
- As action potentials propagate through the heart, they generate electrical currents that can be detected at the surface of the body. An electrocardiogram, abbreviated either ECG or EKG (from the German word Elektrokardiogram), is a recording of these electrical signals.
- The instrument used to record the changes is an electrocardiograph.
- By comparing these records with one another and with normal records, it is possible to determine:
- (1) if the conducting pathway is abnormal.
- (2) if the heart is enlarged.
- (3) if certain regions of the heart are damaged.
- (4) the cause of chest pain.

you wheel

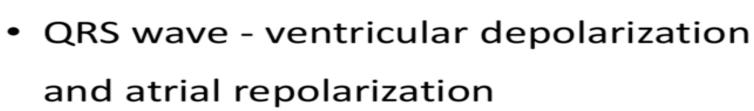
- في حال وجود اختلاف في الرسمة عن الطبيعي يعني وجود مشكلة في القلب تواء في Ventricular أو Ventricular ما يعني وجود مشكلة في القلب كل التقلم خزبات القلب) ما يعني وجود Arrythmia رعم انظام خزبات القلب) - لهاذا RS أكبر من Pwove ؟
- لهاذا RS أكبر من المهام و بالتاكي عدد الضلايا التي تقوم بالإنقباض أكبر واعرجة أنجر

- In reading an ECG, the size of the waves can provide clues to abnormalities.
- 1. Larger P waves indicate enlargement of an atrium.
- 2. An enlarged Q wave may indicate a myocardial infarction.
- 3. An enlarged R wave generally indicates enlarged ventricles.
- 4. The **T** wave is flatter than normal when the heart muscle is receiving insufficient oxygen—as, for example, in coronary artery disease. The T wave may be elevated in hyperkalaemia (high blood K ions level).

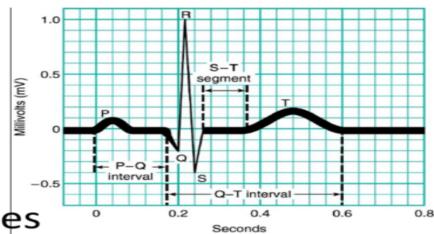
موجة ${\sf T}$ المسطحة : مؤشر على نقص الأكسجين في عضلة القلب (كما في مرض الشريان التاجي) .

• موجة T المرتفعة : مؤشر على اختلال مستويات البوتاسيوم في الدم (فرط بوتاسيوم الدم)

- Analysis of an ECG also involves measuring the time spans between waves, which are called intervals or segments.
- **P–Q interval** is the time from the beginning of the P wave to the beginning of the QRS complex. It represents the conduction time from the beginning of atrial excitation to the beginning of ventricular excitation.
- The S–T segment, which begins at the end of the S wave and ends at the beginning of the T wave, represents the time when the ventricular contractile fibers are depolarized during the plateau phase of the action potential.


• The Q-T interval extends from the start of the QRS complex to the end of the T wave. It is the time <u>from the beginning of ventricular depolarization</u> to the end of ventricular <u>repolarization</u>.

The Electrocardiogram


The major deflections and intervals in a normal

ECG include:

- P wave atrial depolarization
- P-Q interval time it takes for the atrial kick to fill the ventricles

 S-T segment - time it takes to empty the ventricles before they repolarize (the T wave)

