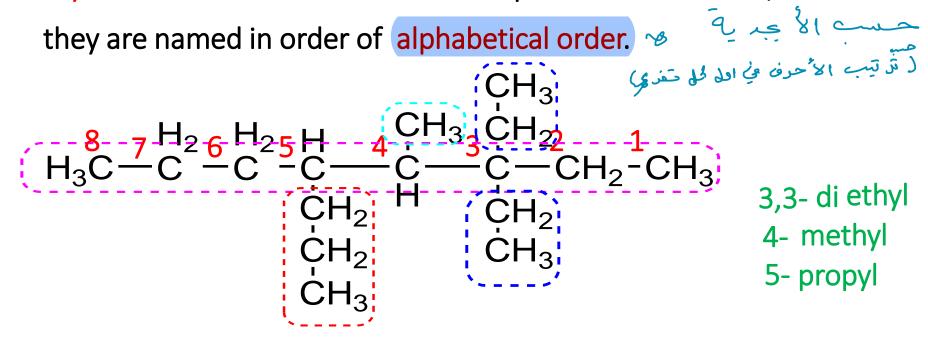
2,2,4- Tri methyl pentane


Nomenclature

Saturated Hydrocarbons 1. Alkanes

The IUPAC Rules

2,3,4-Trimethylpentane



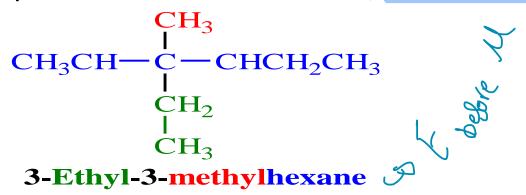
2,2,4,4-Tetramethylpentane

Nomenclature

The IUPAC Rules

4) If different alkyl substituents are attached on the parent carbon chain,

3,3-Diethyl -4-methyl -5-propyl octane


Nomenclature

The IUPAC Rules

Note that each substituent is given a number corresponding to its location on the longest chain. The substituent groups are listed alphabetically.

4-Ethyl-2-methylhexane

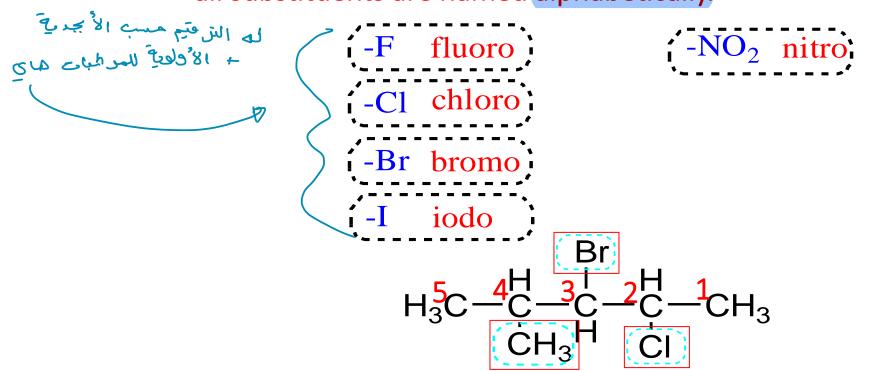
5) When two substituent are present on the same carbon, use the number twice.

Nomenclature

The IUPAC Rules

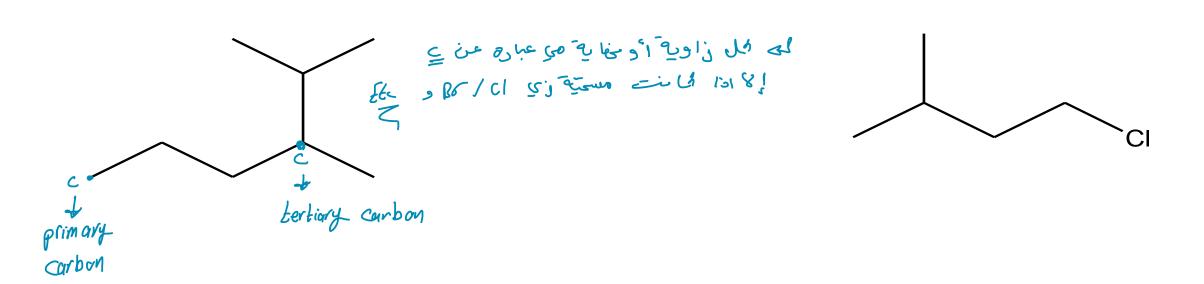
6) When two chains of equal length compete for selection as the parent chain,

