مكتبة خواطر 2.75

الجامدة الهاشمية

## Calculus (1)

ثقافيل وتكامل (1)

إعداد: أيمن زيود

بخط : عبد الله دياك

شرح مفصل للمادة مضاف إليها أسئلة سنوات

الفمل الدراسي الثاني 2017/2018

| INDEX '                           | الفهرسن ال                     | PAGE  |
|-----------------------------------|--------------------------------|-------|
| INFORMOTIN                        | معلومات                        | 1     |
| DIFNSION OF FUNCTION              | تعريف الإقتران                 | 5     |
| DOMAIN                            | المجال                         | 6     |
| RANGE                             | المدى                          | 12    |
| COMPSITION FUNCTION (fog)         | الاقترانات التركيبية           | 15    |
| GRAPHS OF SOME FUNCTION           | رسمات بعض الاقترانات           | 19    |
| SYMMETRY                          | التماثل                        | 20    |
| ODD & EVEN FUNCTION               | الفردي و الزوجي                | 22    |
| INVERSE FUNCTION                  | الاقترانات العكسية             | 23    |
| TRIGONOMETRIC FUNCTION            | الافترانات المثلثية            | 32    |
| INVERSE OF TRIGONOMETRIC FUNCTION | الاقترانات المثلثية العكسية    | 42    |
| RULES OF INVERSE OF TRIGONOMETRIC | قواعد اقترانات مثلثية عكسية    | 44    |
| THEOREM OF TRIGONOMETRIC FUNCTION | متطابقات الاقرانات المثلثية    | 48    |
| EXPONETIAL FUNCTION               | الاقتران الأسي                 | 49    |
| LOGARITHMIC FUNCTION              | الاقتران اللوغاريتمي           | 52    |
| LIMITS                            | النهايات                       | 58    |
| LIMIT OF TRIGONOMETRIC            | نهايات الاقترانات المثلثية     | 69    |
| VERTICAL A SYMPTOTE               | التقارب العامودي               | 70    |
| THE SEQUEEZ THEOREM               | نظريه الحصر (الشطيرة)          | 73    |
| LIMITS AT INFINITE                | النهايات عند المالانهية        | 74    |
| HORIZONATL A SYMPTOTE             | التقارب الأفقي                 | 83    |
| CONTINUITY                        | الاتصال                        | 85    |
| INTERMEDIATE VALUE THM (IVT)      | نظرية القيمة المتوسطه          | 94    |
| YEARS FIRST                       | سنواااااااااااااا فيرست        | 99-98 |
| DERIVATIVE                        | الإشتقاق                       | 99    |
| IMPLICT DERIVATIVE                | الأشتقاق الضمني                | 105   |
| HIGHER DERIVATIVE                 | المشتقات العليا                | 114   |
| DIFFERENTIABILITY                 | قابلية الاشتقاق                | 117   |
| DEFINSION OF DERIVATIVE           | تعريف المشتقة                  | 121   |
| EQUATION OF TANGENT               | معادله المماس                  | 124   |
| HYPERBOLIC FUNCTION               | الاقترانات الزاندية            | 128   |
| APPLICATION OF DERIVATIVE         | تطبيقات على الاشتقاق           | 135   |
| THE SECOND DERIVATIVE TEST        | اختبار المشتقة الثاتية         | 143   |
| L'HOPITAL                         | اللوبيتال                      | 144   |
| MEAN VALUE THM & ROLLER THM (MVT) | نظرية القيمة                   | 154   |
| INTEGRATION                       | التكامل                        | 155   |
| INTEGRATION BY SUBSTITUTION       | التكامل بالتعويض               | 162   |
| THE FUNDEMNTAL OF CALCULAS        | النظرية الاساسية في الكالكولاس | 166   |
| AREA BETWEEN THE FUNCTION         | المساحه بين الاقترانات         | 170   |

| VOLUME                   | الحجم                    | 175  |
|--------------------------|--------------------------|------|
| AREA OF THE CIRCLE       | مساحه الدائره            | 176  |
| FIRST DR. OMAR           | فيرست دكتور عمر السيد    | 0    |
| SECOND DR. OMAR          | سكند دكتور عمر السيد     | 00 - |
| FINAL DR.OMAR            | فاينال دكتور عمر السيد   | 000  |
| FIRST DR.MOHAMMD SERSEK  | فيرست دكتور محمد السرسك  | М    |
| SECOND DR.MOHAMMD SERSEK | سكند دكتور محمد السرسك   | ММ   |
| FINAL DR.MOHAMMD SERSEK  | فاينال دكتور محمد السرسك | MMM  |
| FIRST DR.HATEM MEQDADE   | فيرست دكتور حاتم مقدادي  | Н    |
| SECOND DR. HATEM MEQDADE | سكند دكتور حاتم مقدادي   | НН   |
| FINAL DR.HATEM MEQDADE   | فاينال دكتور حاتم مقدادي | ннн  |
| TEST BANK                | بنك الاسئلة              | TEST |

وجدت هذه الدوسية لتسهيل على الطالب من حيث الشرح و اسئلة و سنوات ويوجد لديها مجموعة دوسيات الآمال:

- فيزياء عامة 1
  - ستاتيك
  - ثيرمو

هذا عمل بشري في حال وجود اي خطأ من غير قصد الرجاء التواصل معنا

ايمن زيود

0790606515

(10all) إعداد: أيُمنِّ زيود Tela Za 10 6 1911-91-18 # (m-6-4) # Cm25- 8 & # \$ النام بين مي الم  $(A^3 - B^3) = (A - B)(A^2 + AB + B^2)$  $(A^2-B^2) = (A-B)(A+B)$  $(A^{3}+B^{3})=(A+B)(A^{2}-AB+B^{2})$ auxul Gloc Examples e-كلة م بارمين عاقب تم به الأعلى TI (X = 27) = (X-3)(x = 3x-4) Examples : I (x3+1) = (x+1)(x2-x+1) [ (x2-4) = (x-2)(x+2)  $\boxed{3} (2x+1)^{3} + 27 =$ 121 (x=9) = (2x-3)(2x+3)  $((2x+1)+3)((2x+1)^2-3(2x+1)$ (3) (x2 7) = (x-17)(x+17)  $\boxed{4}(x^{3}-6) = (x-\sqrt[3]{6})(x^{2}+\sqrt[3]{6}x+\boxed{4}(x+1)^{2}-16 = ((x+1)-4)((x+1)+4)$  $(\sqrt[3]{6})^2$  = (x-3)(x+5)خط : عبد الله دياك { **1**}: öben

﴿ (ارُمَالُ إعداد: أيمن زيود

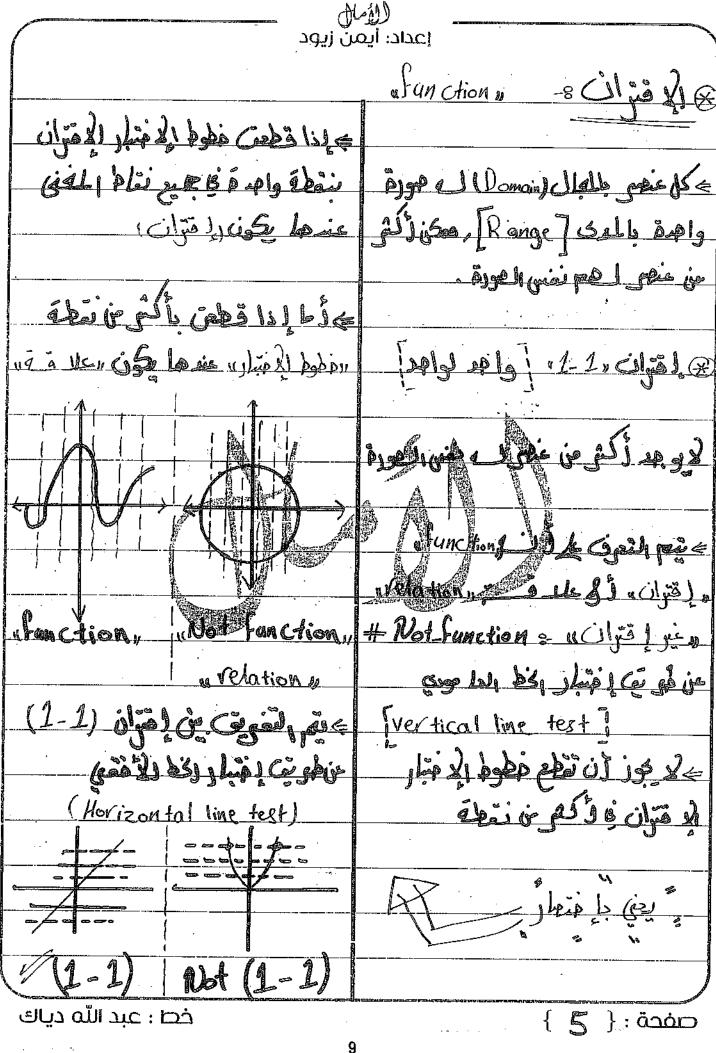
خط : عبد الله دياك

مكتبة <del>خواط</del>ر

{ **2** }: قعفت

اللهمال إعداد: أيمنّ زيود \* المقانات الطلقة الله و- على المع المع الجودة فالنبان المطاه = intel del (1) eller sternif (X) Lais pi <u> التلخ و علوان التم المتما</u> We sting cilio sola finis pa · so Kilipaligen- & Lage Culting it is in the Ext A = (-04) 140B-22/16 الإ كاران والمعنون المعلودان Bol <u> Se Ab</u>ıı AUBD. X = [ (-10,4) X-1 X+2 X-1 X +2 61,27 خط : عبد الله دياك { **3** }: änàp

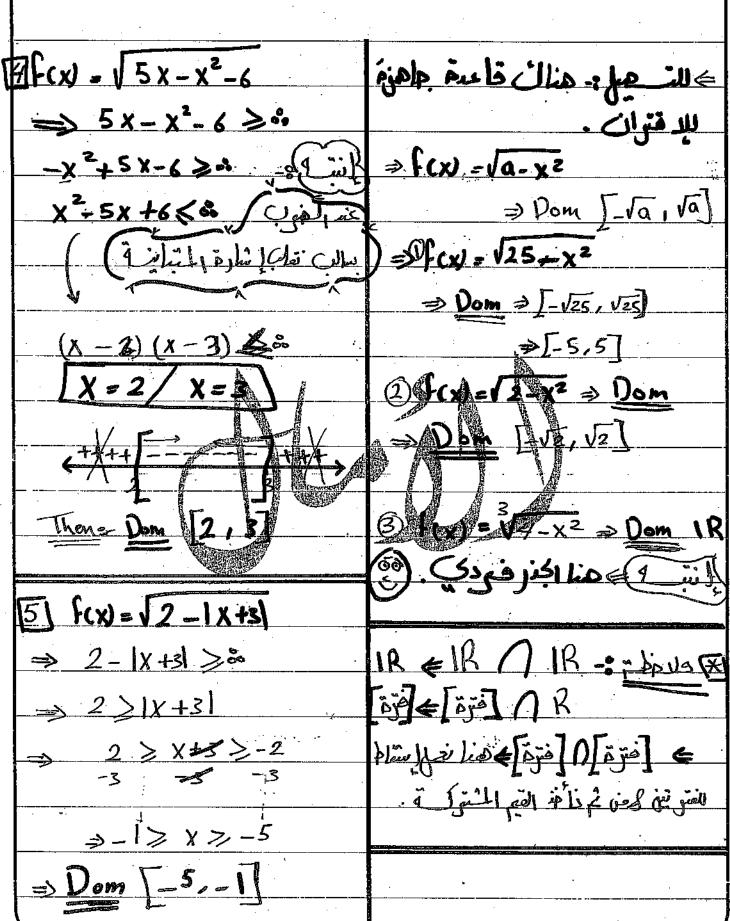
الأمال


إعداد: أيَمَنّ زيود \* فواق - القمة - المطلقة  $\boxed{4} \left( \mathbf{A}^{b} \right) = \left( \mathbf{A}^{c} \right)^{b} = \mathbf{A}^{(*b)}$ 11 | | | b  $E_{X} = (2^4)^2 = (2^2)^4 = (4)^4 = 256$   $\Rightarrow X = \pm b$ 2 1X/ < b 51 (A\*K) = A\*K => -6 < x < b  $E_{X}$ ,  $(2 \pm \sqrt{3})^2 \Rightarrow (2)^2 \pm (\sqrt{3})^2 + 4 \times 3 = 12$  $\boxed{6} \left( \frac{A}{K} \right)^b = \frac{(A)^b}{(K)^b}$ ع تربع القنو إزالة ع × ( عمر) [ع] (عمر) [ع]  $\frac{\sum x = \left(\frac{2}{\sqrt{3}}\right)^2 = \left(\frac{2}{\sqrt{3}}\right)^2}{\left(\sqrt{3}\right)^2}$ عَقِيم الزبع إطلاع ( IXI = XX) 7 (A) = VAC \* Eligi \_ Kimy  $E_{X} = (X)^{\frac{5}{7}} = \sqrt[7]{(X)^6}$  $\sum_{x \in -\infty} (x)^{\frac{7}{2}} = \sqrt{(x)^{\frac{7}{2}}}$ 2 A + A = A 6 Ex= 2 +2 = 2 (B) (A) = 1

3 A = A 6 fx = 2 = 2 = 2 = 2 = 2

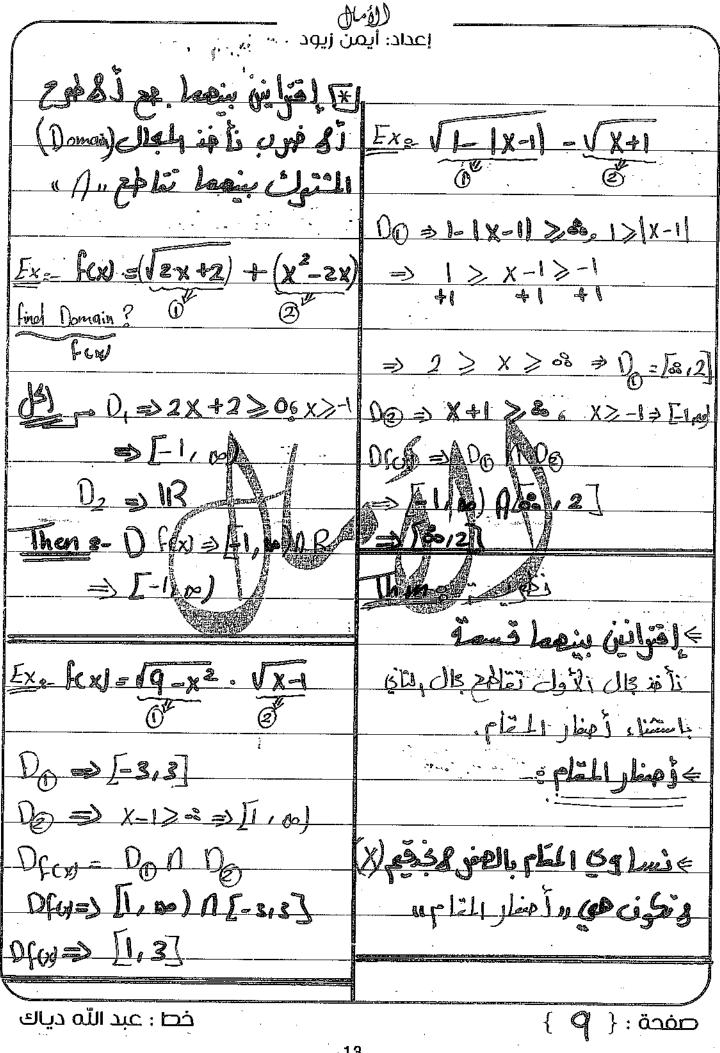
خط : عبد الله دياك

مكتبة خواطر


صفحة : { 🔑 }



إعداد: أَيْمَنُّ زيود Ke dassify the following function or not function  $[6](x-a)^2+(y-b)^2=r^2$ Welations [velation] [ spl ]  $\boxed{1} \quad \underline{y} = x^2 + 2x + 1$ => function Domain & Range <u> المطقة - بتيوك وزها ذهب 3- 8- </u> الأديار بي المنظ المران يوم على شكل الريم المنكال " Velation " يتر يتي كأ كلك Domain ♦ *نځو ـ ه* و ۲۸» ع المانكال ا 2 4-3 = 1x1 => function 3 191 +x2= Bange relation W x+342 =5 [Velation] 51 x 2 y - 3 = x [function] Range صفحة: { 💪 } خط : عبد الله دياك 10 مكتبة **خ**و اطر