CORRELATION OF ECG WAVES WITH ATRIAL AND VENTRICULAR SYSTOLE

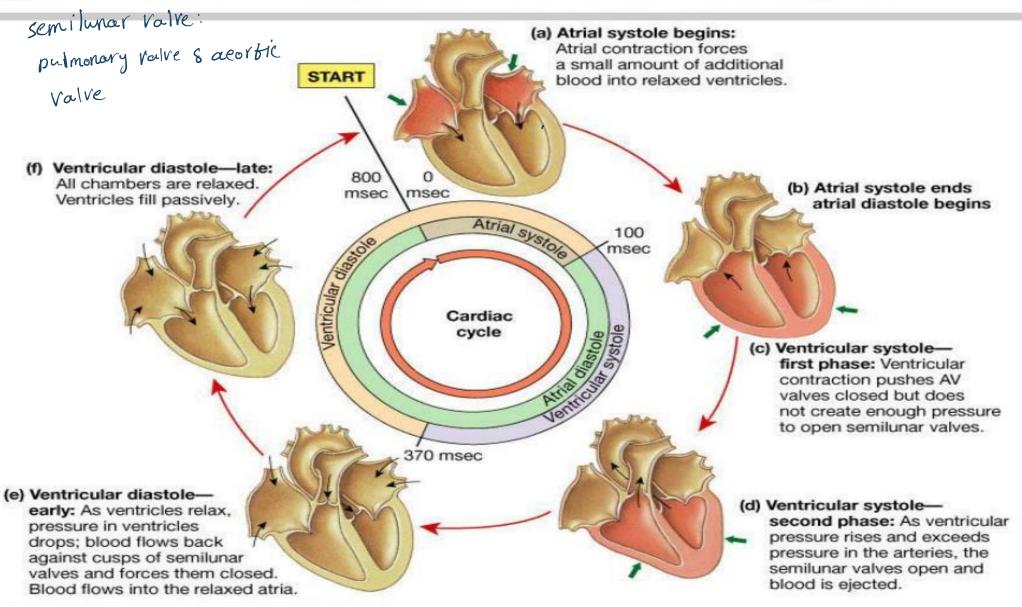
- The term systole refers to the phase of contraction.
- The phase of relaxation is diastole. (relaxation, filling)
- The ECG waves predict the timing of atrial and ventricular systole and diastole.
- * As the atrial contractile fibers depolarize, the P wave appears in the ECG. والمدي المعرب المعرب العرب ال
- After the P wave begins, the atria contract (atrial systole).
- The action potential propagates rapidly again after entering the AV bundle. About 0.2 sec after onset of the P wave, it has propagated through the bundle branches, Purkinje fibers, and the entire ventricular myocardium.
- Contraction of ventricular contractile fibers (ventricular systole) begins shortly after the QRS complex appears and continues during the S-T segment.
- * Repolarization of ventricular contractile fibers produces the T wave in the ECG about after the onset of the P wave.
- * Shortly after the T wave begins, the ventricles start to relax (ventricular diastole). Ventricular repolarization is complete and ventricular contractile fibers are relaxed.

THE CARDIAC CYCLE: PRESSURE AND VOLUME CHANGES DURING THE CARDIAC CYCLE

Atrial Systole:

- Atrial depolarization causes atrial systole.
- The ventricles are relaxed (The end of atrial systole is also the end of ventricular diastole (relaxation).

Ventricular Systole:


- The ventricles are contracting.
- At the same time, the atria are relaxed.

Relaxation Period:

- The atria and the ventricles are both relaxed.
- Ventricular repolarization causes ventricular diastole.

Cystol Cystol de Cys Fol

Figure 20.16 Phases of the Cardiac Cycle

Semilunar valves: Aeortic valve & palmonary valve

AV valves: Tricuspid valve 8 Mitral valve

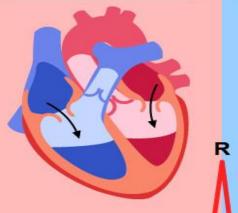
PHASES OF THE CARDIAC CYCLE

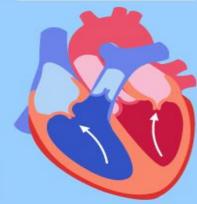
Atriole systole begins

Atrial contraction forces blood into ventricles

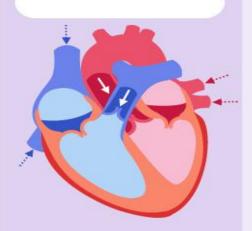
Ventricular contraction pushes AV valves closed

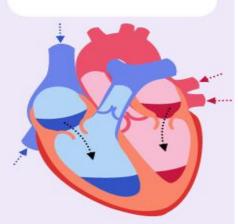
Ventricular systole (second phase)