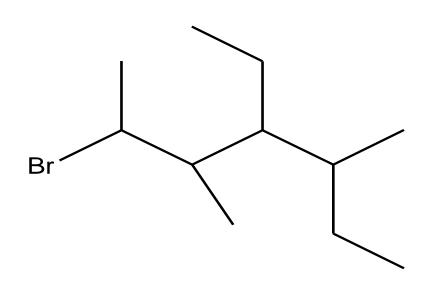
choose the chain with the greater number of substituents.

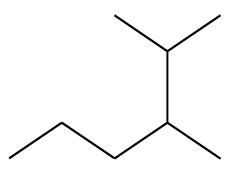


2,3,5-Trimethyl-4m propylheptane

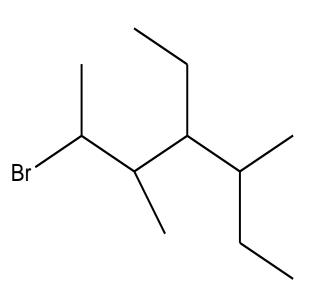
Nomenclature

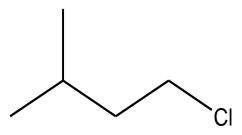

The IUPAC Rules


7) If substituents other than alky groups are also presents on the parent carbon chain; all substituents are named alphabetically.

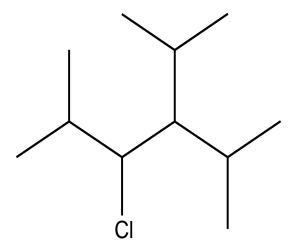


2-chloro 3-bromo 4- methyl


3-bromo -2-chloro -4-methyl pentane



2,3-Dimethyl-hexane #3: Please note: Alphabetic order of prefixes ignored while selecting parent chain



2-Bromo-4-ethyl-3,5-dimethyl-heptane

1-Chloro-3-methyl-butane

#3: Please note: Alphabetic order of prefixes ignored while selecting parent chain

3-Chloro-4-isopropyl-2,5-dimethyl-hexane #3: Please note: Alphabetic order of prefixes ignored while selecting parent chain

Sources of Alkanes

The two principal sources of alkanes are petroleum and natural gas.

Petroleum and natural gas constitute the chief sources of ~


- Alkanes up to 40 Carbons 😽 🗲 👊 🕹
- م عارية Aromatic
- Alicyclic (Cyclic aliphatic hydrocarbons)
 Heterocyclic

Sources of Alkanes

Petroleum Refining

Some components of refined petroleum

Fraction	Boiling range (°C)	Caron content
Gas	Below 20	C1 – C4
Petroleum ether	20 – 60	C5 – C6
Naphtha	60 – 100	C6 – C7
Gasoline	40 – 200	C5 – C10
Kerosine	175 – 325	C11 – C18
Gas oil	300 – 500	C15 - C40
Lubricating oil, asphalt, petroleum coke and paraffins	Above 400	C15 – C40

Physical Properties

Physical Properties of Alkanes, Alkenes and Alkynes

Those properties that can be observed without the compound undergoing a chemical reaction.

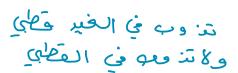
A. Physical States أعضا مصادياً على المصارياً على المصادياً على المصادي

C1 (C2) to C4 are gases,

c5 to C17 are liquids, معاعل ه

C18 and larger alkanes are wax –like solids.~>

بس الصلب واللائ


B. Solubility

م الذاعبية

- Alkanes, Alkenes and Alkynes are nonpolar compounds.
- Their solubility "Like dissolve like"
- Alkanes, Alkenes and Alkynes are soluble in the nonpolar solvents;

carbon tetrachloride, CCl₄ and benzene,

Alkanes, Alkenes and Alkynes are insoluble in polar solvents like water.