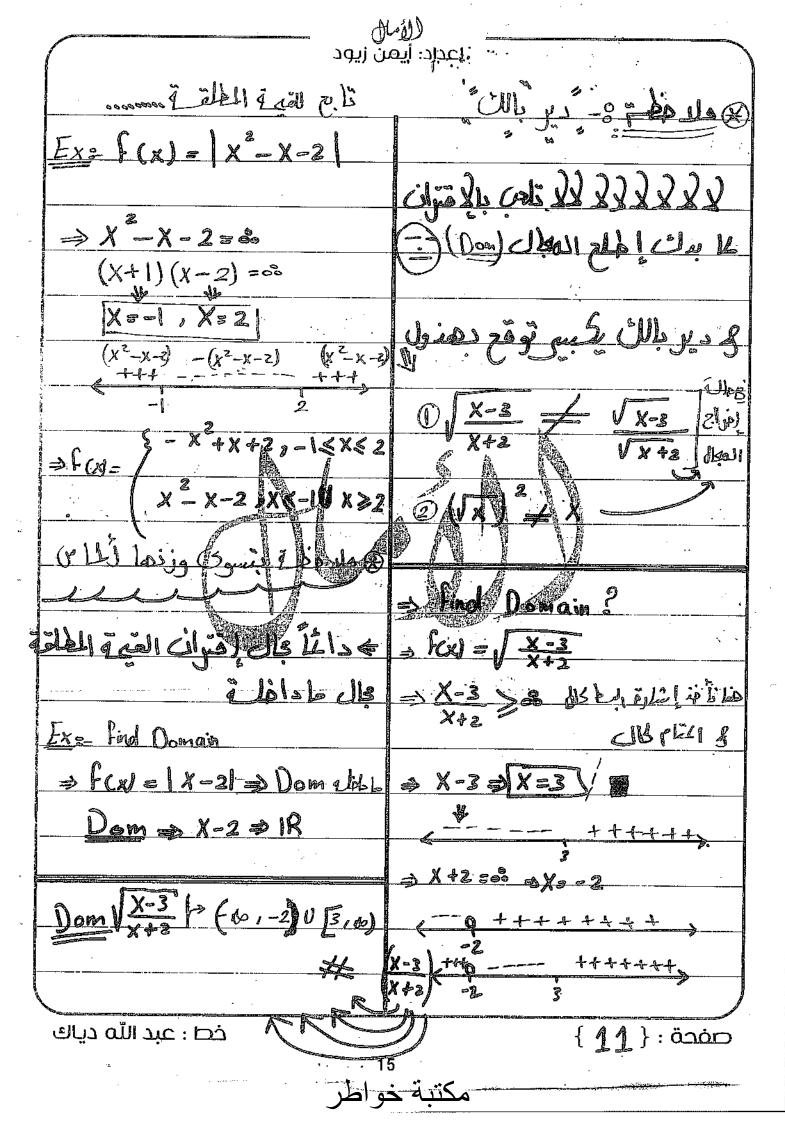

11

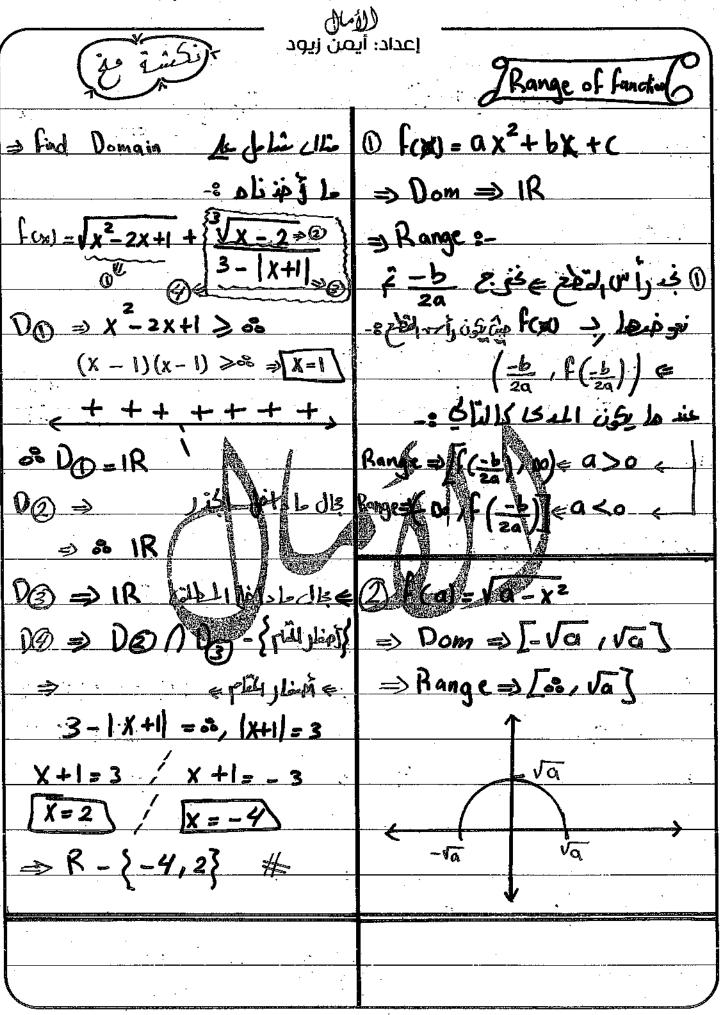
﴿لَوْمَالُ إعداد: أيمن زيود



خط : عبد الله دياك

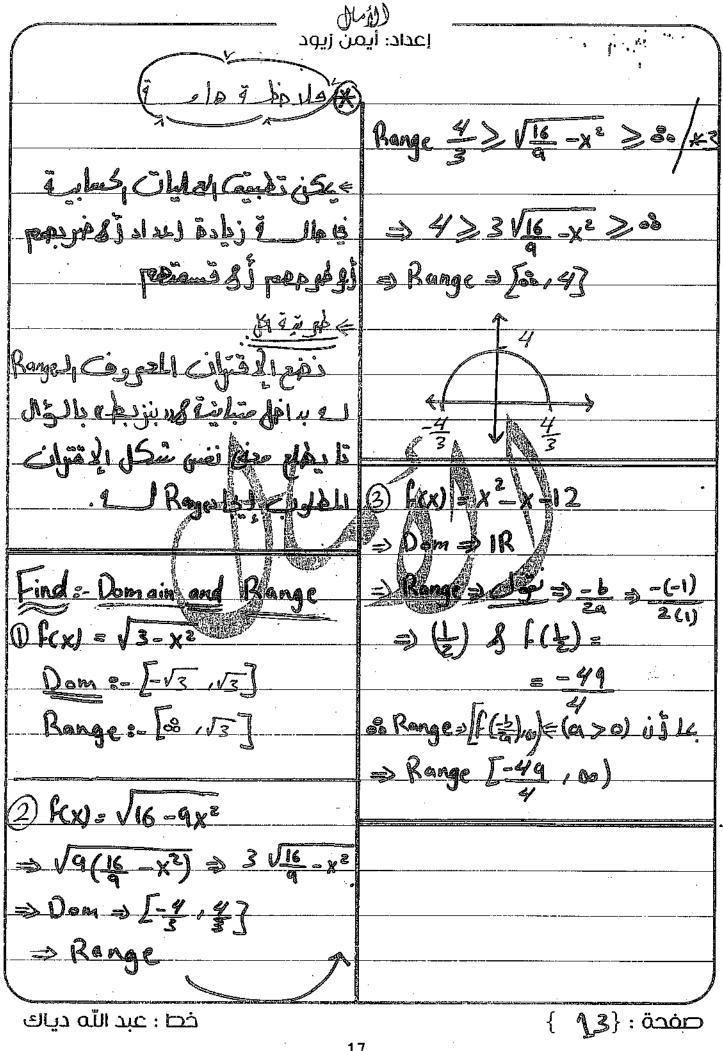
12 مكتبة <del>حواطر</del> صفحة: { 🎖 }

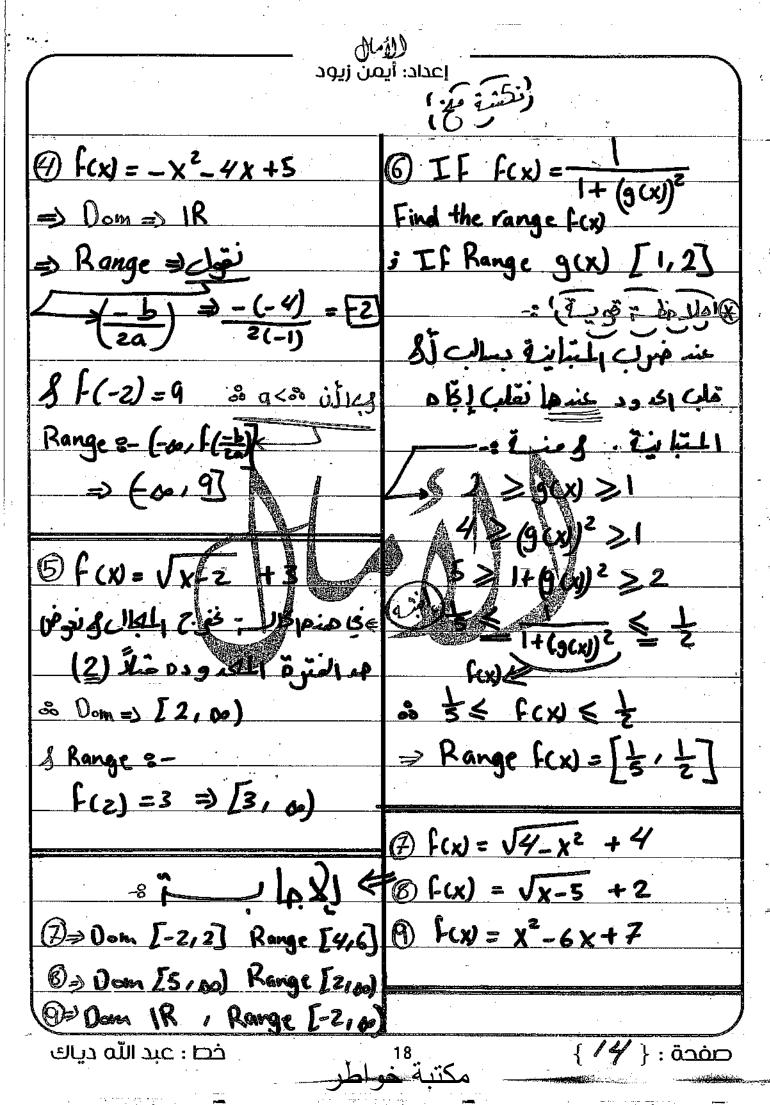


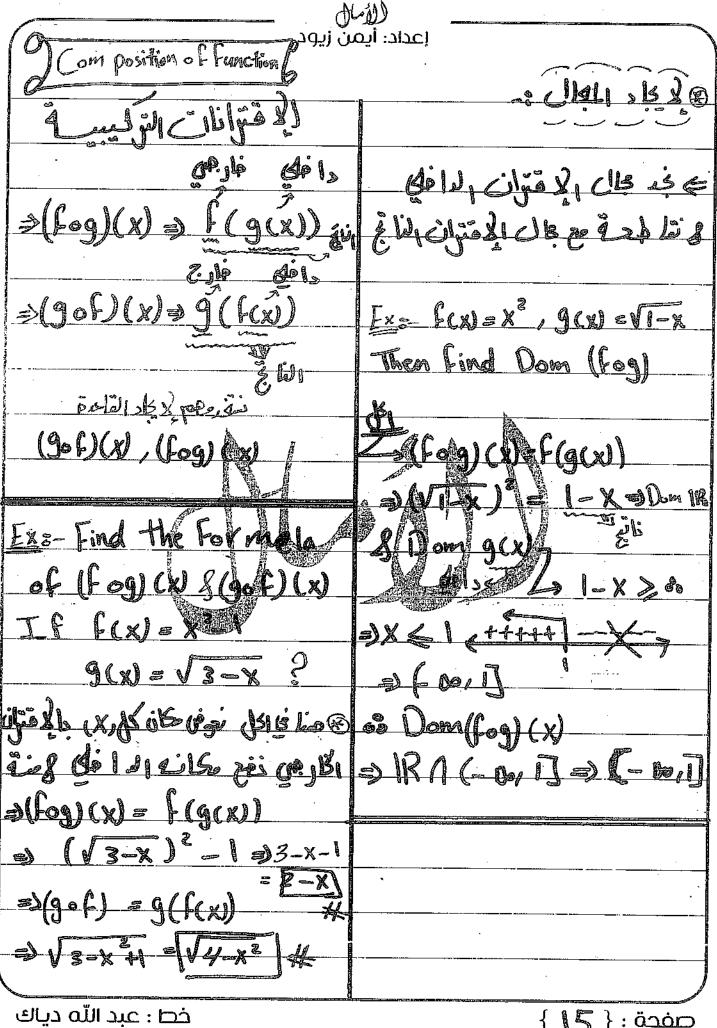


((لأمال إعداد: أيمن زيود

| Exe-find the domain fox                                                                                   | Exe-f(x) = 3/5-0                                                                                          |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| => F(x) = [X+3] > 0                                                                                       | , <b>3</b> ©                                                                                              |
| Exs-find the domain $f(x)$ $\Rightarrow f(x) = [X+3] \Rightarrow \emptyset$ $[X-3] \Rightarrow \emptyset$ | ع منو تكسي ع كال _ عال مادافه بكنو                                                                        |
| $D_{\mathbb{O}} = IR$ $D_{\mathbb{O}} = IR$                                                               | عَلَيْنِ الْمُقَامِدُ مِ اللَّهِ عِلَيْنِ الْمُقَامِدُ مِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ |
| => X-3= & Flet bept                                                                                       | Do = IR   x+1=&                                                                                           |
| X-3                                                                                                       | [X = -1]                                                                                                  |
| Drew = Don Do /- { plans                                                                                  | => Dfcw = 1R ∩18-{-13                                                                                     |
| ⇒ 1R/33                                                                                                   | 11-3-11 CAN                                                           |
| Ex = f(x) = V(x-2 + 44 = 2)                                                                               | وكالم المخان التية الملاة                                                                                 |
| DO => X-2387X>2                                                                                           | <u> </u>                                                                                                  |
| [21 00)                                                                                                   | ⇒ X-1=00 € [X = []                                                                                        |
| 00 = 1R/00 = 1R                                                                                           | 1-X X-1                                                                                                   |
| X-5= = Eplet jlep je                                                                                      |                                                                                                           |
| X=5 08 D = 1RM[2/4                                                                                        | $f(x) = \begin{cases} 1-x, & x \leq 1 \\ x-1, & x \geq 1 \end{cases}$                                     |
| _{59}                                                                                                     |                                                                                                           |
| $\Rightarrow D(x) = [2, \infty) - \{5\}$                                                                  |                                                                                                           |
|                                                                                                           | *                                                                                                         |

خط : عبد الله دياك


مكتبة خواطر مكتبة خواطر صفحة : { 🚺 }




<u>خط : عبد الله دياك</u>

مكتبة خواطر مكتبة خواطر { **12** } : قعفت







صفدة : { **5** } }

الأمال

| منّ زيود '                                                  | [عداد: أير                                                           |
|-------------------------------------------------------------|----------------------------------------------------------------------|
| Ex= Final the (fog) (x)                                     |                                                                      |
| and domain (fog)(x) forg                                    | $\frac{\sqrt{-2}x-6}{-x+3} = -2x-5$                                  |
| SITES CONTAIN VOG                                           |                                                                      |
| $\lim_{x \to 1} f(x) = \frac{3x}{x-1} / g(x) = \frac{2}{x}$ | -X+3                                                                 |
| X-1 X                                                       | → Dom f (g(x)) => R                                                  |
| \$ , f . g(w) = f (g(w)                                     | $\Rightarrow$ Dom $9(x) \Rightarrow R - \{-3\}$                      |
| $3 + (\frac{2}{x}) = \frac{3 + (\frac{2}{x})}{x}$           | => Dom (f-09)(x) => R-{-3}                                           |
| ( <del>2</del> )-1                                          | $3 f(x) = \sqrt{x} = \sqrt{2} g(x) = \sqrt{x} = 1$                   |
| 3) 2-X 2-X                                                  | $\frac{2}{2}\sqrt{\sqrt{\frac{2}{3}}} = \frac{1}{2}(g(x))$           |
| ⇒ Domain g(x) ⇒ R } & }                                     | Domard St. St. X SI, X & I                                           |
| Dom F(9(X)) 3 R2 {2}                                        | => Dom f(g(x)) => \( x^2-1=2 >)2                                     |
| Dom (fog)(x) => K-18318-14                                  | $\Rightarrow \sqrt{x^2-1} \geqslant 2 \Rightarrow x^2-1 \geqslant 4$ |
| => Q- }=,2}                                                 | $x^2 \geqslant 5$ , $x^2 = 5 \Rightarrow x = \pm \sqrt{5}$           |
|                                                             | (+++ +++                                                             |
| $I f(x) = \frac{x-z}{x} / g(x) = \frac{1}{x+3}$             | Dom 9(x) / Domf((xx))  >> (-00/- \sqrt{5] U[\sqrt{5}, 00)            |
|                                                             | => (-00/-V5 ]U[V5,00)                                                |
| $\Rightarrow f(g(x)) = (x+3)-2$                             |                                                                      |
| [                                                           |                                                                      |
| $(x_{+3})$                                                  | <i>J</i>                                                             |

خط : عبد الله دياك

20 مكتبة خواطر

صفحة : { 6 }

المؤسل ا

إعداد: أَيْمَنّ زيود

| إعداد: ايمن زيود                                              |                                                      |
|---------------------------------------------------------------|------------------------------------------------------|
| Ex = g(x) = 2x - 3                                            | Ex :-                                                |
| $(fog)(x) = x^2 + 5, find$                                    | $f(x) = 5x - 1, g(x) = \frac{x}{2+x}$                |
| f(x)?                                                         | Then find f (gall)                                   |
| <u>&amp;</u>                                                  |                                                      |
|                                                               | $\Rightarrow 9(1) = \frac{(1)}{24(1)} = \frac{1}{3}$ |
| $\Rightarrow [-(2x-3)]$                                       |                                                      |
| 9=2x-3 => 9+3=2x                                              |                                                      |
| $X = \frac{4+3}{2}$                                           | 3 5 - 3 = 3                                          |
|                                                               |                                                      |
| $\Rightarrow f(y) = \left(\frac{y+3}{2}\right) = \frac{5}{4}$ | $Ex=2$ $f(x)=x+1,g(x)=\sqrt{x}$                      |
| الانع (xy) ربوز عنه النبدل                                    | find (989)(80)                                       |
| = L-XXEY                                                      | 3 (1(21)) 4 4                                        |
| $\rightarrow f(x) = (x+3)^2 + 5 $                             | => 9(81)= V(81) = [9]                                |
| • • • • • • •                                                 | ⇒ 9(9) = √q = 3                                      |
| € المتأكد الفقط اللي، عشان                                    |                                                      |
| على بناك عديد x ناهد رن عن                                    | Ex 2- FCX1 = VX+4 , 9(1)=5                           |
| (fog) Whise                                                   | find (fog) (1)                                       |
| $3 f(g(x)) = (g(x) + 3)^2 + 5$                                | 9(1)=5 => f(5)= 15+4                                 |
|                                                               |                                                      |
| $f(g(x)) = (2x)^2 + 5 \Rightarrow (x^2 + 5)$                  | 3) 77 = 3                                            |
|                                                               |                                                      |

خط : عبد الله دياك

22 مكتبة خواطر صفحة: { الله الله

d will

داد: أيمن زيود • المن زيود

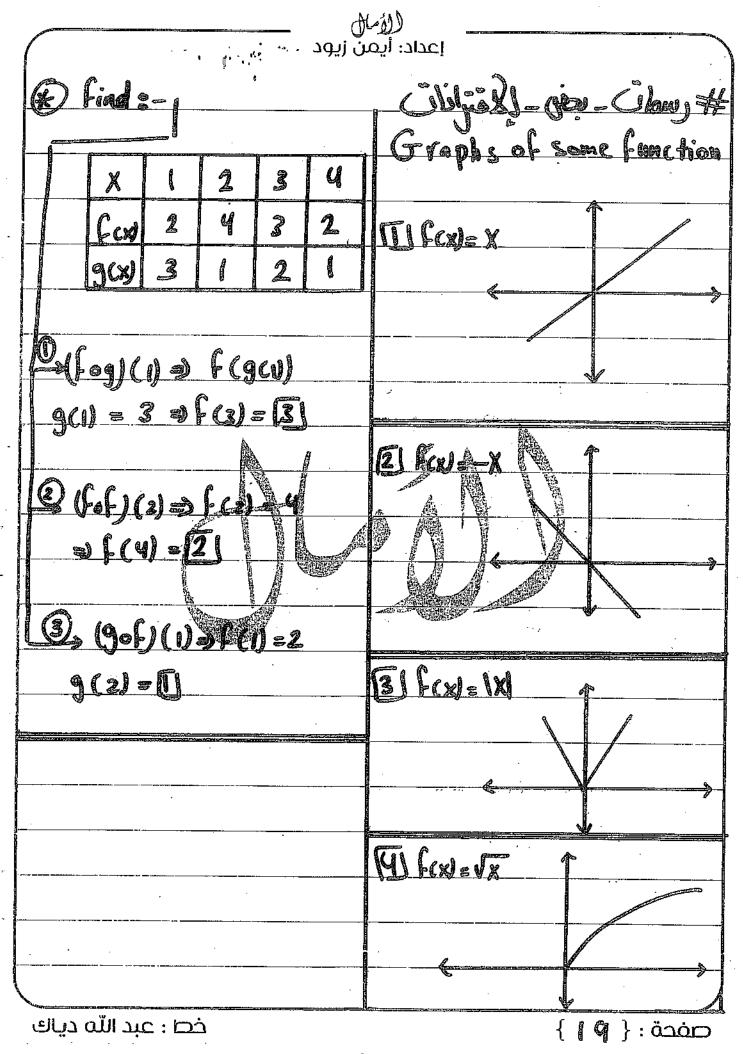
$$G f(x) = \frac{6}{x-2}$$
, Then the domain  $(f \circ f)(x)$  is?

$$f(f(x)) = \frac{6}{(\frac{6}{x-2})-2} = \frac{6}{(6-2)(x-2)} = \frac{6(x-2)}{(6-2)(x-2)}$$

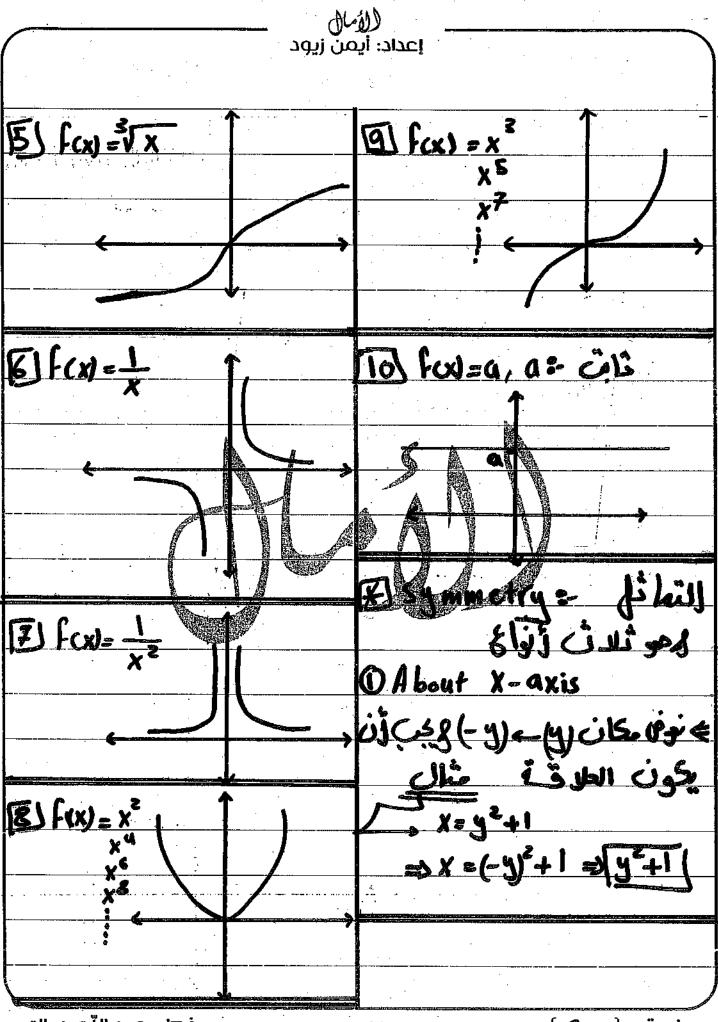
$$\frac{-6(x-2)}{10-2x} \xrightarrow{R}$$

$$\begin{array}{c|c}
R \cap R - \begin{cases} 10 - 2x = 6 \\ 10 = 2x \\ x = 5
\end{cases} = R - \begin{cases} 5 \end{cases}$$

$$\frac{dP'UI}{f(x) = \frac{6}{x-2}} \stackrel{R}{\Rightarrow} R R - \begin{cases} x-2=0 \\ x=2 \end{cases}$$


$$R - \{2\}$$

$$Dom (f \circ f)(x) = R - \{5\} \cap R - \{2\}$$


$$= R - \{2, 5\}$$

خط : عبدالله دباک

هفدهٔ:[ ]



<sup>25</sup> مكتبة خواطر



خط : عبد الله دياك

مكتبة خو اطر

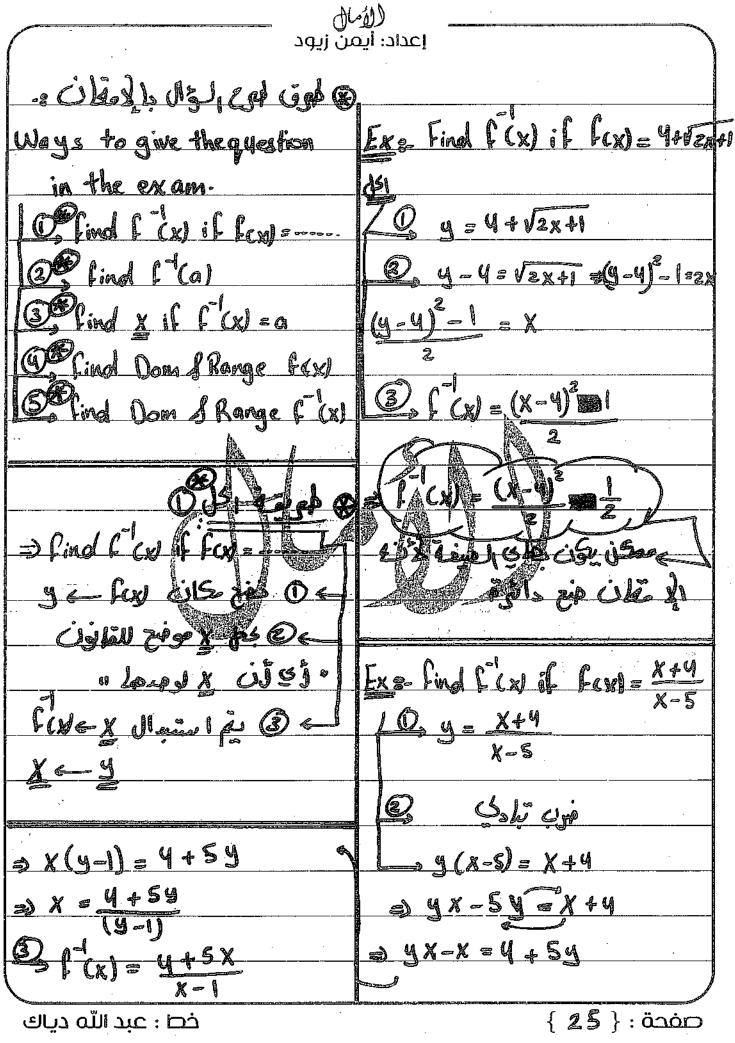
{ **20** } : قعفت

27

مكنبة حو اطر

| اعداد: أيمن زيود<br>عداد: أيمن إيمان |                                                            |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| #Odd-and-Even                                                                                                      |                                                            |
| <u>functions</u>                                                                                                   | $F_{X_8} - f_{(X)} = x^3 - 5x \mathcal{P}$                 |
| عطون إذا المحقران المحو                                                                                            | <del></del>                                                |
|                                                                                                                    | $\Rightarrow -x^3 + 5x \Rightarrow -(x^3 - 5x)$            |
| برلازم يخوج معن الاقتران                                                                                           | Fcx                                                        |
| نفسه مفروب بسالب                                                                                                   | Then dfl(x) odd function                                   |
|                                                                                                                    | ويوم نابته كما اغا قن وهوا ١٤                              |
| الطويقة الثانية ع                                                                                                  | بنج في مكان ع مالاء نه عن                                  |
| ناجي مڪالي ريائي الاي الاي                                                                                         | <u>ڏن خن دن ريد متران ۽</u>                                |
| Cosci Cis - 19 (19)                                                                                                |                                                            |
| الإعترال كالعو                                                                                                     | evencalizate i - a port @                                  |
|                                                                                                                    | Symmetric about g-axis                                     |
| -20 LD, Y. 6                                                                                                       | $ \times^3$ $ (-X)^3$                                      |
| الي اقتران المه ه-                                                                                                 | $Ex f(x) = x = \frac{x}{2} = \frac{x}{2}$                  |
| Symmetric about origen                                                                                             | 3 (3)                                                      |
|                                                                                                                    | $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow f(x)$ |
| -8 & CD 11-E                                                                                                       | -(x'+x) $(x'+x)$                                           |
| (65), 5                                                                                                            | T. C. 1                                                    |
| السنه عد المعولية والاوت                                                                                           | Then fcx) even as                                          |
| ر بالخد ا                                                                                                          | <u>function</u> .                                          |

خط : عبد الله دياك


28 مكتبة <del>خواطر</del> { **12**} : قعفت

 $\{oldsymbol{2} oldsymbol{3} \}$  : قعفت

خِط : عبد الله دياك

مكتبة ٌخواطر

صفحة : { **24** }



31

الأمال إعداد: أَيْمَنْ زيود م مكن خاج لمويقة إسمعط إكمال عربح في اخطوة المانية " ي موفع العلالة الله والمعلقة المانية " إلى موفع العلالة الله المانية " المع موفع العلالة X8 X 12 9 FCX) -> CIS 131 = Ny + 14 = 1x-41 ع منا بالله به لاسق ال هو طالبدال قال أكبون <u>لا عنما بنو فذ مومى الله</u> الخطوات: • ( فعل مطع x مومى) لمالى <u>دُ ھنم</u> بنو فن سالى (Xdebo)2 Copiscipi @ ع مس توین الطاق (=) => X-4= V4+ 14 العنامة المسلح والمناه Exz- Find F CN if Ich = x2-8x +2, x> 4 ?? Exe- Finel F(x) for  $Qy = x^2 - 8x + 2$  $f(x) = 6x - x^2, x > 3$ Q, y-2 = X2-6x 4 = 6x -x2 (-8 / 200 8 Give 3-4 = X2-6X 9 = (-6)2 Guei 8 2 ski  $y-2=x^2-8x+16-16$ = 4 = x2 6x +9 -9 9-4= (x-3)2

خط : عبد الله دياك

مكتبة <mark>خو اط</mark>ر

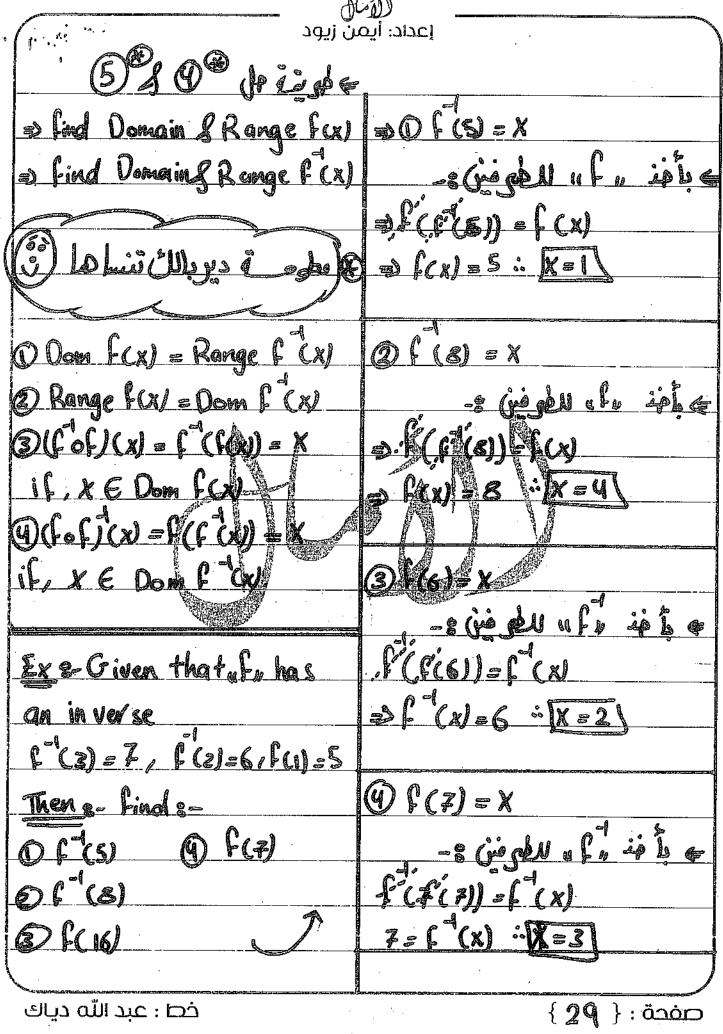
{ **26** } : قعفت

﴿(إِمْهُ) إعداد: أيمن زيود

| => 9-4= (x-3)2         | Ex = f(x) = x + 4x -7                          |
|------------------------|------------------------------------------------|
| = 1x-31                | Find F-(-7)?                                   |
| & X>3 (5)              | => -7 = fcx) =>'                               |
| 3 Vq-y = X-3           | -7 = x = 44x -7                                |
| 3 VA 3 = X             | => X <sup>5</sup> +4 X = &                     |
|                        | $X(x^{4}+4)=8$                                 |
| 3 F(x) = 19-x +3 *     | EX X SEX (E                                    |
|                        | then ( (-7) = 3                                |
| 0 0 pisse              |                                                |
| Find Ca)               | AFING FICS for FCX)                            |
| خ دا ما المالي الماء و | 3463??                                         |
| و بن يم فرين كان ولا   | (1/(5)=) 5 = 4, faj                            |
| LA LES ES EN           | 35 = x <sup>3</sup> +6 => x <sup>3</sup> +1=80 |
|                        | $\frac{1}{2} (x^2 - x + 1) = \frac{1}{2}$      |
| af (y = x a) f(x)=y    | X-1 JE 2                                       |
| 18 X is opher ( ) 31i  | (6)=-1/4                                       |
| يانك عبارة من الله     |                                                |
|                        |                                                |
|                        |                                                |
|                        | <i>)</i>                                       |