Semilunar valves open and blood is ejected


Ventricular diastole (early)

Semilunar valves close and blood flows into atria

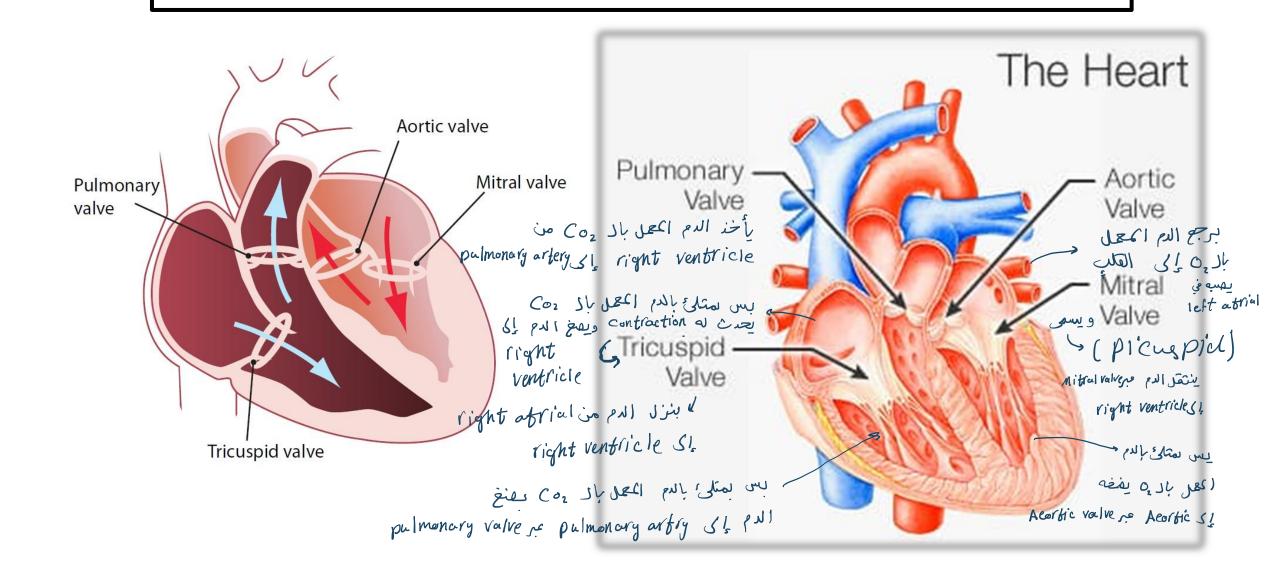

Ventricular diastole (late)


Chambers relax and blood fills ventricles passively

P-Wave Atria depolarization

Atrial Atrial Diastole Systole

QRS Complex Ventricle depolarization T - Wave Ventricular repolarization


Atrial Diastole

Ventricular Diastole

Ventricular Systole

Ventricular Diastole

HEART VALVES

HEART SOUNDS

- Auscultation, the act of listening to sounds within the body, is usually done with a stethoscope.
- During each cardiac cycle, there are four heart sounds, but in a normal heart only the first and second heart sounds (S1 and S2) are loud enough to be heard through a stethoscope.
- The first sound (S1), which can be described as <u>a lubb sound</u>, is louder and a bit longer than the second sound. S1 is caused by blood turbulence associated with closure of the AV valves soon after ventricular systole begins.
- o The second sound (S2), which is shorter and not as loud as the first, can be described as a <u>dupp sound</u>. S2 is caused by blood turbulence associated closure of the semilunar (aortic and pulmonary) valves valves at the beginning of ventricular diastole.
- Normally not loud enough to be heard S3 is due to blood turbulence during rapid ventricular filling, and S4 is due to blood turbulence during atrial systole

ا ممکن بینم سماع و ک عند ممارسة جد بدنی ویکون مبل ۱کوه ۶ Heart sounds افترة معینه ا

- Auscultation listening to heart sound via stethoscope
- Four heart sounds

atrial contraction

 S_1 - "lubb" caused by the closing of the AV valves S_2 - "dupp" caused by the closing of the semilunar valves ule ventricle u atricul in ent été il égé livel que put l'ével à dérieul - S₃ - a faint sound associated with blood flowing into

the ventricles المعرف عند ما تكون فوة الذفاع الذفاع المناس نه وما المناس عندما تكون فوة الذفاع المناس المعرب عندما تكون فوة الذفاع المناس المعرب عندما تكون فوة الذفاع المناس المعرب عندما تكون فوة الذفاع المناس المنا contraction

ترتيب هذه الأهوات :

S₂ ← S₁ ← S₄ = S₃

L

level = viz

level = viz

one vie

one vi

یک ریکون قبل ، کا مبایر که و رک یکون قبل ، کا مفتر که

CARDIAC OUTPUT

مغرجات العلب

• Cardiac output (CO) is the volume of blood ejected from the left ventricle (or the right ventricle) into the aorta (or pulmonary trunk) each minute. Cardiac output equals the stroke volume (SV), the volume of blood ejected by the ventricle during each contraction, multiplied by the heart rate (HR), the number of heartbeats per minute:

of heartbeats per minute: ركم الم من العم يطلع من القلب المحمد المعام ا

الطلب على الدم أثناء النشاط البدني ، مثل التمارين أو الضغوط الفسيولوجية . كلما كان الاحتياطي القلبي أكبر ، كان القلب أكثر قدرة على مواجهة الاحتياجات الطرئة

CO (mL/min)= SV (mL/beat) X HR (beats/min)

• Cardiac reserve is the difference between a person's maximum cardiac output and cardiac output at rest. The average person

has a cardiac reserve of four or five times the resting value. قديش عهلة القلب

في الشخص السليم ، يمكن أن يكون الاحتياطي القلبي أكبر بـ 4-5 مرات من النتاج القلبي عند الراحة . :

normal is 6, 4, dais

على سبيل المثال ، إذا كان النتاج القلبي عند الراحة 5 لترات في الدقيقة ، فقد يصل أثناء النشاط إلى 20-25 لترًا في الدقيقة

REGULATION OF STROKE VOLUME

• A healthy heart will pump out the blood that entered its chambers during the previous diastole.

Three factors regulate stroke volume and ensure that the left and right ventricles pump equal volumes of blood: (1) preload, the degree of stretch on the heart before it contracts; (2) contractility, the forcefulness of contraction of individual ventricular muscle fibers; and (3) afterload, the pressure that must be exceeded before ejection of blood from the ventricles can occur.

PRELOAD: EFFECT OF STRETCHING

• Within limits, the more the heart fills with blood during diastole, the greater the force of contraction during systole. This relationship is known as the Frank–Starling law of the heart.

• The preload is proportional to the <u>end-diastolic volume (EDV)</u>, (the volume of blood that fills the ventricles at the end of diastole). Normally, the greater the EDV, the more forceful the next contraction.

Two key factors determine EDV: (1) the duration of ventricular diastole and
 (2) venous return, the volume of blood returning to the right ventricle.

CONTRACTILITY

□ Myocardial contractility, the strength of contraction at any given preload.

□ Substances that <u>increase contractility</u> are **positive inotropic agents** (**promote calcium ions inflow during cardiac action potentials**), those that <u>decrease contractility</u> are **negative inotropic agents** (**reducing calcium ions inflow**).

AFTERLOAD

• Ejection of blood from the heart begins when pressure in the right ventricle exceeds the pressure in the pulmonary trunk, and when the pressure in the left ventricle exceeds the pressure in the aorta.

■ At that point, the higher pressure in the ventricles causes blood to push the semilunar valves open. The pressure that must be overcome before a semilunar valve can open is termed the afterload.