خط : عبد الله دياك

{**27**}:قعفت


٠٠ الألامال

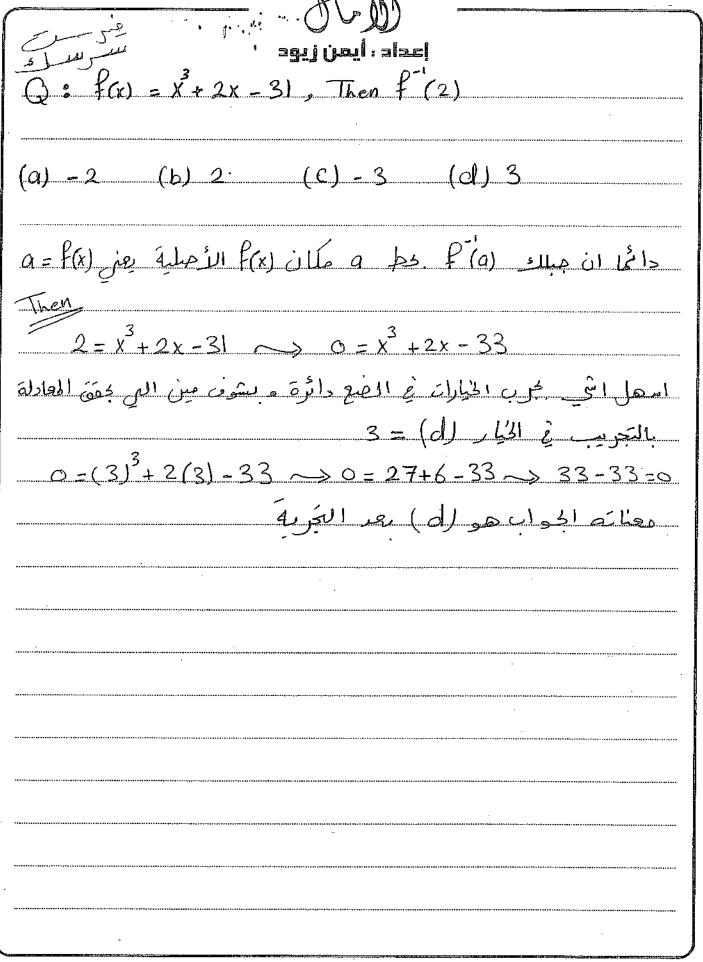
| اعداد: أيمن زيود                                                                                               |                                                        |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| عام نيغ عل على على الله على ا |                                                        |  |
| * Find $x$ if $f(x)=q$                                                                                         | $\sum x = -f(x) = \frac{2x+1}{4x^5+2x^2} \text{ find}$ |  |
| ے خانج بی آع عبارة عن x در رو                                                                                  | xif f(x)=-1                                            |  |
|                                                                                                                |                                                        |  |
| $Exs-f(x) = 3x^2 + 2x + 4$                                                                                     | ⇒ f (x)=-1 = x                                         |  |
| Then find x if f (x)=1?                                                                                        | $\Rightarrow f(-1) = 2(-1)+1$                          |  |
| $\Rightarrow f'(x) = 1 = X$                                                                                    | 4(-1)5+2(-1)2                                          |  |
| $2 f(x) = 3x^{2} + 2x + 4$                                                                                     | ⇒ -4+21 - [] *                                         |  |
| $\Rightarrow f(1) = s(1)^{2} + 2(1) + 4 = 9$                                                                   |                                                        |  |
|                                                                                                                | Ex # ( ) = 2x +8x+1                                    |  |
| Ex3- fcx)=x3+2x2+x+1 find                                                                                      | if (2c5) = C Then fine)                                |  |
| x 1f -cx = 2                                                                                                   | the constant c ?                                       |  |
|                                                                                                                |                                                        |  |
| => f (x) = 2 = X                                                                                               | $\Rightarrow \int (x) = 2x^5 + 8x + 1$                 |  |
| $\Rightarrow$ $f(2) = (2)^3 + 2(2)^2 + 2 + 1$                                                                  | = 2 c5 + 8 c +1                                        |  |
| = 8+8+2+1 = 19                                                                                                 | 38C=-1 3 C==1 *                                        |  |
|                                                                                                                |                                                        |  |
|                                                                                                                |                                                        |  |
|                                                                                                                |                                                        |  |
|                                                                                                                |                                                        |  |

خط : عبد الله دياك

34 مكتبة خواطر

{ **28**} : قعفت




35

(الأمال إعداد: أيمن زيود

| $Ex=f(x)=\frac{X-2}{x+4}, \text{ Then}$ | Ex= f(x) = (X+1) 2              |
|-----------------------------------------|---------------------------------|
| Find Dom & Range (f , f )               |                                 |
|                                         | => Dom F(x) = 1 R-{x=2}         |
| => Dom f(x) = R / R - }x +4===          |                                 |
| => R- \{-4\}                            | ⇒ R - {esj                      |
|                                         | => $y = (x+1)^2 => y = (x+1)^3$ |
| => Dom fox) = Range f (x)               |                                 |
| = R-8-49                                | 1+X = X EV C 1+X = X+1          |
| X-Z                                     | 1= (1- E)) x (e   1-x - x E) &  |
| 3 4 2 3 x 4 4 3 = x = 2 6               | $\Rightarrow x = x = 1$         |
| $\Rightarrow xy - x = -2 - 9y$          | 3 -1 -1 -1 -1 -1 -1             |
| $\Rightarrow \chi(y-1) = -2.949$        |                                 |
| =) X = -2-49 at (x) = 2-4x              | => Dom f (x) = R/1R-/1/x-1=0}   |
|                                         | <u> </u>                        |
| => Dom F (X)=R/R-/X-1=2)                | $X = (U^3 \Rightarrow) X = 1$   |
| => R - { 1}                             | s) Dom f (x) = Range f(x)       |
|                                         | = R - {1}                       |
| ⇒ Dom f(x) = Range f(x)                 |                                 |
| = R-{15                                 | ,                               |

خط : عبد الله دياك

36 مكتبة خواطر { **3**0 } : aaon



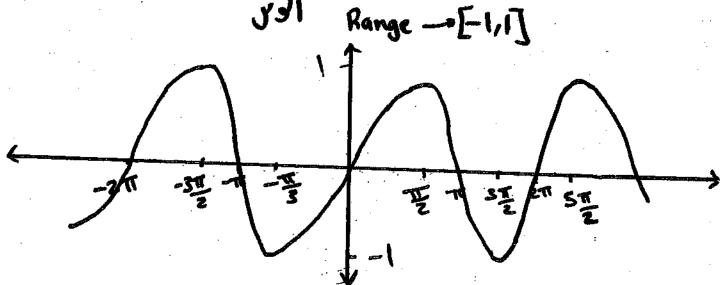
خط : عبدالك دياك

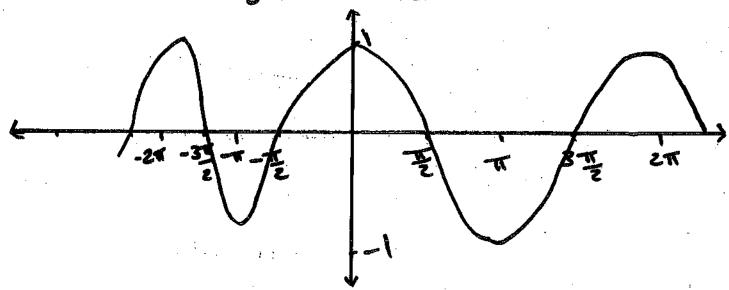
**esich:**[ ]

|                                                          | (لهُ            |
|----------------------------------------------------------|-----------------|
| منّ زيود                                                 | וְברוֹכ: וֹנֵיב |
| S. C. 3                                                  |                 |
| $Ex = f(x) = \sqrt{x^3 + 1}$                             |                 |
|                                                          |                 |
| 0 0 0                                                    |                 |
| => Dom f(x) = Range f(x)                                 |                 |
| = IR                                                     |                 |
|                                                          |                 |
| $\Rightarrow y = \sqrt{x^2 + 1} \Rightarrow y = x^2 + 1$ |                 |
| a) y3 -   = x 3                                          |                 |
| $2) X = \sqrt[3]{4^3 - 1}$                               |                 |
| $= \int_{-1}^{1} (x) = \sqrt[3]{x^3}$                    |                 |
| g                                                        |                 |
| => Dom f (x) = Range f (x) = IR                          |                 |
|                                                          |                 |
| 650                                                      |                 |
| The sure of the                                          |                 |
| Cox1= + Then                                             |                 |
| find C'(x) and dom                                       |                 |
| find (CX) and dom                                        |                 |
| SRange?                                                  |                 |
| - Jinige                                                 | -               |
|                                                          |                 |
| => Range f (x) = Domf(x) = R-18                          |                 |
| - Jungle Control Committee Strain                        |                 |
|                                                          | •               |
| Paxe lexe x = fe                                         |                 |
| = (x) = + = Dom (- (x)=                                  |                 |
| i. '                                                     |                 |
| Range fex) = R-{0}.#                                     |                 |
| ·                                                        |                 |

خط : عبد الله دياك

<sup>40</sup> مكتبة خواطر


( **31** ): قصفت

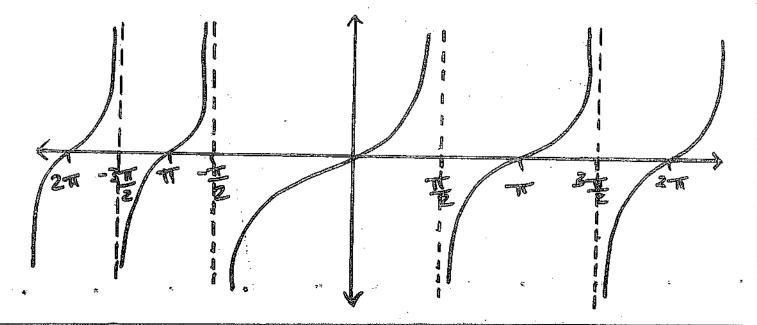

" الألك"

إعداد :-, أيهن الزيود »

# Trigonometric-function:

\*إلاقتراكت المثلثية.






يان وياك .. ي

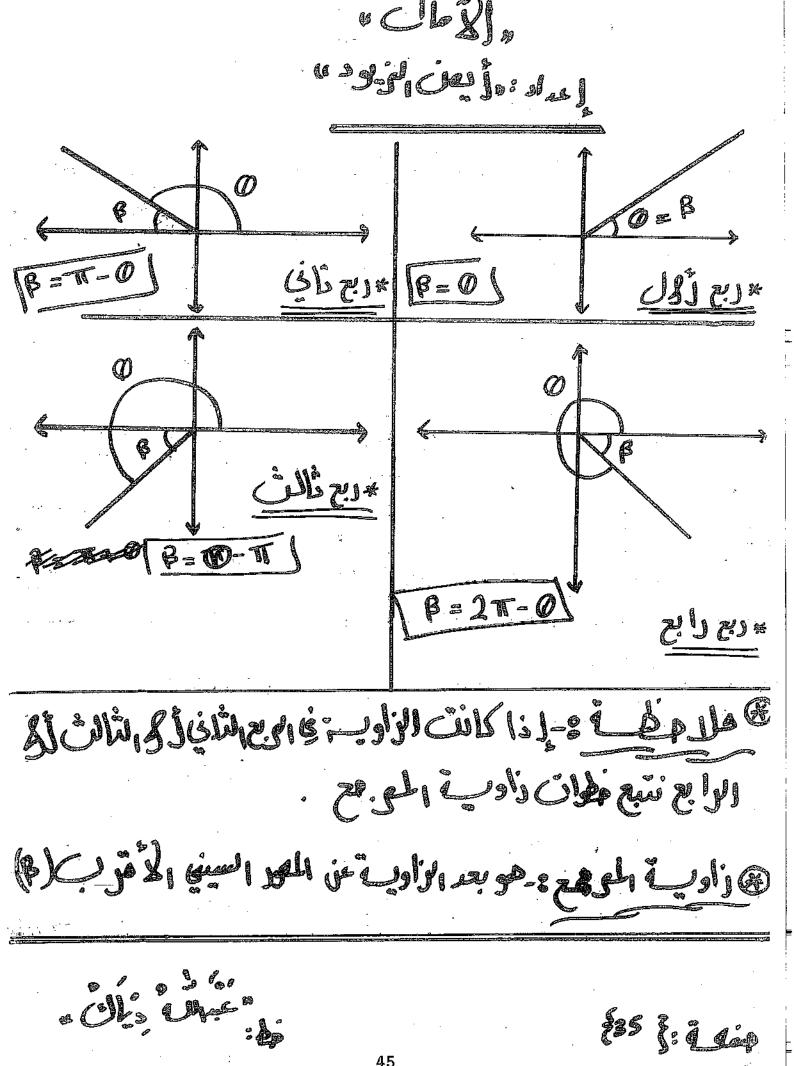
42 مكتبة خواطر

{32 { -: elip

ر دالگال، عاندود

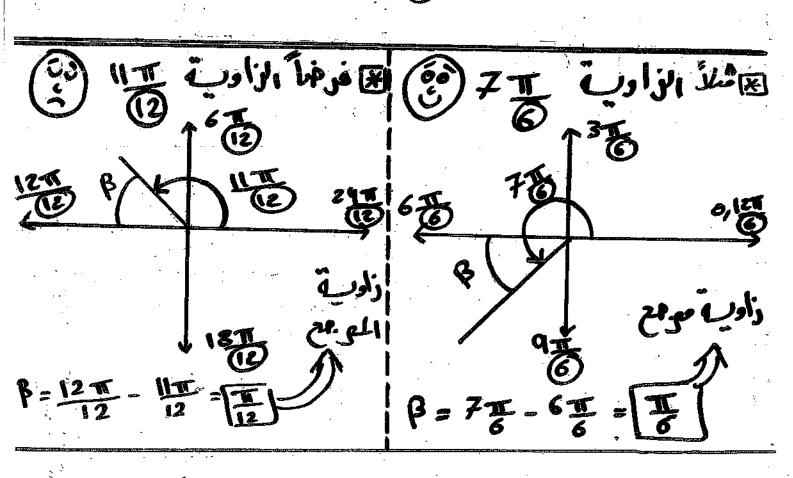


{33 {: Egip


## إعداد : وأين الخاود "

$$Sin(x) \oplus A^{\frac{1}{2}})$$
 $Cos(x)$ 
 $tan(x) \oplus Cos(x)$ 
 $tan(x) \oplus Cos(x) \oplus Cos($ 

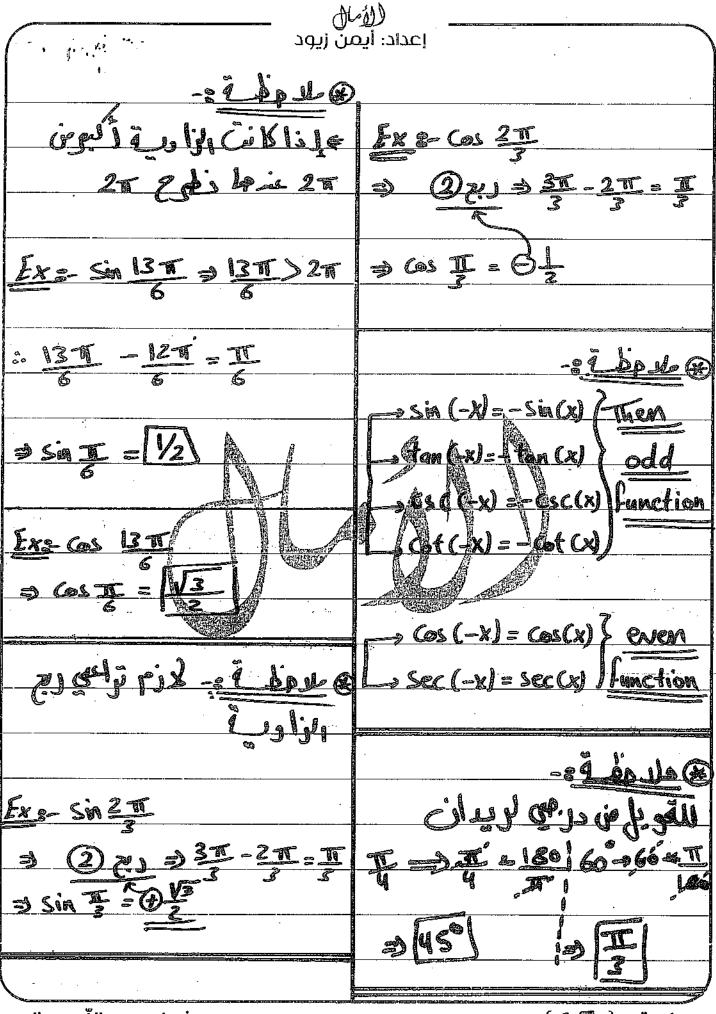
| X       | 0,211 | HN | ₩, | 317 |
|---------|-------|----|----|-----|
| s in(x) | 0     | ı  | 0  | -1  |
| (05 (A) | l     | 0  | 1  | ٥   |
| tanco   | 0     | ø  | 0  | Ø   |


| X      | II.             | 4                | 3  |
|--------|-----------------|------------------|----|
| Since  | 7               | ] = 12<br>12 = 2 | 2  |
| GS(X)  | <u> 73</u><br>2 | 1 2 E            | 75 |
| tan(A) | 1/3             | 1                | V3 |

$$*(ot (\frac{\pi}{3}) = \frac{1}{tan(\frac{\pi}{3})} = \frac{\pi}{\sqrt{3}}$$



## رالأحال» إعداد نوأين الينود»


على المارية التطبيق في مع ف في وَي ربع الزارية الموارية الموارية



نظ: الله والله

46 مكتبة خواطر

{36 }: 6 des



{ **\$ \$ \$** } : \( \text{case} \)

47

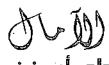
|                                                                        | (الأم                                          |
|------------------------------------------------------------------------|------------------------------------------------|
| ىن زيود                                                                | ן אַבור: וְיֹס                                 |
| Exa Final                                                              | "Domy & aspro                                  |
| 0 cos(4x)=[]                                                           |                                                |
| OL (UT) FILL                                                           | sin (fcx), cos (fcx)                           |
| $ 2 \tan \left( \frac{11\pi}{6} \right) = \boxed{\frac{1}{\sqrt{3}}} $ | مسلوي Dom طدافلة                               |
| $3\sin\left(\frac{3\pi}{4}\right)=\sqrt{2}$                            | ⇒ Domain fcx)                                  |
| (1) Cos (1) TT) = [V3]                                                 | ⇒ Range Sin (fcx) cos(fcx)                     |
| 6 2                                                                    | =30-1/3                                        |
| S sin (5-17) = []                                                      | => Range   sin (fex)   / [cos (4               |
| @ Sin (SII)                                                            | $cattefcnt, sin^{2}(f(x))$ $\Rightarrow [0,1]$ |
| 7.7.1/2                                                                |                                                |
| 3 cot (11TT) = [-V3]                                                   | Exe-Find Dom Fcx)=                             |
|                                                                        | $= Sin\left(\frac{x}{x^2-4}\right)$            |
|                                                                        | => Dom 46/2 L<br>=> R/R - {x2 4= 8}            |
|                                                                        | => Dom f(x) = R - { + 2}                       |
|                                                                        |                                                |
|                                                                        | ·                                              |

(38): äaon

( الأمال إعداد: أَيَّمَنَّ زيودٍ . . . Ex = f(x) = 1+ cos (ex) - f  $Exs-f(x)=1+3\sin(x)$ [ may 12] => Dom (R) 1+ (os (2x) =& COS (2X) = -1 Exe- fcx)= VI-cosix, الزارية الع (cos) لط (ا-) مس =) |- (05(x) >0 ⇒) (os (x) < 1 29 lg Colus Signi (Cos) x Exz- Final Don & Ronge for & Ry dlasta = For Ex3-f(x) = 14-65(2x) => Dam Rw = RA R- (5+cox)+3 & Don' Cast & R أمطيلكم 1+ cos (20)=00 \* Range. JEL 1 2 cos (W) 2 -1 5+ 5+ 5+ Cos (zx) = -1 ع (ح) لط الأدن إلى (cos) لط (ا-) (= 6 ≥ 5+65(x) ≥ 4 (T) (D)  $\frac{1}{6} < \frac{1}{6} < \frac{1}{6} < \frac{1}{6} < \frac{1}{6}$ Then 3 2X=T3 X=I إهابالنايات لأهلب وجمالا  $\Rightarrow X = \frac{\pi}{2} + 2n\pi$ عِينَانَ مَا عِهِ إِزَوَا يَا لِسُرِ دِرِهُ كُلُكُ 3 Dom Ray = R - { \frac{1}{2} \text{2nt}} a Range al z 12]  $\operatorname{Coice}:\{p_{\widetilde{Z}}\}$ خط : عبد الله دياك

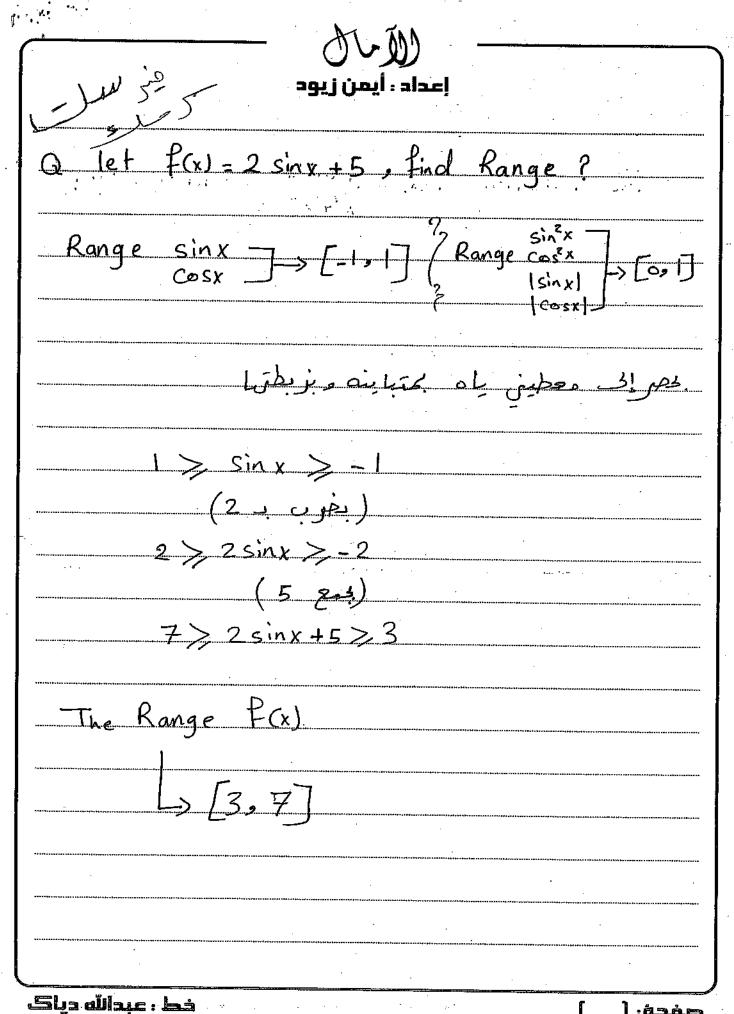
49

( الأمال إعداد: أَيْمَنُ زيود Exe Find the Range et text 3 IF f(x) = sin(x), g(x)=x=+3 TJ FCx) = -3 CO2 X final (gof)(T) f(T) = Sin TT = 3 1> cos2 (x)>0 => g(f(m)) = g(&) (&) +3 -3 ≤ -3 cos²(x) ≤ 0 Bangalf-310] المال المساليات لأمال فلقتل المالية Ex & Cassify the Function as even or odd or niether 2) f(x) = 2-1 Sin (x) 1 > since > os III f(x) = cos(x) = seven-1 < - | sin(x) | < 00 @ ..... 5 Che & was Elf(x) = sin(x) => sin(-x)  $(-x)^2-1$ -1 & -1 sin(x) | & &  $1 \le 2 - 1\sin(x) \le 2$ 30dd => Rongef(x) = [1,2]


خط : عبد الله دياك

٥٥ مكتبة خو اطر صفحة : { **40 }** }

إعداد: أيمن زيود [3] f(x) = (65 (x)) > about or igen =>  $tan (fx)(-y) = (-x)^2 - 1$ =)  $tan(xy) = x^2 - 108 V$  $\Rightarrow -\left(\frac{\cos(x)}{v^3-v}\right) = -f(x)$ Then f(x) symmetric about origen. \* نکشة د م stan (xy) = x2 / 1 , where (x) the symmetric =) about (X-axis) → tan (x(-y)) =x = 13. -tan xy = x2-100 X = cixa-y tuodo e  $\rightarrow$  tan ((-x) (y)) = (-x)<sup>2</sup> -1 => tan xy = x2-1 00 X ر ۱ nex + بر الله دياك م الله دياك .