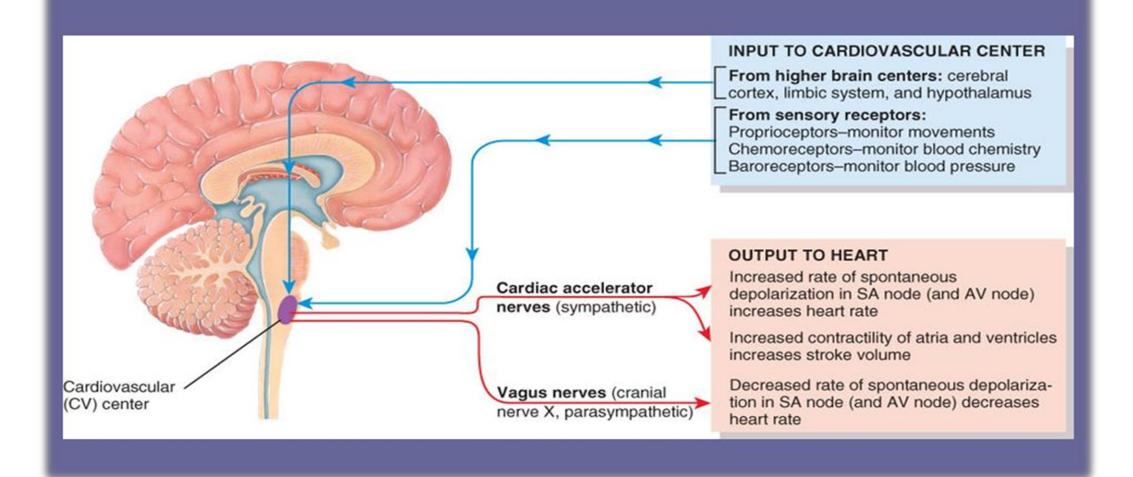
• Conditions that can increase afterload include hypertension (elevated blood pressure) and narrowing of arteries by atherosclerosis.

تصلب المرايين

REGULATION OF HEART RATE

• Autonomic Regulation of Heart Rate:

- * Nervous system regulation of the heart originates in the cardiovascular center in the medulla oblongata. The cardiovascular center then directs appropriate output by increasing or decreasing the frequency of nerve impulses in both the sympathetic and parasympathetic branches of the ANS.
- * <u>Proprioceptors</u> that are monitoring the position of limbs and muscles send nerve impulses at an increased frequency to the cardiovascular center.
- Proprioceptor input is a major stimulus for the quick rise in heart rate that occurs at the onset of physical activity.
- * Other sensory receptors that provide input to the cardiovascular center include chemoreceptors, which monitor the stretching of major arteries and veins caused by the pressure of the blood flowing through them. Important baroreceptors located in the arch of the aorta and in the carotid arteries.


REGULATION OF HEART RATE

- Autonomic Regulation of Heart Rate:
- * Through the sympathetic cardiac accelerator nerves: In SA (and AV) node fibers, norepinephrine speeds the rate of spontaneous depolarization so that these pacemakers fire impulses more rapidly and heart rate increases; in contractile fibers throughout the atria and ventricles, norepinephrine enhances calcium ions entry through the voltage-gated slow calcium ions channels, thereby increasing contractility.
- * Through Parasympathetic nerve impulses reach the heart via the right and left vagus (X) nerves: Vagal axons terminate in the SA node, AV node, and atrial myocardium. They release acetylcholine, which decreases heart rate by slowing the rate of spontaneous depolarization in autorhythmic fibers. As only a few vagal fibers innervate ventricular muscle, changes in parasympathetic activity have little effect on contractility of the ventricles.