مكتبة خواطر

صفحة: { ۲ ا ا ا



| اعداد: أيمن زيود                                                      |
|-----------------------------------------------------------------------|
| a The function $f(x) = \frac{\tan^{-1}x}{x^{4} + x^{2}}$ add or even? |
| -X = X & cile position even of odd on Usullist                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                  |
| $f(-x) = \frac{\tan^{-1}(-x)}{(-x)^{4} + (-x)^{2}}$                   |
| $= -\frac{\tan^{-1}(x)}{x^4 + x^2}$ $= -\frac{f(x)}{x^4 + x^2}$       |
| then f(x) is odd                                                      |
|                                                                       |
|                                                                       |
|                                                                       |

<sup>53</sup> مكتبة خواطر



l:anèm

| F(x) Dom Range Graph  Sin(x) $[-1/1]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ $[-1/2]$ |         |               | and the second s | <u> </u> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $Cos(x) [-1,1] [0,1]$ $tan^{1}(x) (-\infty,\infty) = \mathbb{R} \left( \frac{1}{z}, \frac{1}{z} \right)$ $(x  \ge  x \ge 1 )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(x)    | Dom           | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Graph    |
| $tan^{1}(x) (-\infty/\infty) = \mathbb{R} \left( \frac{\pi}{z}, \frac{\pi}{z} \right)$ $ x  \ge  x  \ge  x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sin(X)  | [-1,1]        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| $tan'(x) (-\infty,\infty) = \mathbb{R} \left( \frac{\mathbb{T}}{z}, \frac{\mathbb{T}}{z} \right)$ $ x  \ge  x  \ge  x  \ge  x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (05(x)  | [-1, 1]       | [o, T]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tan (x) | (-00/00) = IR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sec (x) |               | 6/T]-(E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |

« کُلْعُ کِلَّانِهُ » نِیْلُونُ » نِیْ

142 Jesep

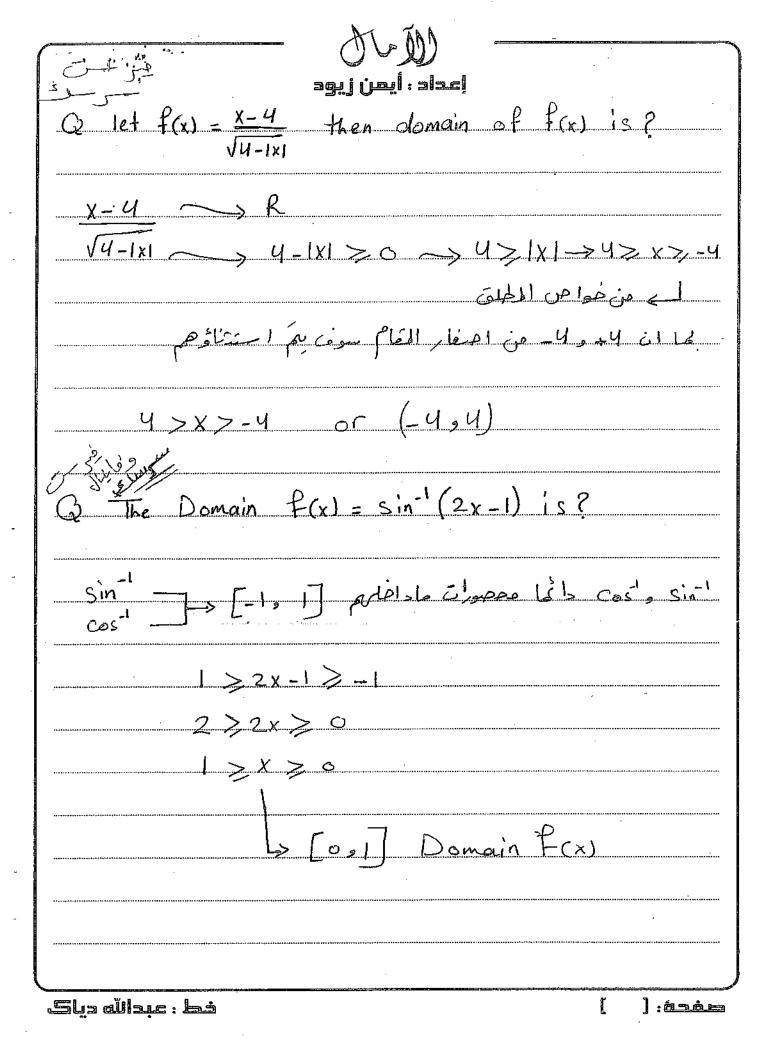
55

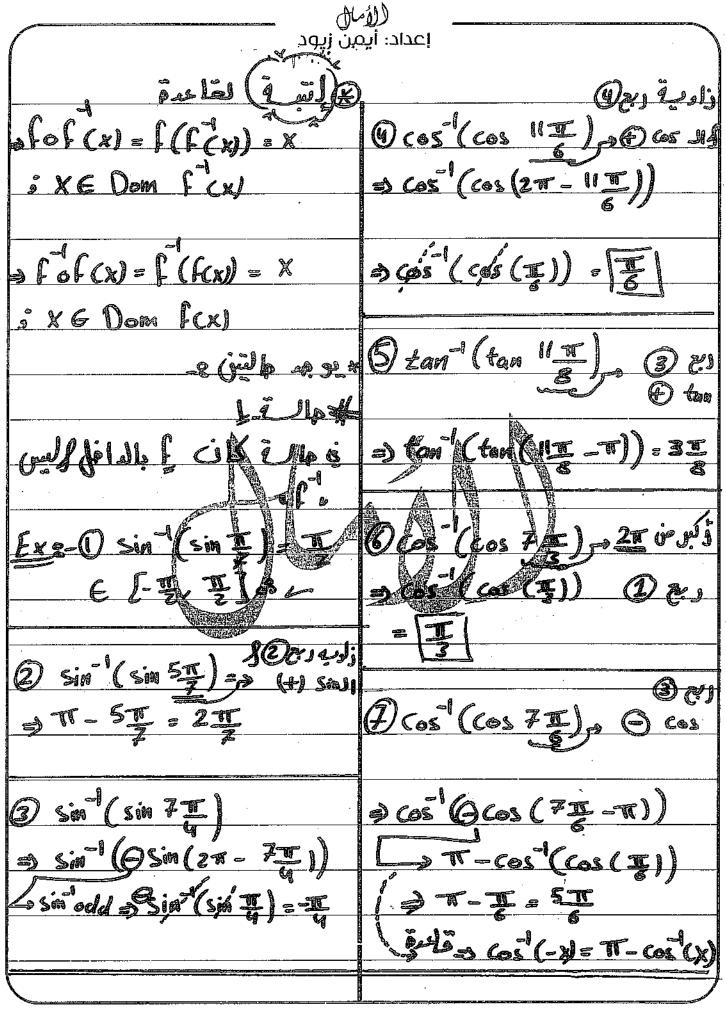
الأمال إعداد: أيَّمنَّ زيود 4 - 6, 4,0 @ fcx) = cos (5x-2) 100m, CAB EJBEE -> +1 > 5X-2 > -1 (sin / cos / ) =) Lais F1, +1] jupobilstyreine 3 2 5 x 2 4L Ex = find the Dom of the 3 2 X 2 5 Then: Domain Fox 3/5/27 to llowing function? 0 fcx)=2-sin-(3)+1 The Ronge of Fox (cx) = 2 - tak (x) 1 2 3X + 1 Z -cyl (-SIS => => tan(x) > = = /=(4) % > 3 X -I 6 - fan (x) 6 I \$ 2 X 2 - 2 2- I 62-40 W62+ I Then: the domain fix => [-2,0] 4-TE & 2-fan (X) & 4+TE Then: The Range fex) a 1) 1/20 (4-T, 4+T)

خط : عبد الله دياك

صفدة : { 43 }

57


ُ '' ' ((إمال اعداد: أيمن أيود


| أعداد: أيم                         |
|------------------------------------|
| # زُمم زُربع قاعد - له تعانبان     |
| الدنيوس. (تَّقَّ)                  |
|                                    |
| () sim (x), tan (x), csc-1,        |
| are odd function                   |
| =) $\sin^{-1}(-x) = -\sin^{-1}(x)$ |
| =) $tan^{-1}(-x) = -tan^{-1}(x)$   |
| => Cs((-x) = -csc(x)               |
| GA R                               |
| Das et, col, sec                   |
| niether function                   |
|                                    |
| 3 Cos (-x) = T- Cos (x)            |
| sec"(-x)=TT-sec"(x)                |
|                                    |
| (4) sec (x) = cos (1/x)            |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |

خط عبد الله دياك

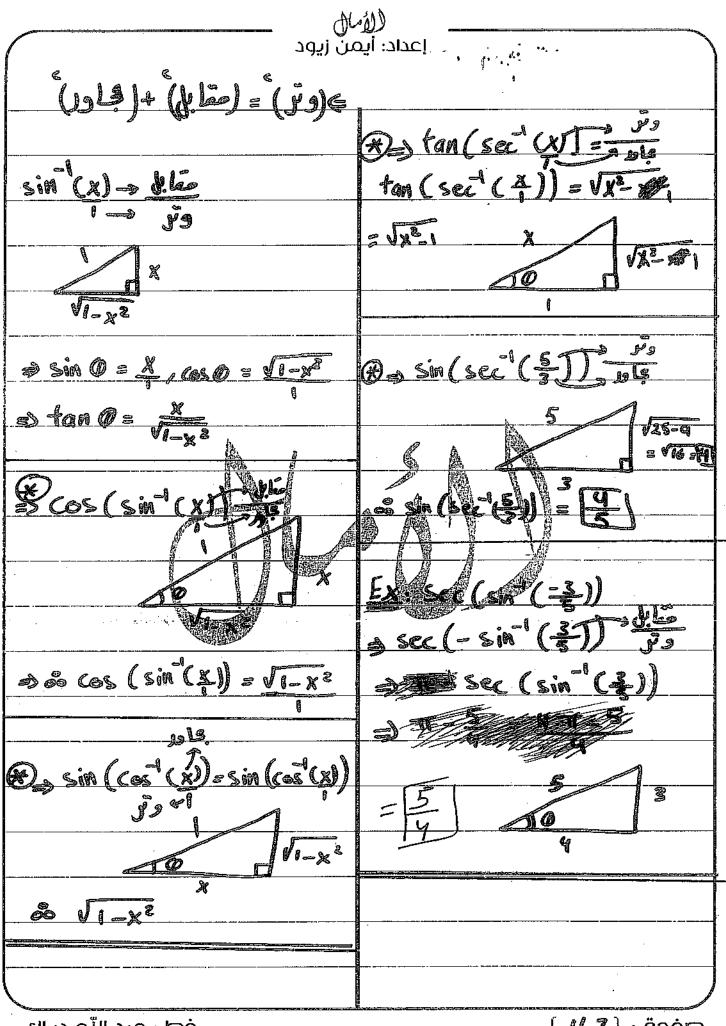
58 مكتبة خواطر

صفحة : { ۲۴ }





صفحة : ﴿ 45 }


61

الأفعال إعداد: أيمنّ زيود B cost (sin 11 TT) عِيْ عِلَا يَكُنُ ( - ) بالرافل وليس بك العناوية ربح (4) الم <u>انع</u> سالب <u> جوايدة سريدة ٤-</u> عادر - عن جر مقابل = Sin الح وتر =) Cos (-sin (2#-11#)) =) TT - COS (Cin II) - [] F tan = 15 F Sec = 15 => T- COS ( \$\ =) T7 TE Elect - Arie الع الموسنة الله 9 sin (cos(5I) (પુર્ => Sin - (- cos (EAT - T)) @ يخط داغاً ط داخه الله بعظ مقلم => - Sin-1 (cos II) -> [ 2 = - Sin" ( 1 = - T \* @ نوسم خلل قائم الأدية المحك trig = 0 in ( sec ( sec ( = ) ) = == @ نعين على المثلث ألوال الأنظاع \* جاهزة عربح (1) <u> هسب قواءد ه و تی ر مطابی مجاور ۱۱</u> ر مسى نظورة فيناخورى فنها فلم sin (x)-de W

<u>خط : عبد الله دياك</u>

مكتبة خواطر

صفحة : { **46** }



{ **4 3**} : äain

DЗ

الأمال إعداد: أيمنّ زيود Ex=- tan (csc (-2)) ⇒ tan (-csc (-2)) + vs [ Sin (zx) = 2 sin (x) cos(x) => - tan (csc (+=)) = +13  $\overline{7}$  (os (zx) = cos(x) - sin(x)  $= 2 \cos^2(x) - 1$ V4-3 =[ 1-2 sin 2(x) الكرا قاعدة بي 8 sin (x+y) - sin(x) cos(y)  $+\cos(x) = II$ A COS CK/ Sing) المانيات ( (9) 60 (x+9) \_ (a) (9) + sin (4) [] Sin (x) = 1 - 1 (0)(2x) (10) sin(x-y) = sin (x) 65 (y) - cos(x) sin(y  $[2] \cos^2 x = \frac{1}{2} + \frac{1}{2} \cos(2x)$  $(x-y)=\cos(x)\cos(y)+\sin(x)\sin(y)$  $3 \sin^2(x) + \cos^2(x) = 1$  $\overline{4}$   $\tan^2(x)+1=\sec^2(x)$ (5) 1+ cot (x) = csc(x)

مكتبة خواطر

صفحة: { لا لا كا

خط : عبد الله دياك



إعداد : أيمن زيود

Q The exact value of Cos (cos(3 T))?

دايمًا إذا اعطافي (Trig(--) وTrig الم بعل الم جوا و بطلع للي بوا

 $Cos\left(\frac{3\pi}{4}\right)\left(\frac{3\pi}{4}\right)\left(\frac{3\pi}{4}\right) = \frac{\pi}{4}$ 

 $\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ 

 $\frac{-1}{\sqrt{2}} = \cos\left(\frac{3\pi}{4}\right) \text{ online all in the line }$ 

 $Cos(\frac{-1}{\sqrt{2}}) = \Pi - Cos(\frac{1}{\sqrt{2}}) = \Pi - \frac{14}{4} = \frac{3\pi}{4}$ 

Cos- (-x) = TT - Cos (x) (5.6)

ع مل تاني ان تشطب احدى مع ده على ان تشطب أ

Cos 118 jos

(cos (cos (3T)) = 3T

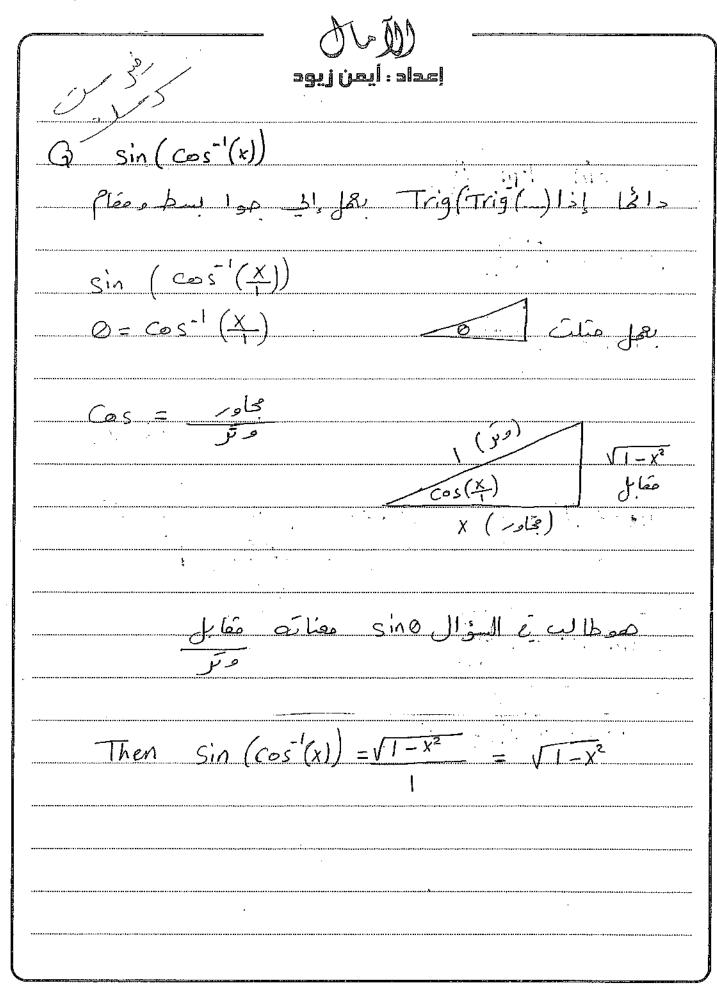
خط : عبدالله دباک

طفحة: [

عداد : أيمن زيود

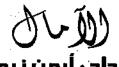
Q sin ( sin 3 T)

الاعظ هون ما بنفع الشطبهم لدن <u>3T مش من جال</u> Sin فرح اعل على المحريقة الأصلية


 $\sin(3T) = (ightarrows)$ 

 $Sin\left(\frac{3\pi}{4}\right) \rightarrow \pi - \frac{3\pi}{4} = \frac{\pi}{4}$ 

 $Sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$  give  $Sin\left(\frac{\pi}{4}\right)$ 


 $\sin\left(\frac{3T}{4}\right) = \frac{+1}{\sqrt{2}}$ 

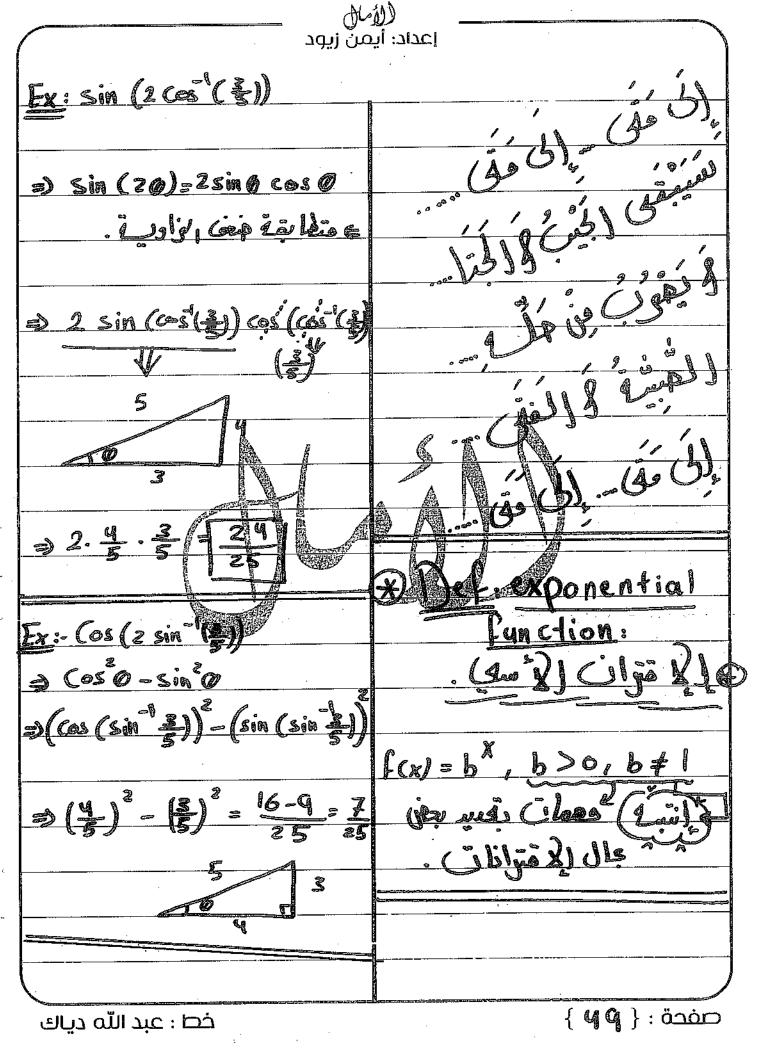
sin-1(-1/2) - TT



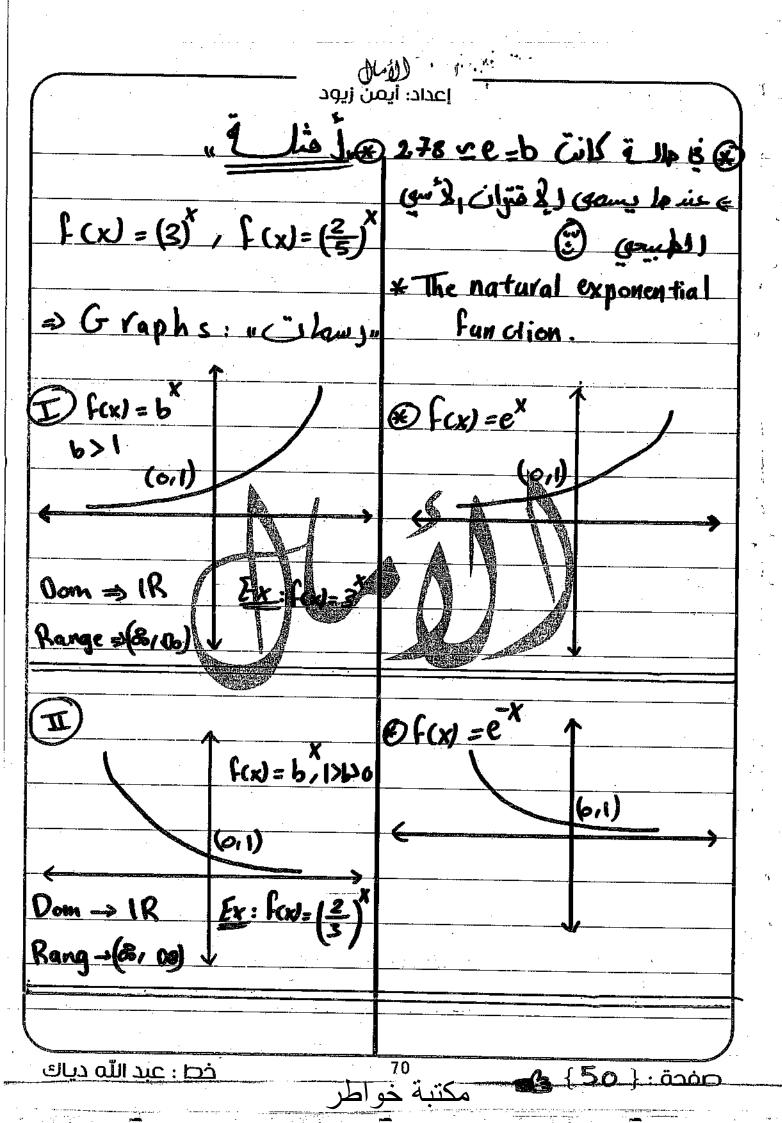
ذط : عبدالله دبا**ت** 

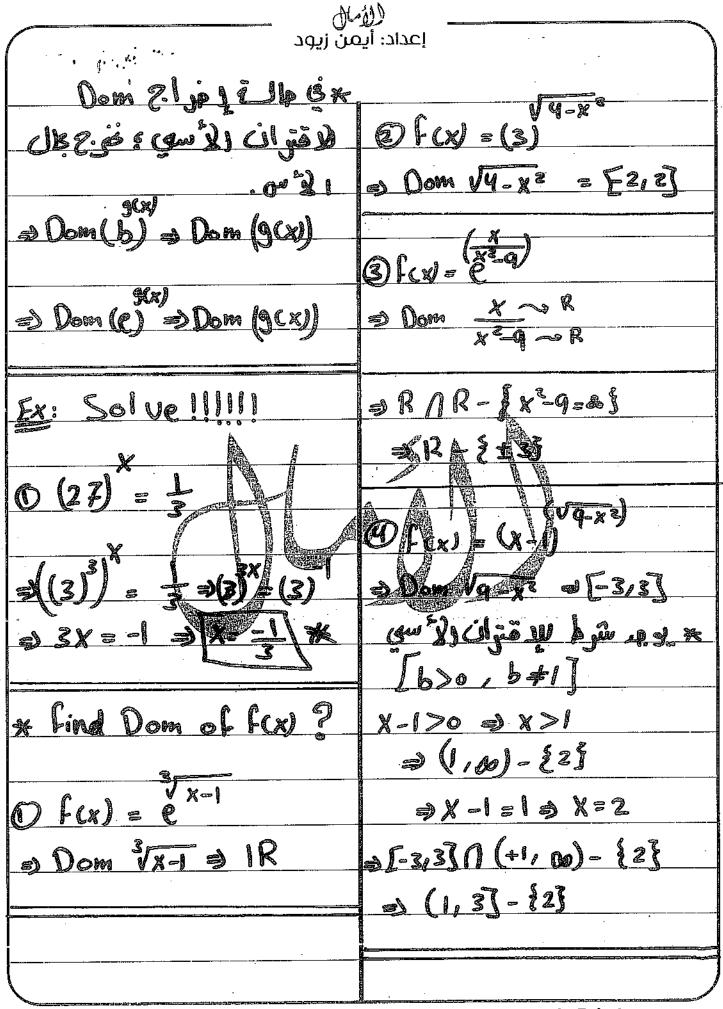
هفدك: [ ]




إعدادً : أَيمن زيود

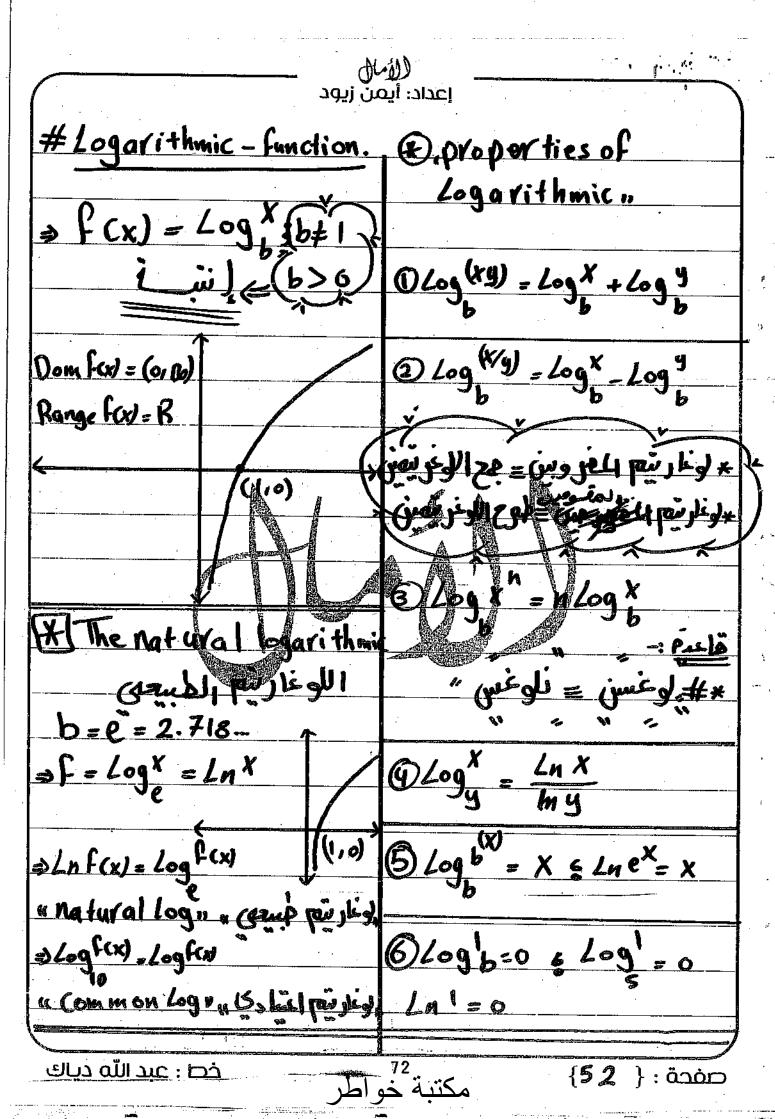
$$Q \sin\left(\tan^{-1}\frac{5}{12}\right)$$

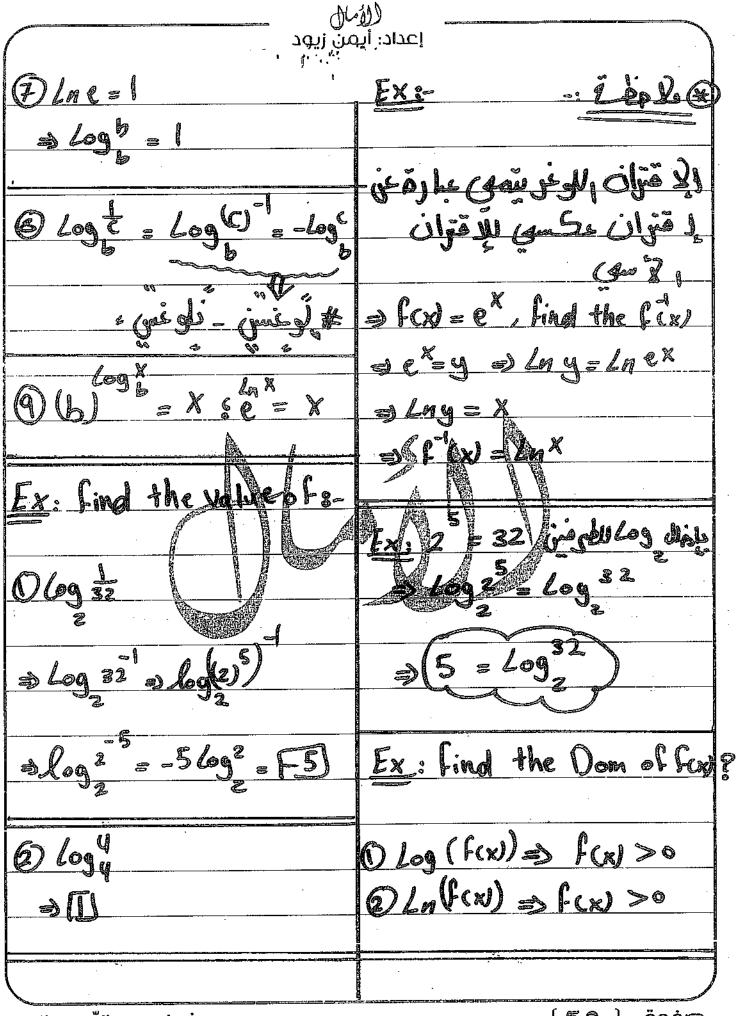

$$\emptyset = \tan^{-1}\left(\frac{5}{12}\right)$$


$$y = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$$
  $3 y = \sqrt{5}$   $\frac{12}{5} = 12$ 

$$\sin(\tan(\frac{5}{12})) = \frac{5}{13}$$




69






 $\{51\}:$ öpán

71





{53}: and o

73

الأمال إعداد: أيَمن زيود Ex: finel the Dom of fcx18  $\Rightarrow 3-X=2, X=1$ \* R/ (-00,3)-215 =)(-00,3)-{1] => x2-4>0 => Vx2>49 @ fcx) = Log \q-x2  $|x| > 2 \Rightarrow x > 2, x < -2$ (-00,2) U (2,00) X > 0= ((8, 60), X #1 @ FCX = Ln(Vx-4) >0 = 9-x'>0  $\Rightarrow \sqrt[3]{x-4} > 6$ 5-< X < 5 & 1x1 K 3 X-4>63X (4,00) =)(3,3)/1(0,0)-{1} ⇒ (0,3) - {1} 3) f(w = -1 (3-x)-Ln2 3-x=>0 (Cip)R THE RESERVE =) 3-X>0 =) 3>X=>(6,3)  $- \{ Ln(3-x) - Lnz = 0 \}$ => Ln(3-x) = Ln2

مكتبة خو اطر

{**54**}⊹ä≥oo

خط : عبد الله دياك

{55}: قصفت

15

إعداد: أيمنّ زيود

=> 
$$\log (x-2)(2x-3) = \log x^2$$
 =>  $(e^x)^2 - 6(e^x) - 7 = \infty$ 

$$=) 2x^{2}-4x-3x+6=x^{2}$$

$$\Rightarrow \chi^2 - 7\chi + 6 = 3$$

$$\Rightarrow (X-1)(X-6)=\infty$$

$$X=1$$
,  $X=6$ 

$$\Rightarrow X \ln x (x^2 - q) = 0$$

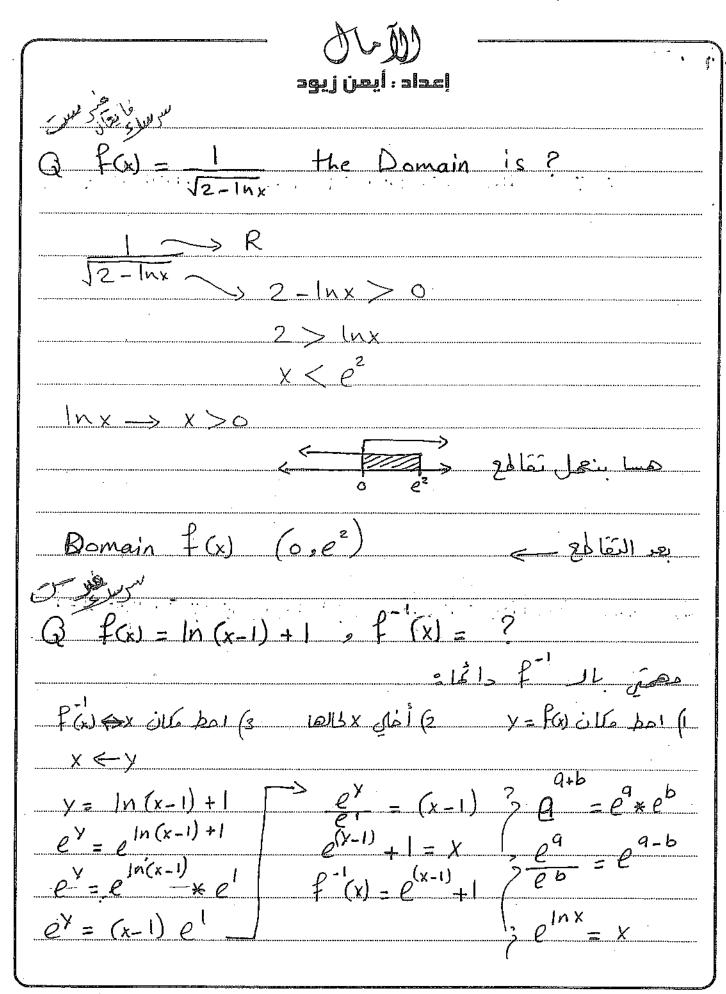
مكتبة خواطر

صفحة : { **56**}

خط : عبد الله دياك

(y +1) (y - 7) = 3 =JLnex =Ln7

3 KL17 #


@ If few = e-131, find

Let y = ex

 $= y^2 - 6y - 7 = \infty$ 

$$\Rightarrow \frac{1}{\ln^2} \Rightarrow \frac{\ln e}{\ln^3} \Rightarrow \log^2$$

$$f(\frac{1}{\ln 3}) = e - (3)^{\frac{6}{3}}$$



خط : عبدالله دیاک

صفحة: [ ]

• • •

إعداد : أيمن زيود

3 p2x = 7 the solution of the equation is? زي انو بمكياك فاي X طالها  $x = \frac{1n7}{2} = \frac{1n(7)^{\frac{1}{2}}}{1} = \frac{1n\sqrt{7}}{1}$ 

The solution of the equation logx + log(x-6)=1

 $\log X + \log (x-6) = 1$   $\frac{9}{9} \log 9 + \log C = \log 96$ (برمعمم للاس7)

 $\frac{(109_{7}(x^{2}-6x))}{7}=7$ = 7  $\frac{7}{109b^{x}}=X$ 

(x-7)(x+1)=0

<ا فل 109 مل*ك* 

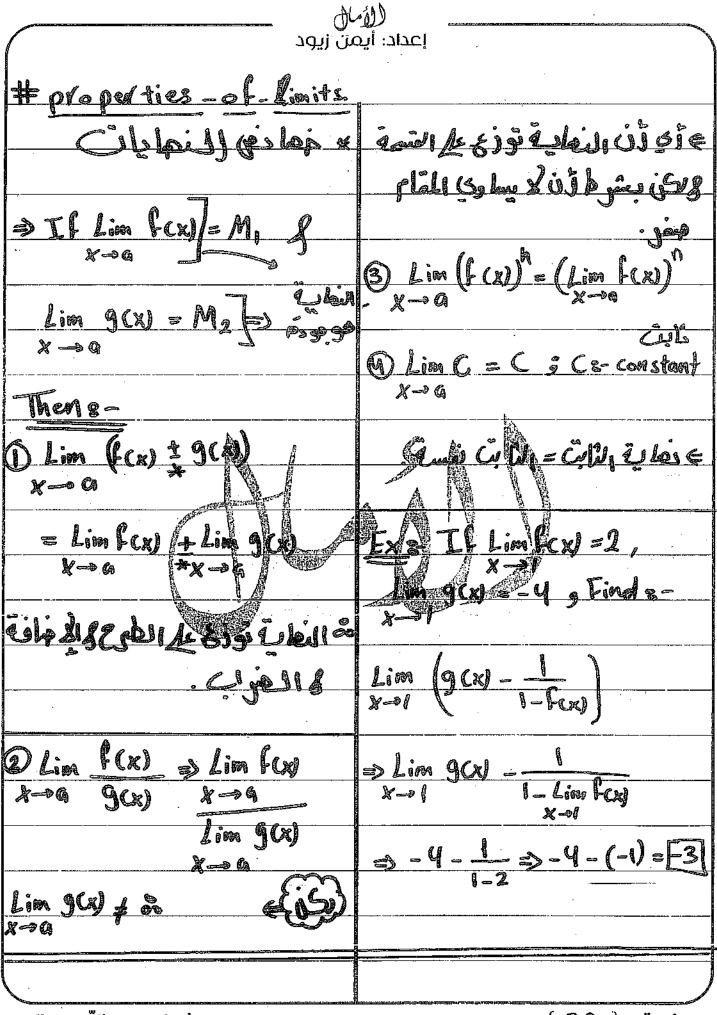
خط : عبدالله دیاک

صفحة: [

الأمال إعداد: أيَمنُّ زيود Ex= Ln(x) +2 Ln +3+4=0, Ex= ex+ex=1 => ex+ex=1 Ln (x) Ln(x) + 2Ln x + 9=0 ex + 1 = 2 => (ex)2+1 = 2 => (Ln (x)) 2 - 6 Ln W + 9 = 30 (Lnx -3) (Lnx - 3) = & =) (ex) 2 + 1 = zex Lnx = 3 => x = e3 => (ex) 2 - 2ex +1 =0 Ex = L og x - Log x = \$ (e -1)(e - 1)=0 Él & Lne = Ln 1 a et a line = Lui 2. Lnx Lnx S&Lnx Lnx 212n3 Ex 2- X Ln (x2-15)+  $2 \ln (x^2 - 15) = 68$ Salax - Lax = Lnq Lag > 1/2 = 1 => (Lnx)= (Lnq) => (Ln(x2-15))(x+2) = 2 → / n (x²-15) = c3 => bn x = Lnq a X=9 2 2-15=1 3 X216 3 X= ±4 X + 2 = 2 = 2 X = -2 3 x = [ -4,4]

خط : عبد الله دياك

{5**7**}: قعفت


79

الأمال إعداد: أيمنُ زيود Limits Cilplaid (x) => Limf(x) ≠ Limf(x) X-a+ ت افغارت النفاية النفاية عن المجين تسا وي النفاية النفاية النفاية النفاية عن المجادة النفاية النفاية النفاية المحددة 1399 Je 16  $\Rightarrow$  Lim f(x) = Lim f(x)<u>x>qůjoj</u> => Lim F(x) = Constant x<2←1→ X>2 => Lim fext = 1 (٥٠١٠٤) مع يدي لعنا ١٩٥٥  $\frac{1}{x \rightarrow 2^{+}} \int \frac{L_{im} f(x)}{x \rightarrow 2^{-}} = \frac{1}{x \rightarrow 2^{-}}$ <u> ﴿ نَ نَجُنُ النَّمَا يَهُ فَلَ الْمِينَ لَا تَسَاوِي</u> => Lim f(x) = d.n.e. النهاي فن ليسال X→2

خط : عبد الله دياك

مكتبة خواطر

{**58**}: قعفت

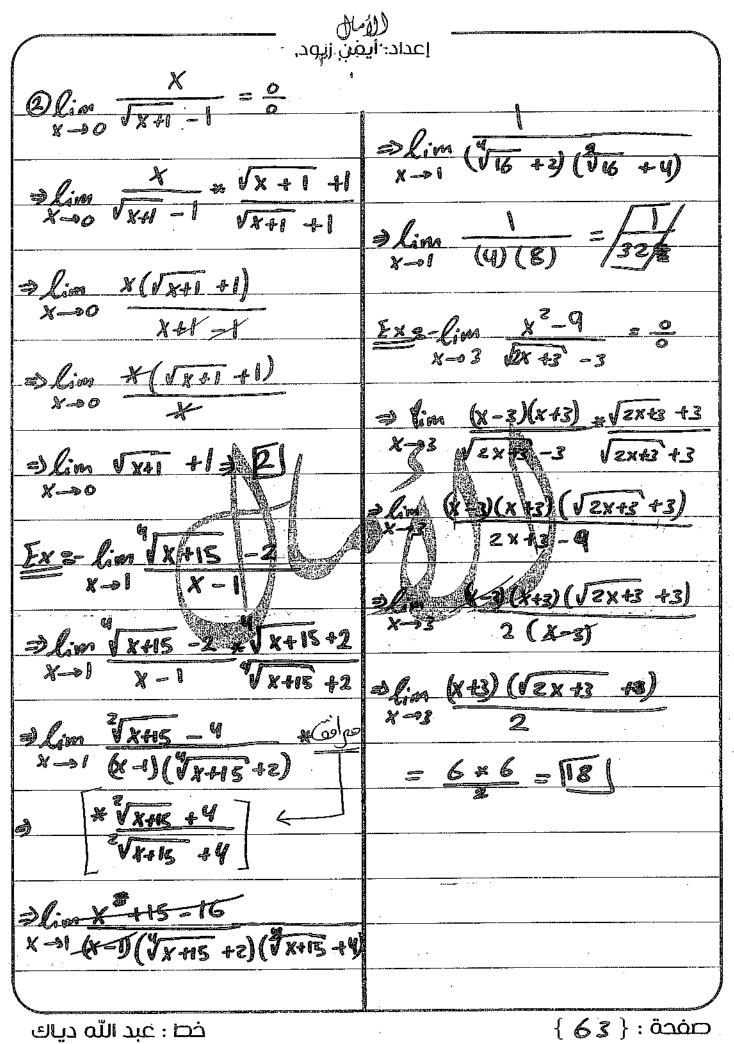


{ **59** } : قعفت

الفال إعداد: أيُمنّ زيود - : قُرِلُهُ الْمِيْدِلِهِ الْمُعْلِيةِ عِلَيْهِ الْمُعْلِيةِ عِلَيْهِ الْمُعْلِيةِ عِلَيْهِ الْمُعْلِيةِ عِلَ عنون تو فر صاش بالاقتران ثم نتبع مل الخطوات التالية مسب sheigh ashes (x-a) per 1212 e ناځېته يغن ٤-<u>-१७५ न्या हों अपे 🚓</u> ع يكن اكل إلما يدء-القلل. D الكسور المجالية <u> هامله به ۱۱ هاوه.</u> کے النسول (4) <u>©</u>, Wallkaliaje \* Oille 2+X روس ⇒ lim X (x+2) => lim X == 2] x → -2 (x+2) => lim X == 2] X->-2 (X+2) D (im 2x+1 = 2(3)+1=7 x-3 => lim (x-2) (\sum x+2) ⇒ Lim √3×+3 = √3(2)+3 x-≥2 ⇒ √q = 31 = lim Vx+2 = > V9+2 = 2+2 = [4]

خط: عبد الله دياك

صفحة: { 60 } حالًا مكتبة خواطر


{ **61** }: and on

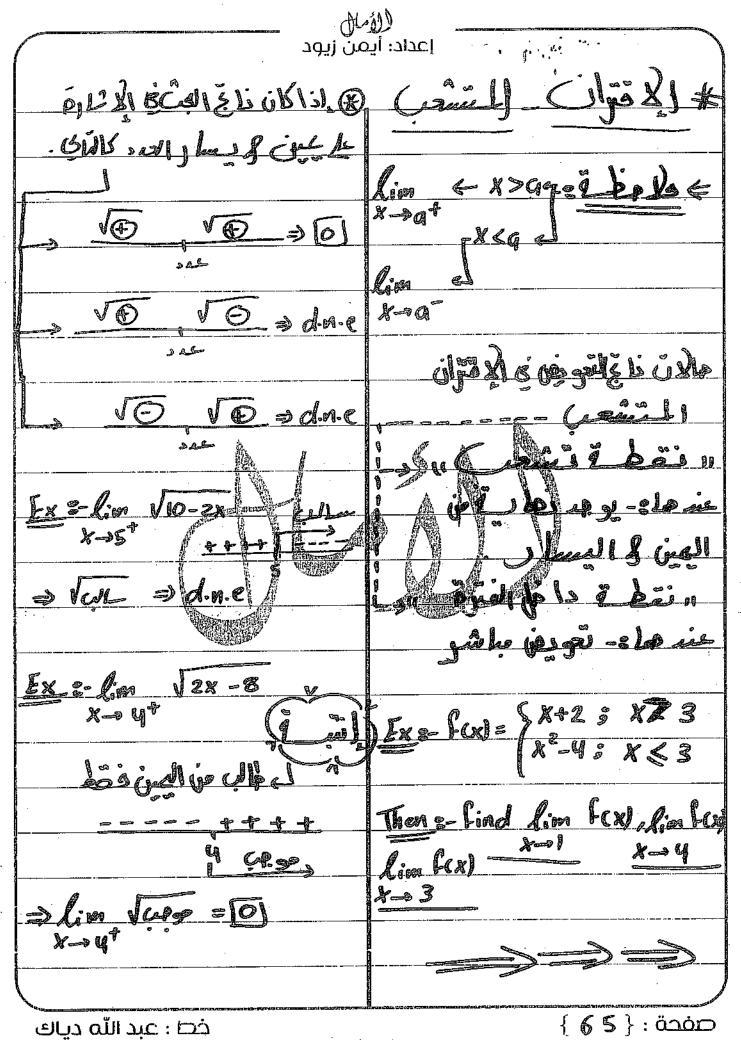
83

الأمال إعداد: أيمنٌ زيود Slim  $\left(\frac{1}{x-3} - \frac{6}{x^2-9}\right)$ 31X Pa => \*(Jx) DaJx Paz  $= \lim_{X \to 3^{+}} \left( \frac{(x^{2}-9) - 6(X-3)}{(x-3)(x^{2}-9)} \right)$ (3/x) 2 1 a 3/x 1 a2  $3 \lim_{X \to 3^{+}} \frac{X^{2} - 6x + 9}{(x - 3)(x - 3)(x + 3)}$  $= \times \neq q^3$ (JX) ZO JX Paz  $= \lim_{X \to 3^{+}} \frac{(X-3)(X-3)}{(X-3)(X-3)(X+3)}$ ع زُمثلة - الموافق  $\Rightarrow \lim_{X \to 3^+} \frac{1}{X+3} \Rightarrow \begin{cases} 1 \\ 5 \end{cases}$ أعلاة علم الموافق. 148 43 x VX+8 +3 المهينة الإسالة ال 3 lim x+8-9 => (x-1) s)√x -a => \*√x +q X-1 (x-1) (VX+8+3) (X4) (VX+8+3)  $\Rightarrow \frac{\left(X-a^2\right)}{\sqrt{x}+a}$ => Tx +a => \*Tx -a

خط : عبد الله دياك

84 مكتبة خو اطر { **62** } : قعفت




85

الأفال إعداد: أيمنّ زيود Ex= 1X-1 -Charles & Majore L:n = 1⊕ =0  $\frac{3\sqrt{x-1}-1}{x-2} = \frac{3\sqrt{x-1}+1}{x-2} = \frac{3\sqrt$ Lim . 10 = 0 x-a = 10 =dne @ الحرفة إذا كان وما لا لا مانيا  $\Rightarrow \lim_{x \to 1} X - 1 - (1)$ عندما خاجد رقع ويجيون م المرابخ x-12 (x3-8) x(1x-1+1) من و بقدار ما حد/ بالاتداد ⇒ Lim X-2 (x-2) (x2+2x+4) (3x3 -3√⊕ =0 (12) (3) #Remember. Exlim V2-3 = V-1 = d.n.e > √0 = d.n.e. @(x3-a3)=(x-a)(x2+ax+a2) 3 (x3+a3) = (x+a) (x2-ax+a2) lim VX-3 = dine X-33 (1) X -1 = X + X + X + X + X 4 X -1

مكتبة خو اطر

صفحة : { **64** }

خط : عبد الله دياك



87

((زُمَالُ عداد: أيمن زيود

| من زیود                                        | إعداد: أيد                                                          |
|------------------------------------------------|---------------------------------------------------------------------|
| ·                                              |                                                                     |
| $\Rightarrow \lim_{X \to 1} (x^2 - 4) = -3$    | ﴿ إِذَا مِكَالِلُ إِنَّ النَّهَانِ الْ                              |
| x→1 `                                          | و جو دة عند نقطة تشدي                                               |
| ⇒lim (X+2) = 6<br>X→4                          |                                                                     |
| X→Y                                            | Dim = lim o Thou                                                    |
| => Lim (x+2) = 5/Lim (x-4)=5<br>x -> 8 + (x-3) | ⇒lim = lim + Then<br>x→a+ x→a ===================================   |
| $X \rightarrow B^+$ $X \rightarrow 3^-$        | find the constantaby if                                             |
| ölim = 5 *<br>X→3                              | lim fox) exist                                                      |
| X-3                                            | x->3                                                                |
| Ex = fcx)= { Vx+5 : x>5                        | Ex\$ P(x)= \$ 2x+b, x <3                                            |
| [2x +3; x <5                                   | (45+5 , X > 3                                                       |
| Then e- find & lim Flx                         | find chu I (U(x) exist                                              |
| x\$/                                           | 3) 181                                                              |
| =) Lim VX-5 = 5*                               | Lim P(x) = lim P(x)  x -> 3+ x -> 3                                 |
| X→5 <sup>+</sup>                               | x->3 <sup>+</sup> x->3 <sup>-</sup>                                 |
| ⇒lim 2x+3 = 13                                 | $\Rightarrow \lim_{X \to 3^{+}} 4x + 5 = \lim_{X \to 3^{-}} 2x + b$ |
| X->5                                           | X-3+ X-3-                                                           |
| ålim = din.e.<br>X→5                           | => 12+5 = 6+b => b=11                                               |
| X-35                                           |                                                                     |
|                                                | •                                                                   |
|                                                | · · · · · · · · · · · · · · · · · · ·                               |
|                                                |                                                                     |
|                                                | <u></u>                                                             |

خط: عبد الله دياك

88 مكتبة خواطر {**66**}: قعفت

إعداد: أيمنّ زيود Find = K such that in blatering bis limfal exist? me The Buse Cap 124 Dim ful lim fu) ( Ru X) - [ Z ph 1) # 4+K=4K = K= = Mie E Gard & (+) in E Alloe (H) Teps (+) Tope - Bo & (-) { ess (-) i es &  $\sum_{x=-}^{\infty} \frac{f(x)}{2} = \begin{cases} x^2 + 1, & x \neq -2 \\ 25, & x = -2 \end{cases}$ Ex:- lim 1 = + 60 find P(-2) 8 lim f(1) 3/in 1 = ⇒f(-2)=[25]\* 2/1 = 4+1= 5 \* & lim 1 = d.n.e. #

خط : عبد الله دياك

صفدة : { 🎜 }

89

الأمال إعداد: أيَّمنُّ زيود Ex=- lim (x-1)2  $3 \lim_{X \to 1^{+}} \frac{1}{(X-1)^{2}} = +60$ اها ع بنديد تعريف الطلق Exe- find the  $=\frac{1}{(x-1)^2} = +\infty$  $\lim_{X\to 0} \frac{|x|}{x} = \frac{|x|}{|x|} = 0$  $= \begin{cases} \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X = \begin{cases} 1 & X \\ X \rightarrow 0 \end{cases} & X =$  $\Rightarrow \lim_{X \to 1} \frac{1}{(X-1)^2} = \frac{+60}{1}$ Exe-find fim X+49 3 Exe- find the lim x2-9

| X-3+ | 3-x|  $3 \lim_{x \to 3^+} x + 4 = 1$  $\Rightarrow \lim_{X \to 2^+} \frac{x^2 - q}{|3 - x|} = \frac{0}{|0|}$ =)  $\lim_{x \to 3^{-}} \frac{x+4}{x^{2}-9} = -0$ =) 3 = X =% => X =3

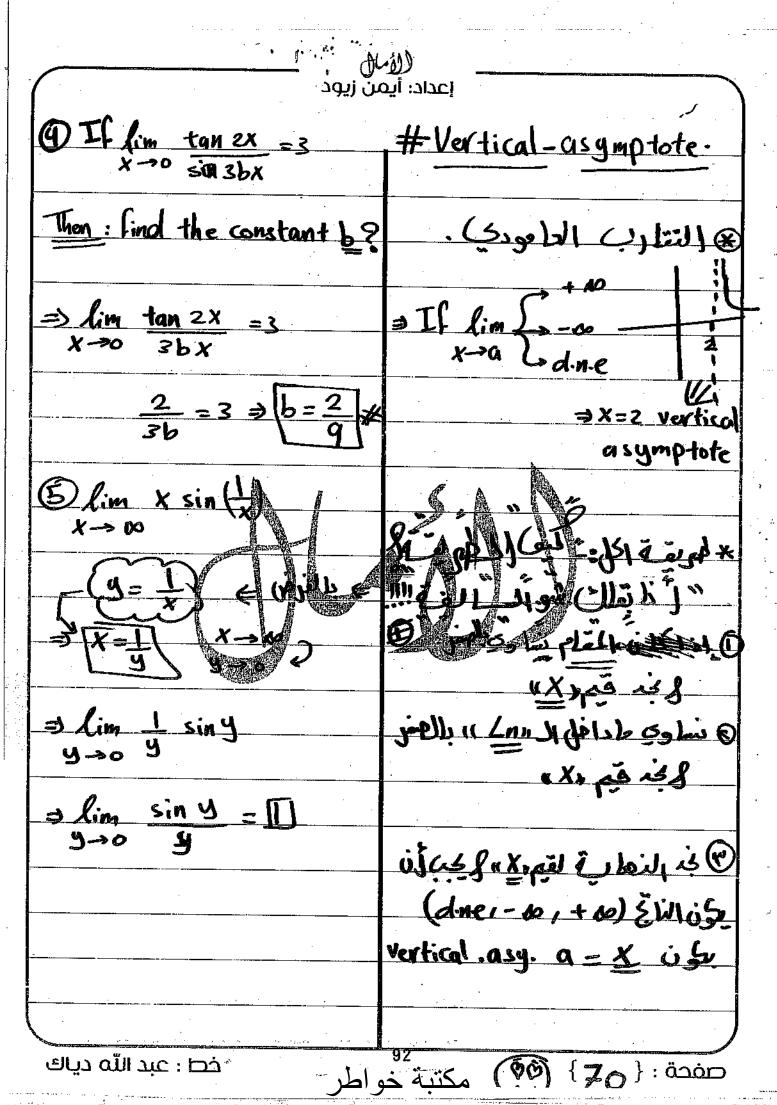
 $\Rightarrow \lim_{x \to 3} \frac{x+4}{x^2-q} = d \cdot n \cdot e \cdot$ 

 $f(x) = \begin{cases} 3-x & x-3 \\ (x-3)x \ge 3 \end{cases}$   $\Rightarrow \lim_{X \to 3^+} \frac{(x-3)(x+3)}{(x-3)}$ 

 $\Rightarrow \lim_{X \to 3^+} (X+3) = \boxed{5}$ 

خط : عبد الله دياك

مكتبة خواطر


صفحة : { **68** }-

( إلاً ما في إعداد: أيمنّ زيود \* Limits - of - trig onometric-Punction.  $\frac{\sum_{X=0}^{2} O \lim_{X\to 0} \sin 2X}{X\to 0} = \frac{2}{3}$ Olim (25 in x - tan x) Elim Xsinx+tanzx sinsx + 7x X-J ] ⇒ Lim X sin X + tan ZX 3 2(1)-()=[ sin Sx + 7x 6 lim X <u>= 9</u> =0 X-70 COS(W +1 # Theorem 2. 3 Lim Sin ax **O**(in bx 2-0 = Lim tonax = Lim CAX Jes 2 13 iSas - 2 200 Us @ = 1 ( Lim tan 2x ) = 1 . (2) - 1 x2 8 j x & perior