CHEMICAL REGULATION OF HEART RATE

- 1. Hormones: Epinephrine and norepinephrine (from the adrenal medullae) enhance the heart's pumping effectiveness. These hormones affect cardiac muscle fibers in much the same way as does norepinephrine released by cardiac accelerator nerves—they increase both heart rate and contractility. One sign of hyperthyroidism (excessive thyroid hormone) is tachycardia, an elevated resting heart rate.
- 2. Cations.: Given that differences between intracellular and extracellular concentrations of several cations (for example, sodium and potassium ions) are crucial for the production of action potentials in all nerve and muscle fibers. Elevated blood levels of potassium ions or sodium ions decrease heart rate and contractility. Excess sodium ions blocks calcium inflow during cardiac action potentials, thereby decreasing the force of contraction, whereas excess potassium ions blocks generation of action potentials. A moderate increase in interstitial (and thus intracellular) calcium ions level speeds heart rate and strengthens the heartbeat.

Regulation of Heart Rate

OTHER FACTORS IN HEART RATE REGULATION

 Age, gender, physical fitness, and body temperature also influence resting heart rate.

• A physically fit person may even exhibit bradycardia, a resting heart rate under 50 beats/min.

• During surgical repair of certain heart abnormalities, it is helpful **to slow a patient's heart rate by hypothermia**, in which the person's body is deliberately cooled to a low core temperature.

HELP FOR FAILING HEARTS

 Cardiac transplantation is the replacement of a severely damaged heart with a normal heart from a brain-dead or recently deceased donor.

• Cardiac transplants are performed on patients with end-stage heart failure or severe coronary artery disease.

لى تركيبن بتوزور العلب باري والتعذية التسكير إذا صارفيها عفرة و كر الشريان باذا كان بضبة التسكير إذا كان بضبة التسكير حمد بعضل العلب ويقوم المشخفي معلمة زراعة للعلب

THANK YOU

AMJADZ@HU.EDU.JO

ils les les return ils les right atrial gine les les.

cordiac outputies Los si stroke volume is les si enddistolic is les si preload

constrection je 9 central diploition je symathetic generally fools pulled in blood vessels is perpheral circulation will include blood vessels is perpheral action as the include in diameter is sympathetic hirod in N construction wis to ask pressur s flow للعين عن القلب عشان لِقلل Cappillaries organ de zibil pul circulation de El quile

Dood rack de seis of ester load sensory على إحرى طبيات haraveceptor: Chemorecepturs a offer ste (2) go just sensory pe secèsiones لې يکون متفزم acorta bar oveceptor N activation يكون عاكي left ventricle ل ما لعفن الم receptor نحمة الرقبة وها مح معرة المرا sense tive يتكون محمية receptors وها مح المرا المعرفة والعناق المراحة والعناقلات المراحة والمراحة والم AP ويتكون jon channels ويتكون AP (ion channel & receptor) عكر نفس البموتين para sympathetic week (10 med) Vagus nerve (sue le de baro receptor _ sympathetic week) Les (11 med) Accsselerator of sue le de baro receptor _ nerve

ion channels ويتكون الصفط عاكى رح يصير فيه barareceptor المعدد معدود على المعنون فيتمنع المعنون فيتمنع والمعال المعنون المانها المعنون والمعنون المانها المعنون والمعنون المانها المعنون والمعنون المانها المعنون والمعنون المانها ويتكون الماله ويتكون المال

ion channels المستريان فيتمنت barareceptor مر مctivation المستريان فيتمنت المحافظ على المستريان فيتمنت المحافظ المستريان فيتمنت المحافظ المحا

(sympathetic) Cardio voscular stimulatury centre » activation Les 219 Cordio voscular (). Ap Jair 219 11 quell à Ap istire

إِلَى حَنَفُرِز النور إبنفرين و تُزير AV node في spentenous depolorization وباللَّاي بتزيد HR

O2 91 CO2 - Chemichals Se Jissey Chimo receptor 14, Co₃ = H² + Co₃ | Co₂ USû | Co₂ USû | کل زاد ترکِز وی براد ترکین مین و ۴۲ chemoreceptor in the still chemoreceptor نمية ٥، قليلة = نسبة مالكة hypercapenia skeletal se a proprio receptor e contraction de les mueste thyroind hermon الناس الي نشاط الدرقية عنزهم عالى لأن علمان الأيف عالم هرمون لم لفرة المرفعة _ S le HR (w/s.) بزير ۱۲۴