خط: عبد الله دياك

 $\{ 69 \} : 300$ 

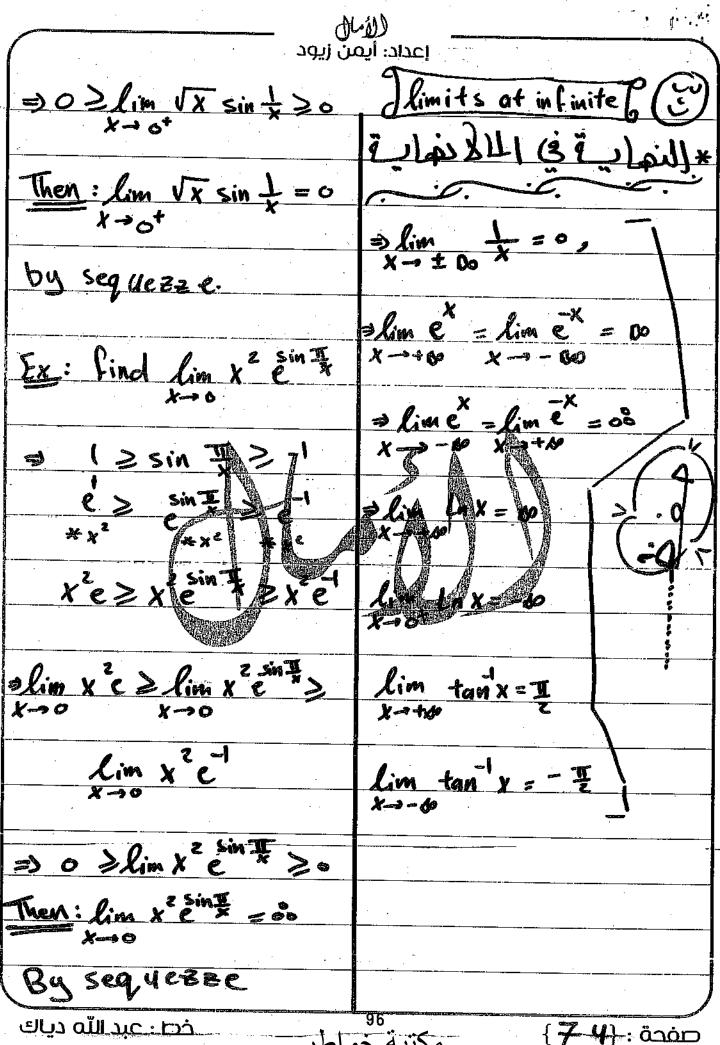
91

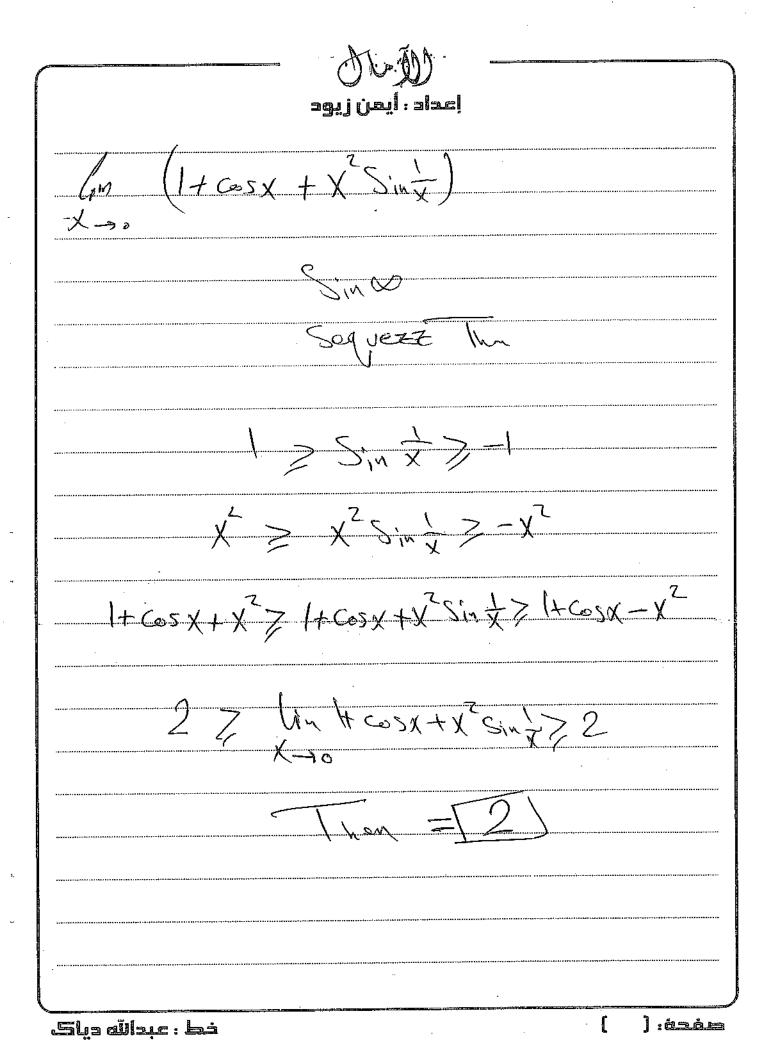


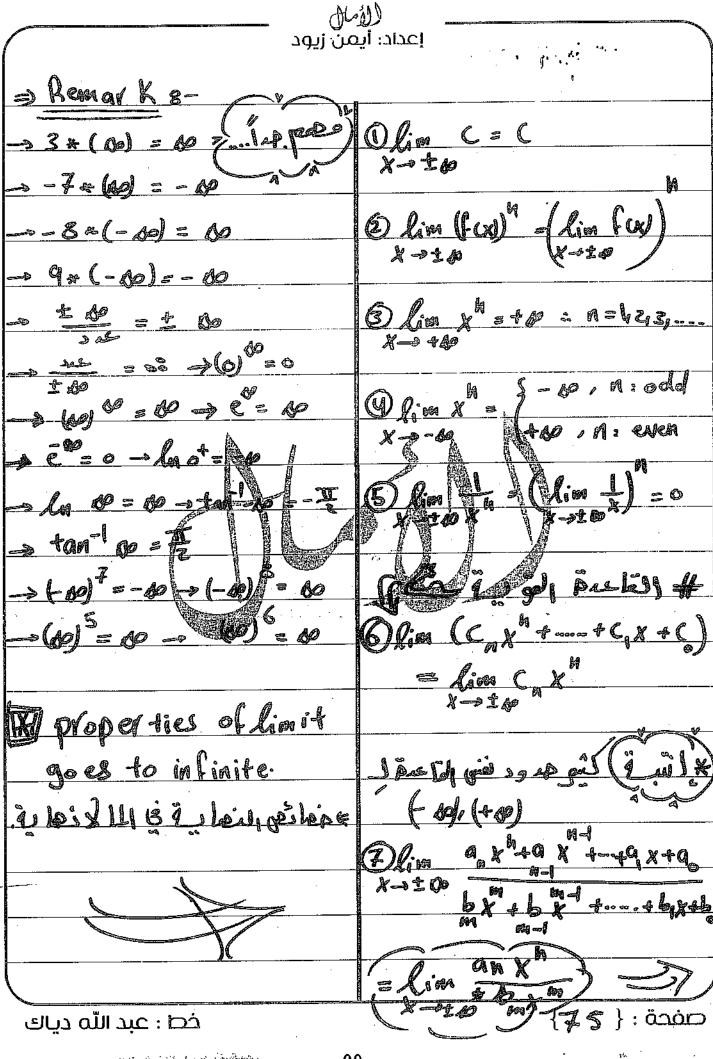
| <u>Ex</u> 2- f(x)= 2/2-4                                                            | $\frac{1 \times 1 - c}{1 \times 1 - c} = \frac{1 \times 1 - c}{1 \times 1 - c}$ |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $\frac{\text{find } = \frac{2}{\chi^2 - 4}}{\text{ the vertical}}$                  | X==2 == +++,                                                                    |
| asymptotg ?                                                                         | \\\\ = \\ \X \\ \X \> 6                                                         |
| St=X Co=P-1                                                                         | 3/:m X-2 3/:m X-2 =0<br>X-2   X -2 X-2 X-2                                      |
| $\frac{3 \lim_{x \to +2} \frac{2}{x^2 - 4}}{x^2 + 4} = \frac{d \cdot 4 \cdot 8}{4}$ | 3 63 HRZytvertical                                                              |
| 3 lin 2 = din c<br>x-3-2 x2-4                                                       | 2 - 2 = -4 = d.ne                                                               |
| Then = X = \( \frac{5}{2} \)                                                        | x-x-z-x-x-                                                                      |
| vertical asymptote                                                                  | Then s- X =- 2] vertical                                                        |
| = f(x) = Ln (x+1)                                                                   | Ex=Iff(x)=fan(x). Then                                                          |
| X+1=0=)[X=-1]                                                                       | fined the vertical asymptote                                                    |
| (a) Ln 0 = d·n·e ) (im Ln(x+1))                                                     | ON XE[0,2T] ?                                                                   |
| e <sup>60</sup> =60 = 1 Lno                                                         |                                                                                 |
| (e=0) = [d.n.e]                                                                     |                                                                                 |
| خط : عبد الله دياك                                                                  | {· <b>71</b> }: äaio                                                            |

93 مكتبة خواطر

الأفعال إعداد: أيمنّ زيود Ex: IF:-ومنا العام بالعمل  $\Rightarrow f(x) = \frac{X-2}{ax^2-b}$  has vertical => (Os(x)=& => x=== , 3= | at x = -1, Then find the value(s) of carbo ⇒ lim <u>sin(X)</u> ⇒ 1 adre X→ ₹ Cos(X) ⇒ a x²-b => a(-1)²-b=&  $3\lim_{N\to 3\pi} \frac{\sin(N)}{\cos(N)} = -\frac{1}{2} = \sin(N) = 0 \Rightarrow a-b=0 \Rightarrow a=b$ 36, 4 € 1 3 a=b >X= 5 T, 3 T Rarrical as ymptotebis avertical R=a Sistis | vertical at x=1, Then رون ا كان الا قبان د ا كان الم قبان د ا كان الم الله قبان الله قب ٥ بالقام ويساوي بالعمن 


خط : عبد الله دياك


مكتبة خو اطر

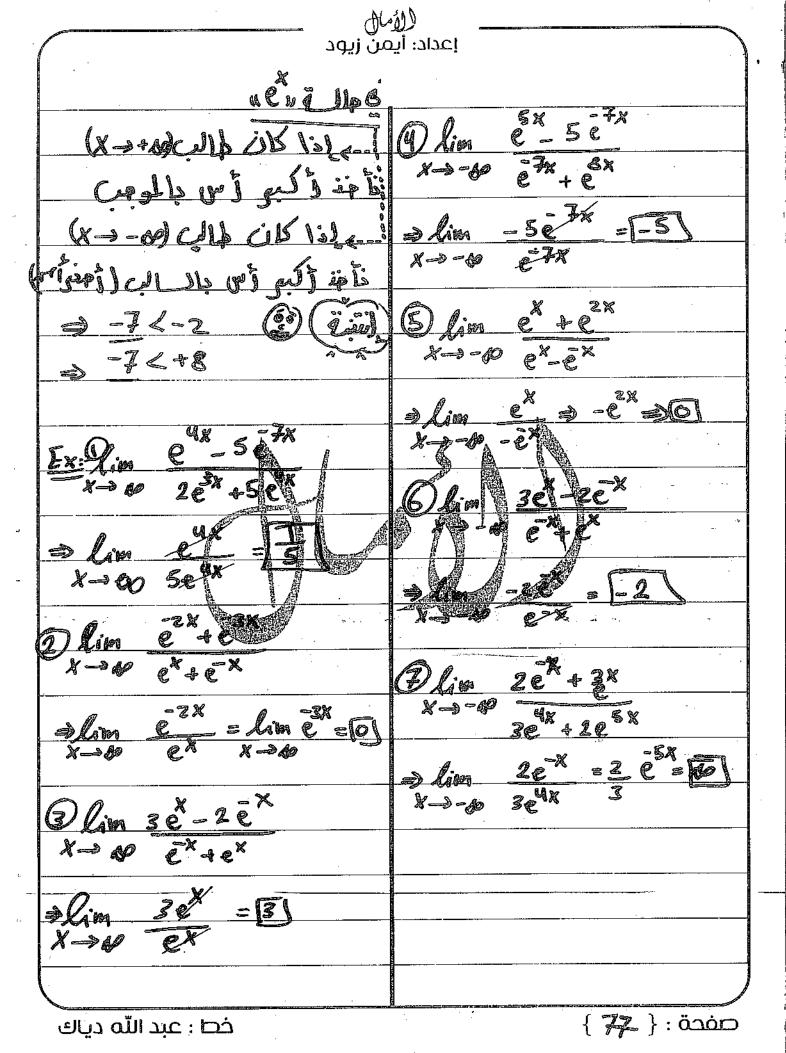

{ **72** } : قعفت

(الأمال إعداد: أيَّمنُ زيود # The - Sequeeze - theorem Ex8-If x2-9<fcx1<x3+3 14 Destill & Jeti, & Then 2- Find, lim fow => lim x2-9 < lim f(x) < ⇒ If g(x) ≤ f(x) ≤ h(x) N-3-2 when x is near to a of lim x +3  $\lim f(y) = \lim f(y) = 1$ 3-55 S.lim FW5-5 Then  $\lim_{x \to a} f(x) = 1$ 1CN = -5 by the sequezze theory ه اكت باليال (المطلم والسؤال) Exe-find ling TX sin (2) (a sin x au cos x) és prin Range 1 > Sin £ > -1 @ربط علم التابية مِن يسية الولى · Cildilly Lin is 3 = JX > JX Sinty >-1X DIL mil 18 End " ILakes " ( Jin X Jim VX Sim VX sing)> By sequesse theorem. Lim alx x=0<sup>4</sup> { **7**} : and خط : عبد الله دياك

95








-99

الألأمال إعداد: أَيْمَنْ زِيُود ع بإختماره- كشو الحدود نأخذ سنا البط علم وأس بالبط علم وأس وأس X->-10 2x2+X بالمقام 0 / 11 < 11 bm , N=m 5 lim 4 x 99 + 2x X->00 土め、ハンM 3x99 +2 x50 11 2 x 100 = 2 x = 10 Ex solim 5x3-1 3× 10 4 19 + 2x 100 X -> do = lim - 7/x 100 = + 1 (100) 3 x 9 +2 x So  $\frac{2x}{3x^{99}} = \frac{2x}{3} = \boxed{0}$ Q lim 2x-4x = (7) lim 3x+2x2 => Lim -4x2=> (-4)(-6)=(-60 x → & 4x 3+5x X -> - 60  $\Rightarrow \lim_{x \to \infty} \frac{2x^2}{x} = \frac{1}{2x} = \frac{1}{50}$ 3 lim  $\frac{2x-7x^3}{4x^3+2x}$ Blim 3x3+4x x->-6 2x2+7x4  $\Rightarrow \lim_{X \to \infty} \frac{-7x^3}{4x^3} = \boxed{\frac{-7}{4}}$  $\frac{3 \lim_{X \to \infty} \frac{2x^2}{7x^4} \Rightarrow \frac{2}{7x} = 0}{7x^4}$ خط : عبد الله دياك 100

مكتبة خواطر

{**7**6}: 6360



101

الأمال إعداد: أيُّمنَّ زيود سين انطرية تؤول لل الباطلا \* عا عالة الجذور العالمة المناسمة المالية المالية ع بنو هذ أكبى أس كت الجنز المدعع 13 lim 17 \*(-x) = -17 اكذر . x → - 80 2 X \* Remar K 3- \* Vx2 = 1x1 \*  $\sqrt{x^4} = (x)^2 \times 3 \lim_{x \to -\infty} \frac{2-x^2}{\sqrt{4x^4+x}}$ \* Vx = (Vx E) = ((X)) 3 14 +1×4 Ex: Olim X->60 => lim 3x+2x X-16 3x+41 Q lim 3 x 3+2 1 x6 +4x X->6 4x4  $3x^{2}$ @lim , 7x2-X+1 <u>-(-x-)</u>  $(x)^{\frac{3}{2}}$ 2x + a => lim \ \frac{7}{2} = \frac{7}{7} \sqrt{x}^2 X -> -0 -

3 V 22 = 1X IXI=0 J

خط : عبد الله دياك

102 مكتبة خو اطر

X-34 X3

ZX

(x)

(-<u>x</u>)

صفحة: { 🎜 🗗 }

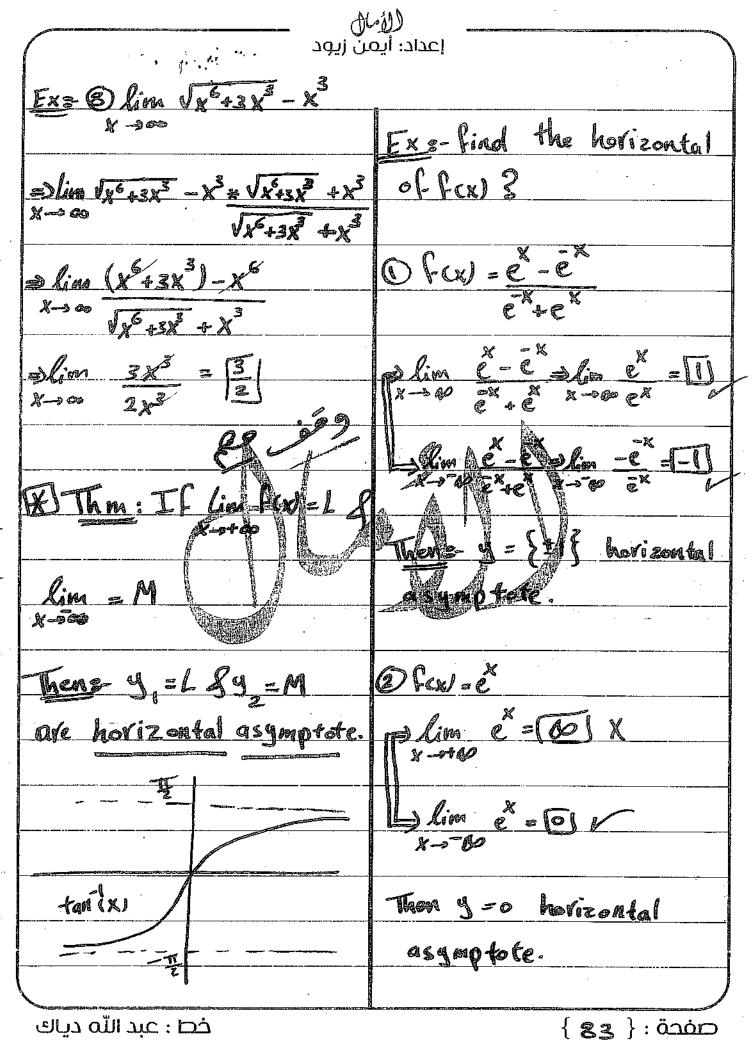
الأمل إعداد: أيمنّ زيود  $\begin{array}{c|c}
\hline
\text{Olim} & \sqrt[3]{\chi^6} + 1 \\
\hline
\chi \rightarrow -\infty & \chi - \chi^2
\end{array}$ ---- (X->60) Call 1:10 4 42x -X Dlim = X = [] X -- AO XE ---- (x-50) Culh 131 (2) Vx2+2x.+X 1/6 = x3 المنز فردي و تکويسي و x242x - X + Vx +2X +X ينالله جاراني 11p (8) VX TEX +K Eberilasticien of 2 X 7 +2x +X " a a do \_ do a gu gu j (X) 😓 A Lim 2X 3 2K = II X->6  $\{ 7q \} : \ddot{a}$ خط : عبد الله دياك

103

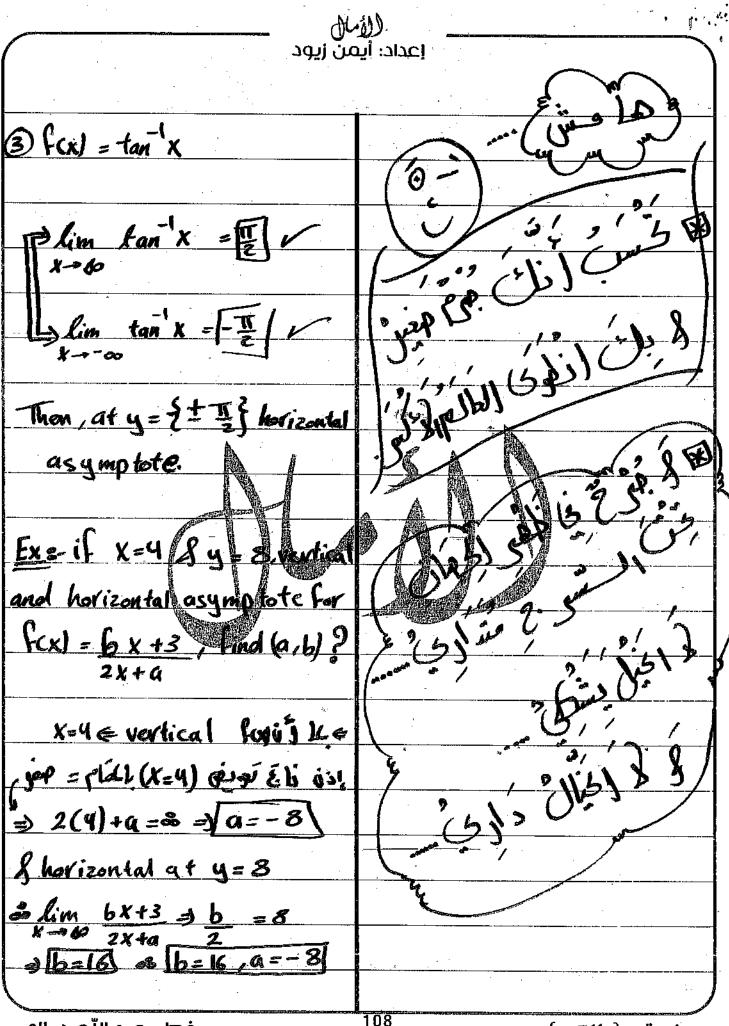
| J AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | م ( الله م                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| ىن زيود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | إعداد: أيد                     |
| Ex 2-0 lim \( \nabla \frac{2}{x + 2x} + X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>  Ln 11 gélai #</u>         |
| X->-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| $\Rightarrow \lim_{X \to -40} \sqrt{x^2 + 2x} + X * \sqrt{x^2 + 2x} - X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KI long - Lng                  |
| $X \rightarrow -40$ $\sqrt{\chi^2 + zx} - X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b Lab                          |
| $\Rightarrow \lim_{x \to \infty} (x^2 + zx) - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (x) (n(ab) = hn(a) + Ln(b)     |
| => fim (x²+zx) - x²<br>x→-60 √x²+ex - x /:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (A) 41/(UP)                    |
| =) Lim 2X ] b. M. p. p. j. p.  | 图 Ln (9/6) = Ln(9) - Ln (b)    |
| X->-0 /X2 -X ] OGSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| $\sqrt{\chi^2} =  \chi  \Rightarrow \sqrt{(-\chi)} (+\chi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EIG = Life                     |
| 1 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
| alim 2x a 2x a fall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exelin Log X                   |
| x →- so -x-x -=x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X-60 3X                        |
| Ex 3- (3) lin Jx = 4 -x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = Ln 4x sln4 +lnx              |
| x → 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ln 3X Ln 3 +Ln X               |
| => lion \( \chi^2 + 4 - \times + \( \chi^2 + 9 + \times \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | altailty II= [Xn] altinities   |
| X→80 1x2+4 +X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X->00 Lax L(Lnx) DIL 63        |
| $\Rightarrow \lim_{x \to 0} (x^2 + 4) - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | رُ لِيهِ وَ بِالْعَامِ (Lnx) . |
| $X \rightarrow 60$ $\sqrt{\chi^2 + 4} + X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 (LMA) (WEEL PS):             |
| slim 4 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| $\Rightarrow \lim_{X \to 00} \frac{4}{2X} \Rightarrow \frac{2}{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| Alim 2 = [30] #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | مکتبة خو<br>مکتبة خو           |
| The second secon |                                |

(رؤمل إعداد: أيمن زيود

| ·                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ex = 0 (in 2x-ln (2+2x)                                                       | Aim Lattax  Lattax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| => Lim Lne2x _ Ln(2+e2x)                                                      | Slim Lox SII *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Rightarrow \lim_{X \to 0} L_{01}\left(\frac{e^{2X}}{2+e^{2X}}\right)$       | Exs-6) (im 5x - 605(2x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ⇒ Ln (lim + 2 × )                                                             | x > singxy & 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 34(1) = 1                                                                     | Geguesy. Mise b & list €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ext3 lim Lg <sup>n3</sup>                                                     | - Lud Chilill puis<br>- 2008X > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $3 \lim_{n \to \infty} \ln(n^3) = 3 \ln(n)$                                   | -1<- (05(EX) < 1<br>5 X -1 < 5 X - (05(EX) < 5 X+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{3 \lim_{x \to \infty} L_n(n^3)}{2 \ln(n)} = \frac{3 L_n(n)}{2 \ln(n)}$ | فبا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\Rightarrow \lim_{X \to 0} \frac{3}{2} = \boxed{3}$                          | ->( <u>LLL</u> ) - \le sin (xx) \le 1<br>4x-1 \le 4x + sin (xx) \le 4x+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ex =-0 (; ((\frac{1}{4}x))                                                    | $ 4X-1  \leq  4X+\sin(x)  \leq  4X+1 $ $ -X  =  -X  $ |
|                                                                               | SEAP 4X-1 4X +sin(8X) * 4X+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| خط : عبد الله دیاك                                                            | صفحة : { <b>8</b> }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 44 a                                                                          | ( <del>( )</del> ) · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

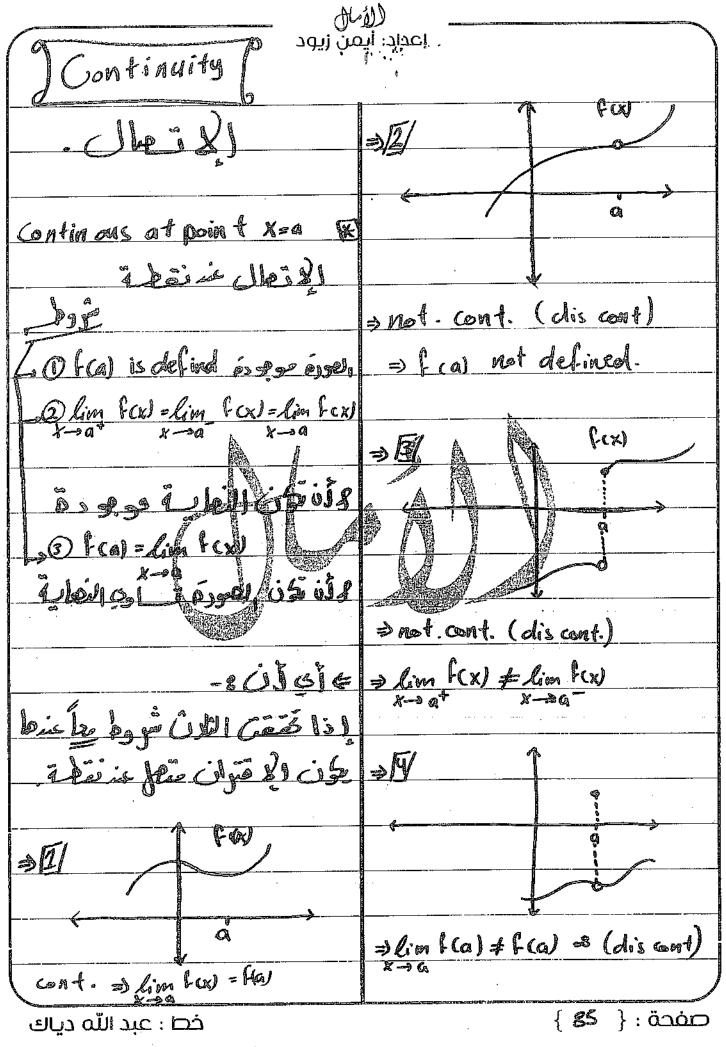

105 مكتب<u>ة خواطر</u>

الأمال إعداد: أيمنّ زيود Ex=6 lim log n2 با دخال  $\lim_{x\to 0} \frac{5x-1}{4x-1} \leqslant \lim_{x\to 0} \frac{5x-\cos(x)}{\sin(x)+4x}$ 21mm) ⇒ lim =lim 2Ln2 X-00 3Ln3 Ln(3) X-200 Lim 5x+1 x-10 4x+1 3 La(n) Ln2 35 < lim 5x - (05 € x) < 5 4 x > 00 sin(x) + 4x 4 Dim 5x - cos EN = x→so sin(s x) +4x > Limited VX +VX+40x +VX 134 sequezz theorem VX+ YUX +VX ⇒lim (X+40x)-X X->00 VX+4VX + VX 40x 25x


خط : عبد الله دیاك

مكتبة <del>خو اطر</del>

صفحة : { **82** }




107

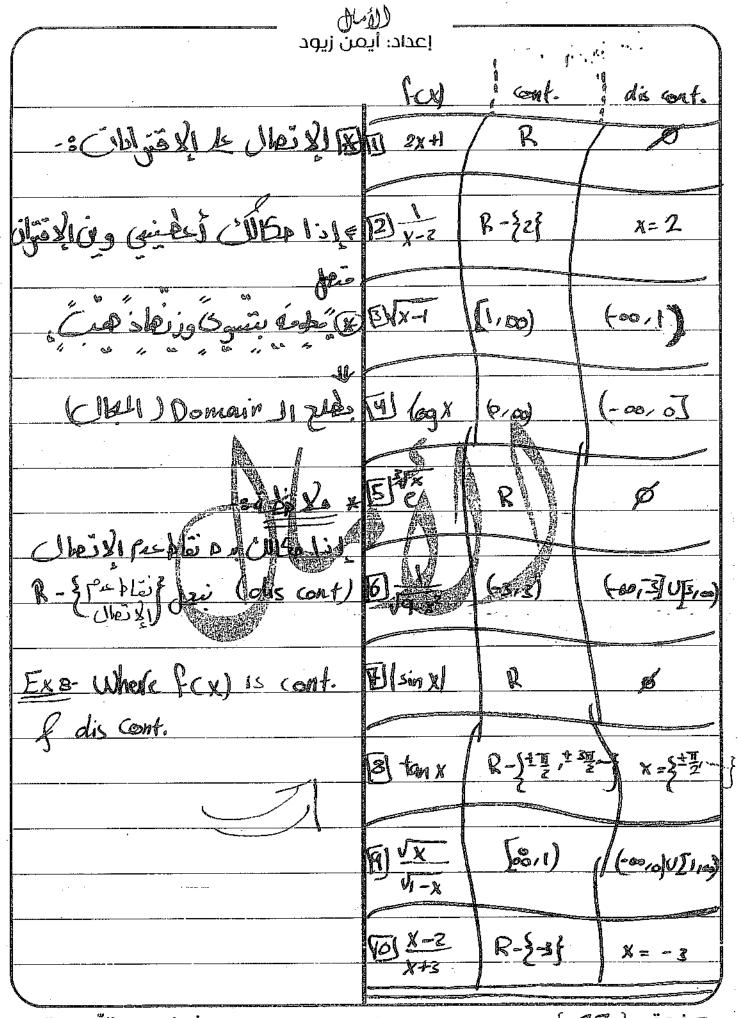


مكتبة خواطر

صفحة: { 🕊 }

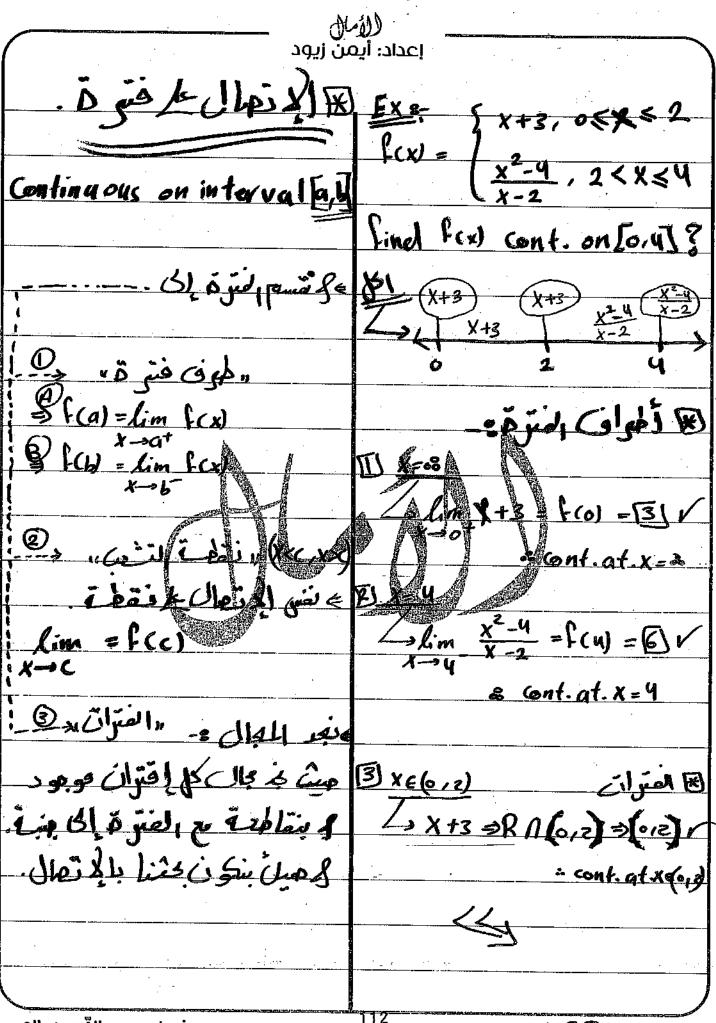


109


الفامال

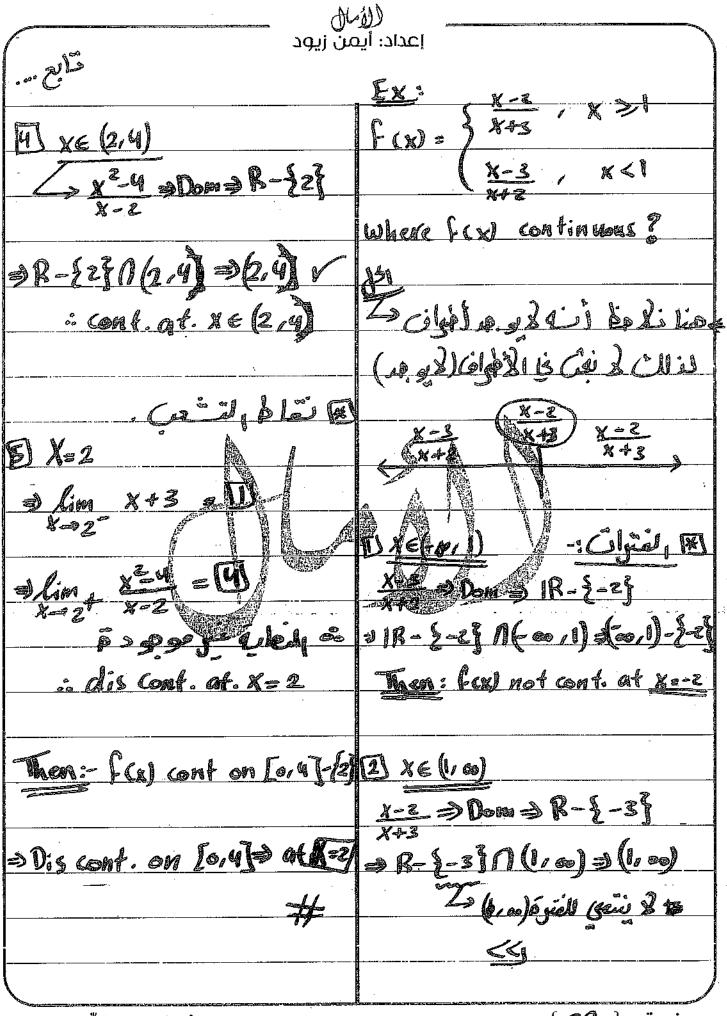
|                                                             | أعداد: أيَّن                                                                                                                                                                          |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 72, O-2, Mari                                             |                                                                                                                                                                                       |
| $\frac{E \times s^{2}}{\sqrt{\chi^{2}-1}} / \chi \neq 1$    |                                                                                                                                                                                       |
| $f(x) = \sqrt{x-1}$                                         | $\Rightarrow f(1) = (1)^{2} - (1) - (12) = -12$                                                                                                                                       |
| $\left(\begin{array}{cccc} 2 & \chi = 1 \end{array}\right)$ | ((1)-4) -5                                                                                                                                                                            |
| ⇒ study the continouity for                                 | $= \frac{4 \int \lim_{x \to 1} \frac{x^2 - x - 12}{x - 4} = 4$                                                                                                                        |
| f(x) at $x=1$ ?                                             | X-1                                                                                                                                                                                   |
|                                                             | $\infty$ Cont. at $X=1$                                                                                                                                                               |
| $\Rightarrow \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$          |                                                                                                                                                                                       |
|                                                             | $\Rightarrow f(q) = 8 : \lim_{X \to 4} \frac{x^2 - x - 12}{x - 4}$                                                                                                                    |
| ⇒ lim (x 1) (x +1) = [2]                                    | x-4 x-4                                                                                                                                                                               |
| x-1                                                         | = lim (x-4)(x+3) = 7                                                                                                                                                                  |
| => f(1) = 2 5 Than f(1) An Est                              |                                                                                                                                                                                       |
| =2 , 35 f (x) conf q x x=1                                  | as used contat/x=4                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                       |
| Exe-fcx = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \               | -: Cuity cija Xla perho (X)                                                                                                                                                           |
| $\begin{pmatrix} x-4 \\ 8 \end{pmatrix} x=4$                | J(x)= > fcx), x + a lim                                                                                                                                                               |
| = study the continouity for                                 | J(x) = { f(x), x ≠ a = lim<br>h(x), x = a elsel f (a)                                                                                                                                 |
| fcx) at x = \{1,4}                                          |                                                                                                                                                                                       |
|                                                             | $g(x) = \begin{cases} f(x) / X < \alpha < \frac{\lambda \log x}{x - \alpha} \\ h(x) / X > \alpha < \frac{\lambda \log x}{\log \alpha} \\ \lim_{x \to \alpha} f(x) = f(x) \end{cases}$ |
|                                                             | Qie X-19                                                                                                                                                                              |
|                                                             |                                                                                                                                                                                       |
|                                                             |                                                                                                                                                                                       |

جَطَ : عبد الله دياك


مكتبة خواطر

{ **86** } : قعفت




 $\{ 87 \} : \ddot{a} \rightarrow \dot{a}$ 

111



مكتبة خواطر

صفحة : (종월 }



صفحة : { 98 }

113

(الأمال إعداد: أيّمن زيود

| 🗷 نقاط التشدى.                                         | Ex: Does f(x) cont. at                                          |
|--------------------------------------------------------|-----------------------------------------------------------------|
| S) X=1                                                 | X=0 ?                                                           |
| $\frac{1}{1+1} = \frac{1}{1+1} = \frac{1}{1+1}$        | $f(x) = \begin{cases} \frac{ \sin x }{x}, x \neq 6 \end{cases}$ |
|                                                        | 2 / X = G                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | KI - Sinx - Sinx                                                |
|                                                        | Z, * 2) x                                                       |
| x-1+ x-1- X                                            | Ö                                                               |
|                                                        | Isinal de = les T                                               |
| 3 Then: fcw conton                                     | -SIN SINX                                                       |
| R-{-2,1}                                               | La Land Land                                                    |
| Dis cont. at $x = 3-2$ , $x = 3$                       | 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =                         |
| Ex3- Does fox = 1 cont.                                | $3\lim_{X\to 0^-} \frac{-\sin x}{x} = 1$                        |
| on [o,1]?                                              | X-10" X                                                         |
| => Dom f(x) = R-{0}                                    | Shim Isinx D.n.e                                                |
| => R-{0}/1[0/1]                                        | <i>X-→</i> 0 ^                                                  |
| : Then fcx) cont. on (0,1]                             | of not cont. at [x=08]                                          |
|                                                        |                                                                 |
|                                                        |                                                                 |
|                                                        |                                                                 |

خط : عبد الله دیاك

114 مكتبة خواطر

صفحة : { 90 }

الأمال إعداد: أيمنّ زيود Thms C (fig) cont. at x=c [Ex 30 fcx)=x2+2  $g(x) = \begin{cases} x^2 - 4 \\ x \neq 2 \end{cases}$ Then f = 9, f p) contact 9(c) # & ~ ) 3x-2, X=2 Is I contact x=2 Im = C lim x2-4 = lim (x2)(x+4) If:-Olim gcx)=L Of cont at K=L Then lim f (g cal) = f (lingu) s(4) x at x = 2f(x) Contact x=2Thmg-E 9(2)=4 +0 Then 2- a cont. af |X=2 II:- Ogis cont. at x=c Ofis cont. at g(c) Then: (fog) is cont. at &

خط : عبد الله دياك

 $\{$   $\{$   $\}$   $\}$   $\{$   $\{$   $\}$   $\}$ 

115-

إعداد: أيمن زيود  $\frac{Ex^{2}-2}{f(x)} = \begin{cases} 1 & \text{; } x \neq 2 \end{cases}$ find lim sin (x-1) => Sin (lim x2-1)  $g(z) = \begin{cases} 4x - 10 / x \neq 4 \\ 6 / x = 4 \end{cases}$ =) Sin (2) IS (fog) cont. at x=4. =>9(4)=6, Lim 41-10 76 3 / F = (X - X 9(x) cont. at [x=4] f (g(4))  $\Rightarrow f(6) = 1 / \lim_{x \to 6} 1 = 1$ =) e = e f(x) confat x=g(u)=6لا قسبن المجمعة أنت آلا Then (fog) cont at X=4 --- teret cat is

خط : عبد الله دياك

مكتبة خواطر

{ **9**2} : قعفت

الأمل ُ إعداد؛ أيمنُّ زيود Ilpis - 2 i dis & & & Fox = 1 (trig) Sjersj (Ln) 20 2 per i is i cities big I for cont on [0,4]: find The Constant K?!!?// و مهوا د الن الحريق بي م Clejobeleiteicheitelen X+K = lim X-2
X+VZ الإقتبان الخارجي: (2) LARDÓRAD LE CESE > (B) +K = ... Direct .. Bully the Carb 4 J. J. J. J. J. # x 2 a 2 إذا قال المحقبان صام 19 12. S/X=05 " every where, Then: - fcw cont at [x=a] الوائك توان  $\frac{3 \lim_{x \to 0} \frac{x^2 a^2}{x - 6} = f(a)}{x}$ lim = lim = f(a) X=0 =) lim a+x = 02+1 =) 20=02+1 N C X X<G (2) priper, & Filing = 92-29+1=08 صفدة : { و **Q** و خط : عبد الله دياك

117

( ( أومال إعداد: أيمنّ زيود خابع... =) 9<sup>2</sup>-29+1=00 Ex =- where f(x) = sec (x) (9-1)(q-1)=0° is discontinuous on for 277? a=1 \# =) Sec(X) = (0500 =>[0,217]- }.  $\Rightarrow f(x) = \begin{cases} \frac{1}{2x}, & x \neq 0 \\ k^2, & x = 0 \end{cases}$ =) Cos X=0 =) X=[I /3] Then: find the value of iks, > They few discontinuous That make the function at & = @ 5 /3 18 } cont. every where Intermediate-value =) lim tank\* (0) thm g-MI f conf on [a,b] =) K = K2 =) 2K2-K=0 Elaka any number between K=0, K=1 f(a) &f(b); 2 f(a) # f(b) 3 Then I at least C ∈ (a,b) such that f(c) = K

خط: عبد الله دياك

118 مكتبة خواطر  $\{oldsymbol{q}oldsymbol{q}\}$ صفحة $\{oldsymbol{q}oldsymbol{q}\}$ 

4

﴿ (أَوْمَالُ إعداد: أيْمن زيود

=> Then: ] at least ce(a,b) such that k=o=f(e) This is to the city of the cit ورجب وجورة في سالب يوجد المواول عدد في داخل الفتوة له 0=fc ap @ jie co Li فَيَهُ ( الْمَرَةُ ) بن جورهُ في @ [ash] it. (c) my الترة المناكرات Exe-O Shaw that the  $f_{(ij)}$ equation X +x2-2x =1 F(a) has one solution in [-11] <u>ها مال آکان المرة معالمله الم</u> 400000 المعراك الوبعالامم 3 x3+x2-2x-1=0 fcx1 F(b) fax cont on [-1,1] f(-1)=1>0 = positive Capo Fca) f(1)=-1 to shegetive cul Then 3 at least CE (-1,1) Df contonsals-34 such that f(c) =0 Dfa) ff (6) or non 2006 f have opposite signs

خط : عبد الله دياك

صفحة: { 95 }

119

﴿ (الأمال إعداد: أيمن زيود

|                                           | 1                                       |
|-------------------------------------------|-----------------------------------------|
| <u>Ex</u> :6)                             |                                         |
| في عالية كلن الفترة غير معفاه             | 30 at, number between                   |
| ي فرمَ بالحقيب لايب أن يؤن                | (5,13) Then 3 at least                  |
| أُ خُواف الْعَسَمُ وا هِ عو عِبُ لُمُواهِ | solution CE (1,z) such                  |
| <u>Cellu</u>                              | that $f(c) = 7$ .                       |
| Show that the equation                    |                                         |
| $\chi^3 - \chi - 1 = \infty$ has at       | ﴿ طبعاً الدوال بالإحقان                 |
| least one roots.                          | بيعبي زي هيل للملا                      |
| => f(0) =-1<0   10/2]                     |                                         |
| >f(1) = -1<0                              | ما في إلى في ق ما جمه المنده الموقعة    |
| ⇒ f(z)=5>0 1                              | على الـ قال ، بكان مع دانه              |
| Then 3 at least co (0,2)                  | ع محالك دن يتلك من وقد و                |
| such that f(c)=0                          | آخماف المترات لازم طاهد حوجب            |
| · · · · · · · · · · · · · · · · · · ·     | الله الله الله الله الله الله الله الله |
| Exs-If f(x)=x2+5x-1                       |                                         |
| show that I at least                      | Exe-The equation                        |
| C € (1,12) such that for=7                | X <sup>3</sup> +3x = 2 has Solution in? |
| f(1) =5 , f(2) = 13                       | a) [1,3] b)[1,2] c)[23]d)[5]]           |
|                                           | क ट्राप्त के के के कि हो थे हैं। कि का  |
|                                           |                                         |
|                                           |                                         |

خط : عبد الله دياك

公園の かんとう ない かんしょう

120 مكتبة خواطر

الأمال . . إعداد: أيَّمِنَّ زيود  $=) f(x) = 3x^2 + 2x - 8$ Exe-(-0 = -7<0 a) x => X +3X - 2 = 00 f-(0) = -820  $f(x) = 2 > 6 \qquad q \quad X$ (-(3) = 34>6 f(1) = -3<0 fa) = 2>6 f(z)= 8 70 b X f(z) = 12 >0 Then inter by (1/2) f(z) = 12 >0 ر عامليني ال fc3) = 34 ×6 f-co) = -2<0 If what contains (-(1) = 2 >0 8 f (a) > 9 (a) f(b) < g(b) show that Then Io,13 there is arost of the equation f(x) = 9(x) ?! Ex: The equation 3 x 2+2 X - 8 = 08 > f(x)-g(x) = 00 has at least a solution hea) = f(a) - g(a) >0 fi kaj 23 in side the interval ? h(b) = f(b) - 9(b) < 0 just f(4) ei 2 D(-1,0) D(1,2) O(91)0) it has no solution ≪\_\_  $\{\mathbf{q}\mathbf{z}\}$ : ände

خط : عبد الله دياك

a = 4

| Then 3 at least $x \in (a,b)$ o                             | <u> </u> | = 1 | <b>=</b> | a | = 1         |
|-------------------------------------------------------------|----------|-----|----------|---|-------------|
| Then $\exists af   east x \in (a_1b)$ Such that $h(x) = es$ | +2       |     |          | 4 | <del></del> |

$$\Rightarrow f(x) - g(x) = \infty$$

=> 
$$f(x) = g(x) #$$

$$\lim_{X \to 0} \frac{\sqrt{a_{X}+4}-2}{x} = \sqrt{a_{X}+4} + 2$$

$$\{\mathbf{q}_{m{\delta}}\}:$$
صفحة

Choose the best correct answer (2.5 points for each)

1) If 
$$f(x) = \frac{1}{x}$$
,  $g(x) = \frac{x-1}{x-2}$ , then the domain of  $(f \circ g)(x)$  is

جميع العلول خلف الصنية

a) 
$$\mathbb{R} - \{-1, -2\}$$
 b)  $\mathbb{R} - \{1, 2\}$  c)  $\mathbb{R} - \{-1\}$  d)  $\mathbb{R} - \{-2\}$ 

$$h$$
 $\mathbb{R} - \{1,2\}$ 

c) 
$$\mathbb{R} - \{-1\}$$

d) 
$$\mathbb{R} - \{-2\}$$

(2) 
$$\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2+x-6}$$

a) 
$$\frac{1}{2}$$

a) 
$$\frac{1}{3}$$
 b)  $\frac{2}{15}$  c) 2 d) -2

3) 
$$\cos^{-1}(\cos(\frac{11\pi}{7}))$$

$$\cos^{-1}(\cos(\frac{11n}{7}))$$

a) 
$$\frac{11\pi}{7}$$
 b)  $\frac{4\pi}{7}$  c)  $\frac{3\pi}{7}$  d)  $\frac{6\pi}{7}$ 

c) 
$$\frac{3\pi}{7}$$

d) 
$$\frac{6\pi}{7}$$

4) Let  $3e^{2x} = 1$ , then the value of x is

a) 
$$-\frac{1}{2}ln3$$
 b)  $\frac{1}{2}ln3$  c)  $-ln\frac{1}{3}$  d)  $2ln\frac{1}{3}$ 

b) 
$$\frac{1}{2} ln3$$

$$c)-ln\frac{1}{3}$$

d) 
$$2ln\frac{1}{3}$$

5) The vertical asymptote(s) of  $f(x) = \frac{x^2-4}{(x-2)(x-3)(x+2)}$ 

a) 
$$x = 2, x = 3, x = -3$$
 b)  $x = 3, x = -3$  c)  $x = 3$ 

b) 
$$x = 3, x = -3$$

c) 
$$x = 3$$

d) 
$$x = 2, x = -3$$

6) The range of  $f(x) = \frac{1-6x}{2x-1}$  is

a) 
$$\mathbb{R}-\{\frac{1}{2}\}$$

b)
$$\mathbb{R} - \{3\}$$

$$\mathbb{R} - \{\frac{1}{2}\}$$
 b)  $\mathbb{R} - \{3\}$  c)  $\mathbb{R} - \{-\frac{1}{2}\}$  d)  $\mathbb{R} - \{-3\}$ 

d) 
$$\mathbb{R} - \{-3\}$$

7)  $\sin(\tan^{-1}(x)) =$ 

$$\sqrt{2}$$

$$\frac{x}{\sqrt{1+x^2}}$$

$$\frac{x}{\sqrt{1-x^2}}$$

d) 
$$\frac{\sqrt{1-x}}{x}$$

(0)

Scanned by CamScanner

8) The range of 
$$g(x) = x^2 - 2x - 3$$
 is:

a) 
$$[4, \infty)$$
 b)  $[-4, \infty)$  c)  $(-\infty, 4]$  d)  $(-\infty, -4]$ 

9) If 
$$f(x) = x^3 + 3x - 20$$
, then  $f^{-1}(16) =$ 

$$a) - 2$$
  $b) 2$   $c) - 3$   $d) 3$ 

$$c)-3$$

10) 
$$\log_2 18 + \log_2 24 - \log_2 54 =$$

11) If 
$$\ln(x^2 - 5) - \ln(4x) = 0$$
, then

$$a)x = 5$$

b) 
$$x = -1$$

a)
$$x = 5$$
 b)  $x = -1$  c)  $x = -1, x = 5$  d)  $x = 0$ 

d) 
$$x = 0$$

12) 
$$\lim_{x\to 3^+} \frac{x+3}{x^2-9}$$

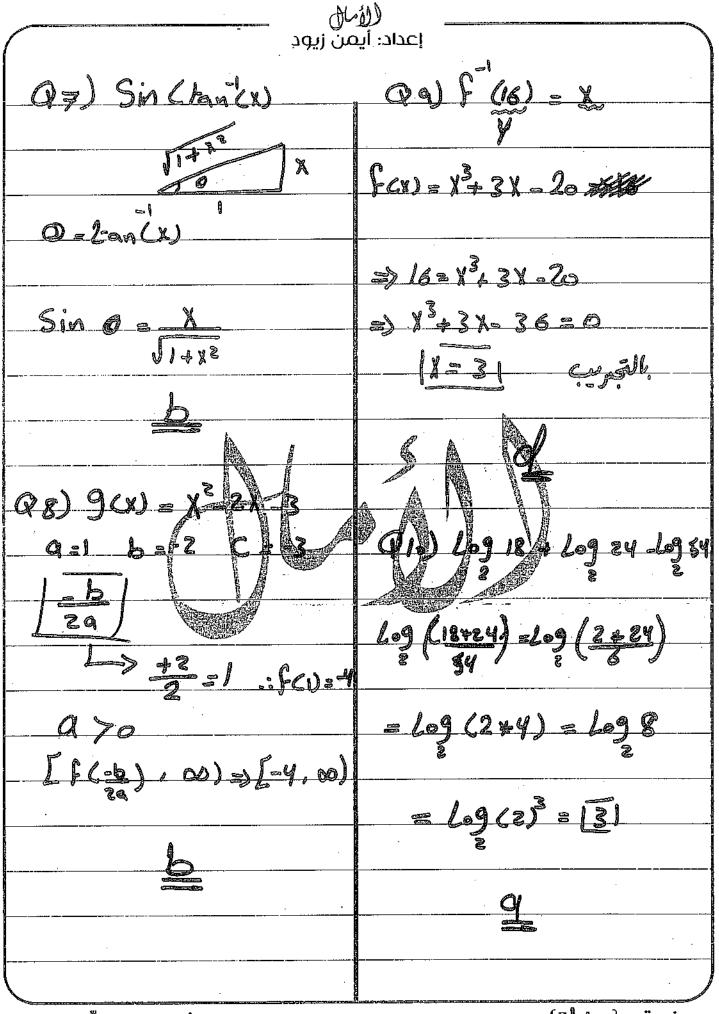
a) 
$$-3$$
 b) 3

Scanned by CamScanner

( (فرمال إعداد: أيمنّ زيود 93) Cos ( Cos ( UT)) Q1) O34) = R- 223  $f(g(x)) = \frac{1}{\frac{1}{1-2}} = \frac{x-2}{x-1}$ Cos (cos (3x))= 3x Domain R- [1] R-ZiJAR-[2] => RZI.25 Q2) Lim 1x3+5 X2, W-6 100 = Ln (4) 3 lin (12,1) 9 + X->2 (x+3)(x-2) 2x=2n+3 x=1n(+)  $=\frac{1}{2}\ln(3)=\frac{1}{2}\ln 3$ 3 & CX ) (X+2) (x+3)(x/2) => \frac{1}{5} \frac{1}{3} = \frac{1}{15}

خط : عبد الله دياك

125-


المؤمل

| عن نبود                                                                    | וֹסרור: וְהֹלּ<br>מוֹס                                                                         |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 95) (x-2) = 0 => x=2                                                       | $Q_6) f(x) = \frac{1-6x}{2x-1}$                                                                |
| X+55 (X-5)(X-3)(X+5) = -1/3-1<br>-1/3-1                                    | $\frac{y=1-6x}{2x-1} \Rightarrow 2xy-y=1-6x$                                                   |
| $\begin{array}{c} not \ vertical \\ (x-3)=0 \Rightarrow  x=3  \end{array}$ | => 2xy + 6x = 1+Y                                                                              |
| Vim (x-2)(x+2) \(\frac{1}{2}\)                                             | $ \begin{array}{c} X = 1 + Y \\ (2Y + 6) \end{array} \Rightarrow f(x) = \frac{1 + Y}{2X + 6} $ |
| d.n.e <u>vertical</u>                                                      | Domain Fax Range for                                                                           |
| (x+2)=0===================================                                 | Then Range F(x) = R-2-39                                                                       |
| Not vertical                                                               | <u>d</u>                                                                                       |
| Then [X=3] vertical                                                        |                                                                                                |
|                                                                            |                                                                                                |
|                                                                            |                                                                                                |

خط : عبد الله دياك

126 مكتبة خواطر

صفدة: (سنولً)



خط : عبد الله دياك

صفدة: ﴿سُولَةٍ

127

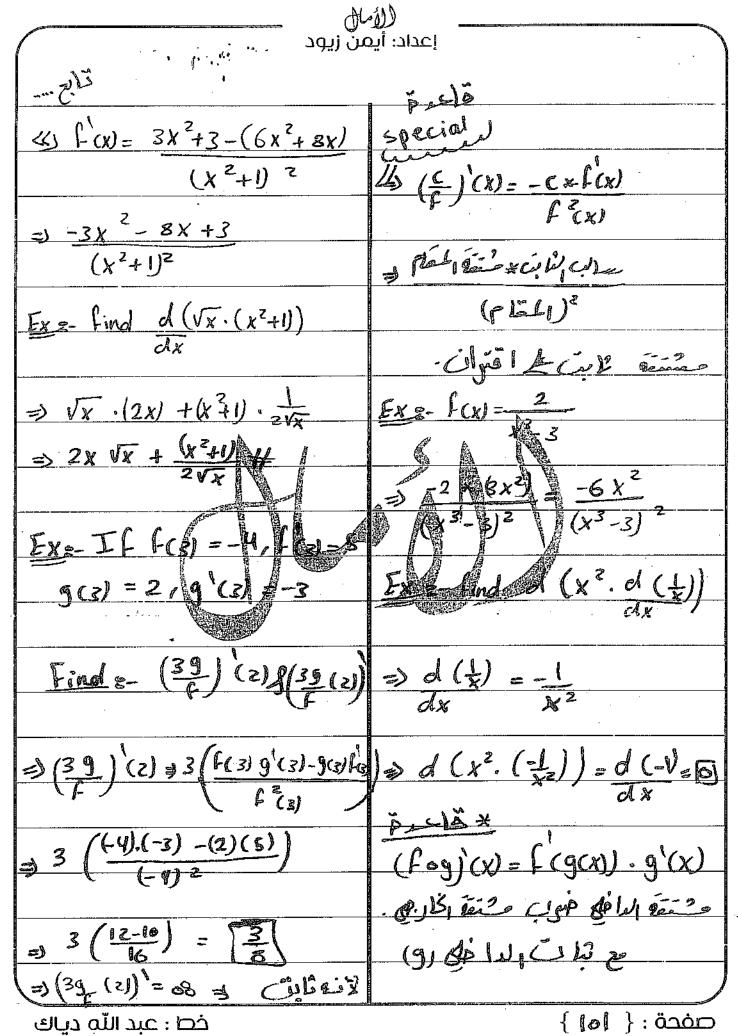
﴿ لَأَمُّلُ. ... إعداد: أيمن زيود

| ین ریود                                | أعداد: ايس ريود                  |  |  |
|----------------------------------------|----------------------------------|--|--|
| an) Ln (x25) = Ln (4x)                 | Q12) Lim X-3 - 326<br>8+3 X2-9   |  |  |
| <u>e</u> 🕁 🖟                           | x->3, X5-d                       |  |  |
| ⇒ x²-5 = 4x                            | خالبها من المحين خذ عدد المحبد   |  |  |
| ⇒ X²-4x-5 =0                           | ، لبنت                           |  |  |
| (x-3) (x+1) =0                         | (1) <u>)</u> \(\)20              |  |  |
| X=5, X=-1                              | Lim X+3 = 7 >0<br>x->4" x2-q = 7 |  |  |
|                                        | x->4 x2-9 7                      |  |  |
| ∴ X=5 € Domain V                       | Then + w                         |  |  |
| = X= -1 & Domain X                     |                                  |  |  |
| Then X:5                               | and or                           |  |  |
|                                        | * 1 1 1 2                        |  |  |
| <u>a</u>                               |                                  |  |  |
|                                        | Lim XX3 _ Lim _ L                |  |  |
| (, X, , )                              | x +> 3° (x-3) (x(3) X+>3° x-3    |  |  |
| rgh", grin.                            |                                  |  |  |
| ان مخط الأن                            | 2 4+++                           |  |  |
| (2", 2")                               | 3                                |  |  |
| 3 , 9                                  | Then +00                         |  |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                  |  |  |
|                                        |                                  |  |  |
|                                        |                                  |  |  |

خط : عبد الله دياك

128 مكتبة خواطر

صفحة: ﴿سُوانَ}


(الأمل ُ إعداد: أيمنّ زيود Derivative والاشتاف ، \* Where C is a constant:-2P15 13 8 f'(x) <u>fcx)</u> ع إذا ذكون طلح ال يكن الله المتعلق SC, y'dy df d(fa) === 3 de cipi d'lis € -3 1/2 of (x) = lim f(z) f(x) 面 O h-0 @ Rules Derivation:-المحالية المحالية Co les Opera & fcx) -7x-8 M TTX -3 X e 2 x 1 = x3 (3/4) X (-1/4) ton 5  $\sqrt[4]{x^3} = x$ (tan (5)) X (5/3) X(2/3) VZ VZX  $\{QQ\}: \Box$ صفحة خط : عبد الله دياك

129

|                             |                     | اللها                                                                                                                 |
|-----------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| ﴿ فَلِيمَ الْ               | ن زیود              | أعداد: أيما                                                                                                           |
| () g(x)                     | d (g(x))            | 7                                                                                                                     |
|                             | dx                  | B(f.g) (x) = f(x) . g'(x) +g(x). f'(x)                                                                                |
| cfcw                        | cfw                 | 200 Cyp 15 W + 15W, 200 - 20 15 W                                                                                     |
| f(x)                        | f. f'(x)            | الأون.                                                                                                                |
| $(f(x) \pm h(x))$           | (t'cw + h'cx        | $\mathscr{E}(\frac{\mathbf{F}}{\mathbf{q}})' = g(\mathbf{w}) \cdot f(\mathbf{x}) - f(\mathbf{x}) \cdot g(\mathbf{x})$ |
| $5x^{-4}$                   | -20 X <sup>-5</sup> | $(9(x))^2$                                                                                                            |
| 1 x3                        | 3 x2                | المعتمام وراء في المعت رابه والحا                                                                                     |
| $\left(x^{4}+x^{-3}\right)$ | 4x3-3x-4            | (rlé (1) <sup>2</sup>                                                                                                 |
| 2x5-4x3                     | 10 XY 12XP          | Smo 19ail 8 Crel 4521 8                                                                                               |
|                             |                     | Fizzy sign mm Fals                                                                                                    |
| Sous (                      |                     | ر نفی ای گذاری ا                                                                                                      |
| 19 CX 1                     | d b(x)              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                 |
|                             | & VX                |                                                                                                                       |
| VECO                        | 2 (F(x)             | $Ex = f(x) = (x^2 + 1)(x^3 - 2)$ ; find                                                                               |
|                             |                     | f'(x) ?                                                                                                               |
| V5 X3                       | 15 X<br>2 V 5 x 3   | $f'(x) = (x^2+1).3x^2 + 2x(x^3-z)$                                                                                    |
|                             |                     |                                                                                                                       |
| V3 X-5                      | 2 V3 V-5            | Exe-find $f(x)$ if $f(x) = \frac{3x+4}{x^2+1}$ ?                                                                      |
|                             | 1 3/                | $f'(x) = \frac{(x^2+1)\cdot 3 - (3x+4)\cdot 2x}{(x^2+1)^2}$                                                           |
|                             |                     | (X <sup>2</sup> 41) <sup>2</sup>                                                                                      |
|                             |                     |                                                                                                                       |
|                             |                     | 130                                                                                                                   |

خط ؛ عبد الله دياك

130 مكتبة خواطر (60 { 100 } : andro



131

﴿(رُرُّما﴿ اد: أَيْمَنَ زِيو

|        | د            | ّ زیو | .: أيمرُ | عداد |
|--------|--------------|-------|----------|------|
| Exz-I/ | [(3x)=4x3+2x | . 2   |          |      |

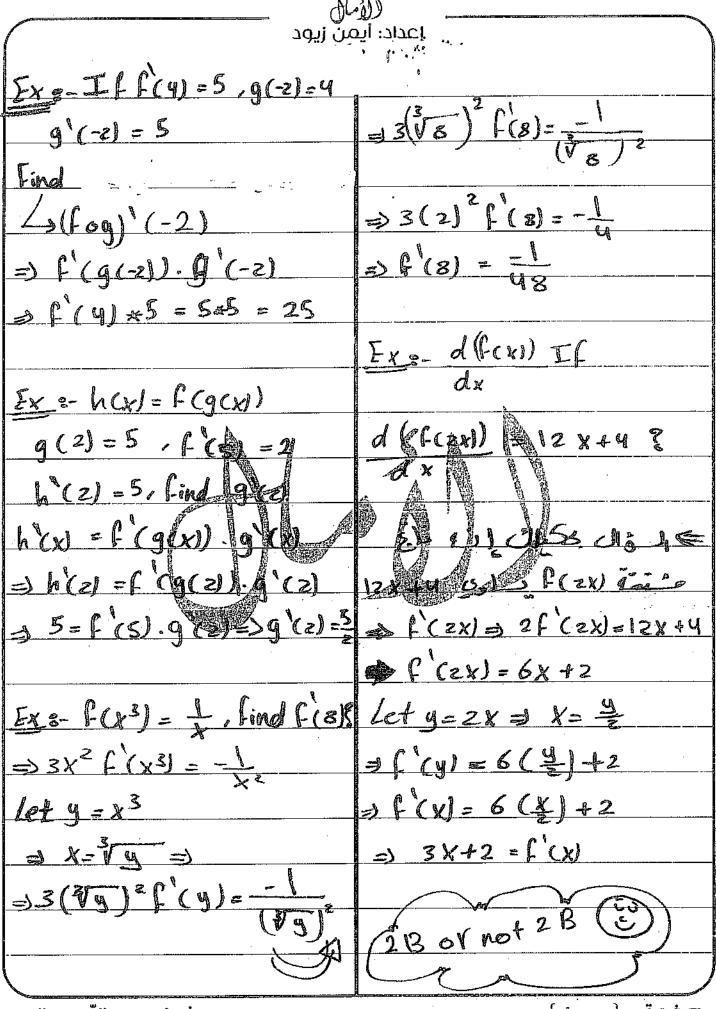
$$\frac{Ex = 1}{f'(2)} + 2x$$
find  $f'(2)$ 

$$\frac{3}{3} + \frac{8}{3} = 3 + \frac{24}{3}$$

$$\Rightarrow \frac{24}{9}$$

$$Ex = f(x) = x^2 - g(x) = 3x^2 + 2$$

$$\Rightarrow (f \circ g)'(x) = 3(3x^{2}+2)^{2} \cdot 6x$$


$$f'(g(x)) = 9(x)$$

$$318X(3X^{2}_{+2})^{2}$$

خط : عبد الله دیاك

132 م مكتبة خو اطر

صفحة: { اور ا



خط : عبد الله دياك

صفحة: { ده }

133

الأمل إعداد: أيمنّ زيود  $\frac{d(f(x)^n) = h(f(x)) \cdot f(x)}{dx} = \frac{Ex}{1 - find y}$ By=(0s (3x+2)=)y Ex = 9(x) = f(2x+1); final = - 3 Sin (3x +2) =>  $9'(x) = 7 f'(2x+1).f'(2x+1).2 = y' = Sec^2x + (4x^2 cos(x) + 8x sinx)$ d (faxe) 3 y= cot 2 Ex 2- f(x) = (x"+5) => f(x) = 8 (x4+1)2.4 9 f2 csc (x) cat (x) =) f'(x)=32 x3(x45)7# 4 4 = 2x + esc3x => y = 2+ 3 (csca) 2. (-csca) . (-csca) 9'(x).cos(qcx) =) y'= 2-3 csc(x).cot(x) Sin (g (x)) cos (g(x/) -9 (x) sin (g(x) g(x)-sec g(x) & y = tan Vx tan (g(x)) -9(x). (se2(g(x)) =1y'= sec2(Vx-1). 1/2(Vxcot (gcx) Sec (gcx1) g'(x) section) tongood Sec 2 (VX-1) -gar. (901) (601) => 9'= c se (9 (x))  $2\sqrt{x-1}$ 

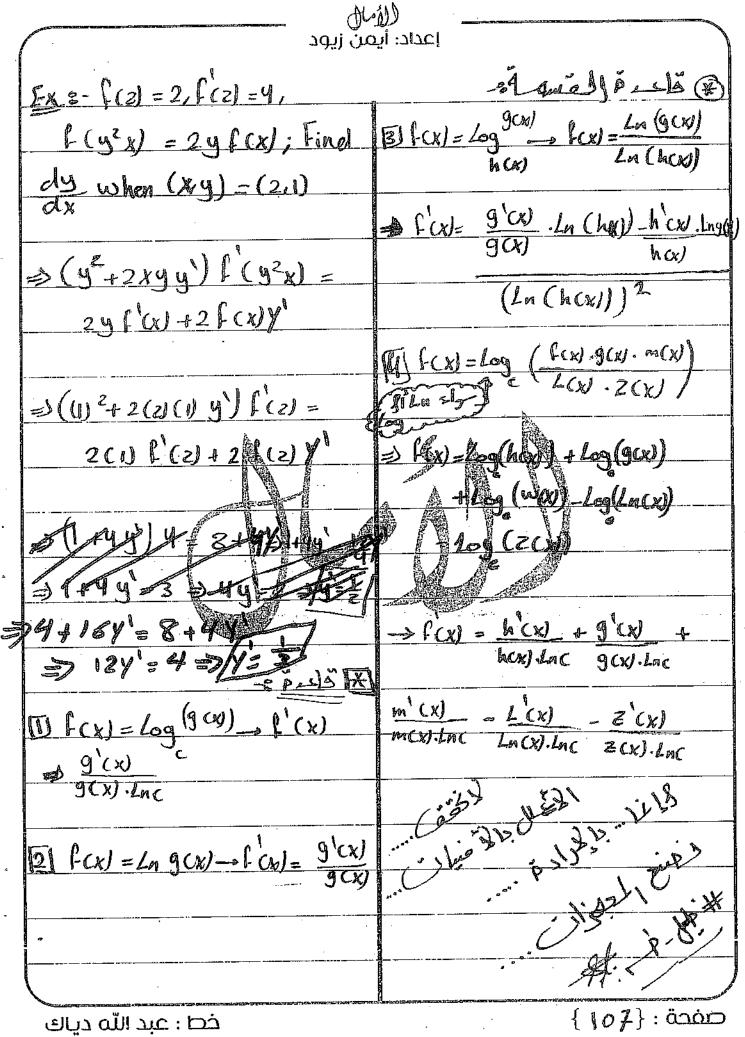
مكتبة خواطر

صفحة : { ١٥٤ }

خط : عبد الله <u>دياك</u>

خط : عبد الله دياك

{ 105 } : and


135 '

الفك إعداد: أيمنّ زيود 9x + y2+1=X; find y find dy =)(y + x y') + 2y y' = 1 If 2x2-2y3=-8 ??!! > xy'+2yy'=1-4 => 9'(x+2y)=(1-y) =)  $2(2)^{2} - 2y^{3} = -8 = -2y^{3} = -16$  $y^3 = 8 \Rightarrow y = 2$  $=\frac{y'}{x+2y}$ 4x-16 y2 W-08 Exe-x2+xy=1 First dy  $y = \frac{1}{6} \times \frac{2}{3} \times$  $\Rightarrow 2x + (xy' + y)$ 3 xy = -2x -9 3 => y = -2x-9 Ex=-Find dy for cos(xy2)=y? (2xyy1)+y2)(-sin(xy2))=y1 "X " ( - sin (xy2)) +y2 (-sin (xy2)) +y2 (-sin (xy2)) =y 9, a as this isto & i a label s - sin(xg2), y2 = y' +2xy sin (xy2) y' => 4 (1+2x4 sin(xy2)) = -42 sin(xy2  $3 y' = -y' \sin k y'')$ 

خط : عبد الله دياك

مكتبة خواطر

1+2 xy Sin (xy2)



137

((أومال اعداد: أَيْمَنَّ زيود

Ex =- find uy' 11

 $0 y = Log(x^3+x)$ 

 $\frac{3y' = 3x^2 + 1}{(x^2 + x) Ln(10)}$ 

2 y = Ln (sin(x))

y = Cos(x) = CotuXu

3 y= Ln X = y'=

(1) y = Log 5 => y = (R) )

=) 4'= - (5).

 $\frac{\left( \ln x + 1 \right)^2}{}$ 

 $= \frac{y' = -Ln5}{(x+1)(Lnx+1)^2}$ 

(E) y = V(Lnx) =

 $\Rightarrow 9 = (Ln x)^{2/3}$ 

 $= y' = \frac{2}{3} (\ln x)^{-\frac{1}{3}} \perp$ 

 $\Rightarrow \frac{2}{3X (Lax)^{\frac{1}{2}}}$ 

6 y = Ln(Lnx)

 $= y' = (L_n(x))' \Rightarrow \frac{1}{x}$   $= L_n(x)$ 

(X SinX)

=> y = Ln (x2) + Ln (sinx) - Ln (x+1)

=>  $y' = \frac{2x}{x^2} + \cos(x) - \frac{1}{(x+1)}$ 

By = Log (X+3)

=> y = Ln K+3)
Ln(X+2)

**∠**√₁

خط: عبد الله دياك

مكتبة خواطر

{ 108 } : äaon

الأصال إعداد: أيَمنَّ زيود ڎۜٳؠڿ؞ۣ  $\Rightarrow y' = L_n(x+z) \cdot \frac{1}{x+3} - L_n(x+z) \cdot \frac{1}{x+2} \Rightarrow y = (f-cx)$  a plo a second => Lny = Ln(fcx)) 9 cx) (Ln (x+z))2 = lny = gcw). Ln fcx)  $\frac{y' = \ln (x+z) - \ln (x+3)}{(x+3)}$ 39 = 9(x) . f(x) +9'(x). Lnfor (Ln (x+2))2 3 y'=(9cx). f'od + 9'cx). In fw). y => of = (fice) (gcw.fcx) +g'cu.lafcy) [[ fcx) = c = 9'ck/c Lnc الم علان المساقة إن Firel u  $2|f(x)| = e = q(x) \cdot e^{q(x)}$ => 4 = Sec 2(x).2 . Ln(2) 2-10/2 F (2) 4 = (m)  $y = (f(x))^n \Rightarrow y' = n(f(x))^n \cdot f'(x) \Rightarrow y' = (-\sin x) \cdot (\pi)^n$ 1 (cilyã) y = ( = y'= g'(x). ( . Lac ( 5 y = (5x2+2) 1. city = 10 x e 5x3+2 صفحة : { ١٥٩ } خط : عبد الله دياك

(لفنال ا

إعداد: أَيْمَانُ زيود

|          | Sinx + Cosx    |             |          |
|----------|----------------|-------------|----------|
| (4) y =  | e              | ·           | · .      |
| <i>.</i> | = (Cor v < in) | kia<br>V) e | X+co2 x) |

$$\frac{3y = Lne}{Ln(Lnx)} = \frac{1}{Ln(Lnx)}$$

$$= \frac{y' - \frac{1}{x \ln x}}{\left(\ln \left(\ln x\right)\right)^2 \ln x}$$

$$\left(\ln \left(\ln x\right)\right)^2$$

$$\frac{y'}{y} = X.(\frac{1}{x}) + X$$

$$\widehat{\mathbb{Q}} \quad \chi^{y} = y^{x} .$$

خط: عبد الله دياك

140 مكتبة خواطر

صفحة: { ١١٥ }

$$\frac{E_{A}e^{-}}{y'} = (cos(x))^{X} \Rightarrow find y'$$

$$\frac{y'}{y'} = Ln (cos(x))^{X} \Rightarrow (find y')$$

$$\frac{y'}{y} = (x \cdot - sinx) + Ln (cosx)$$

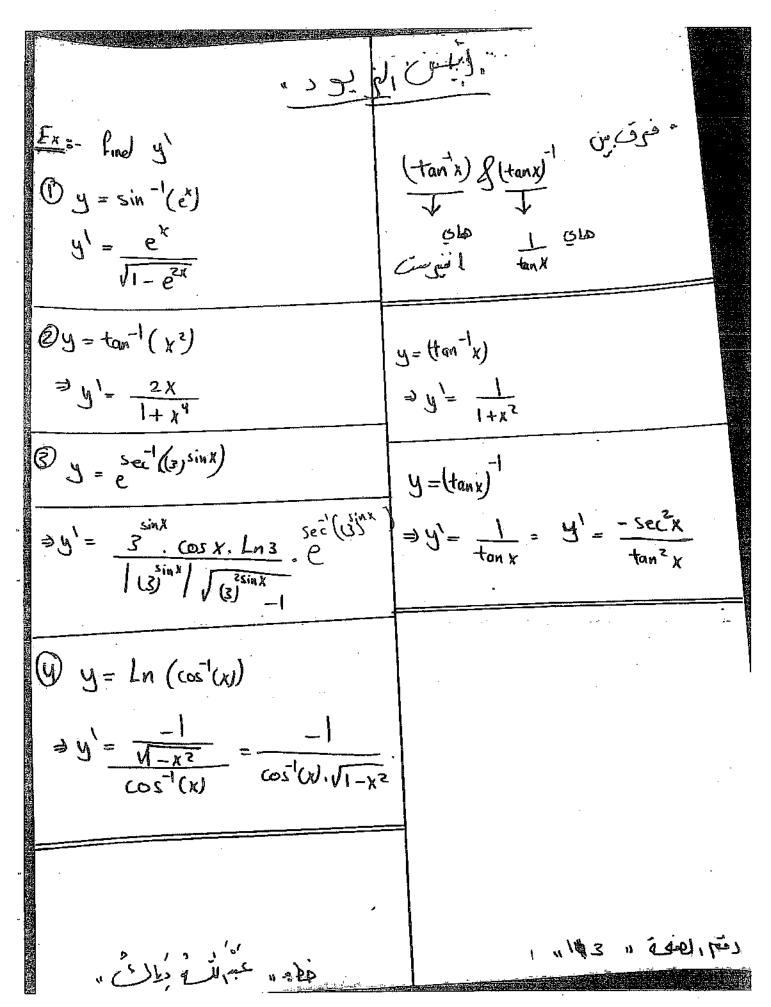
$$\frac{y'}{y'} = (-x \cdot tanx + Ln (cosx)) \cdot (cos(x))^{X}$$

$$\frac{y'}{y'} = (-x \cdot tanx + Ln (cos(x)) \cdot (cos(x))^{X}$$

خط الله خال ،

Inexplosed

The forms of the full of them  $(f^{-1})'(x) = \frac{1}{f(f^{-1}(x))}$ 


اَ وَ اللهِ اللهِ

Scanned by CamScanner

€ علامله الله

| Es- " " > 2'.5-                                                                                                                                               | ار نب أ                                   |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|
| $f(x) = x^{3} - 2x$ , find $(f^{-1})'(-1)$                                                                                                                    | الله مترانان الله مترانان المثلثة العكرية |                      |
| $-1 = x^{3} - 2x \implies \emptyset \in X = 1  \text{(1)}$ $-1 = (+1)^{3} \cdot 2(1) \implies -1 = -1 \cdot 8 \cdot 6$                                        |                                           | g'(x)<br>VI-(gw)2    |
|                                                                                                                                                               | (os <sup>-1</sup> (g (h))                 | -9'(x)<br>VI-(g(x))2 |
| $\frac{Ex}{f(x)} = 5x^{3} + x - 7, \text{ then } finel(f^{-1}) (-1) $ $\Rightarrow f^{-1}(-1) \Rightarrow -1 = 5x^{3} + x - 7 \Rightarrow 5x^{3} + x - 6 = 3$ | i                                         | 9'(x)<br>1+(9(x))2   |
| $f'(x) = 15x + 1 \Rightarrow f'(x) = 15 (1) + 1 = 16$                                                                                                         |                                           | -9'(W) 2             |
| $\Rightarrow (t_1)(-1) = t(t_1)$ $\Rightarrow (t_1)(-1) = 10$                                                                                                 | sec ( g(x) )                              | 9(x)//(3(x)2-1       |
|                                                                                                                                                               | c s c ( g (x))                            | 19cul 19cm) = 1      |
| فاه مناف الله الله الله الله الله الله الله ال                                                                                                                | 4.1                                       | 20 قعمار رمق         |

Scanned by CamScanner



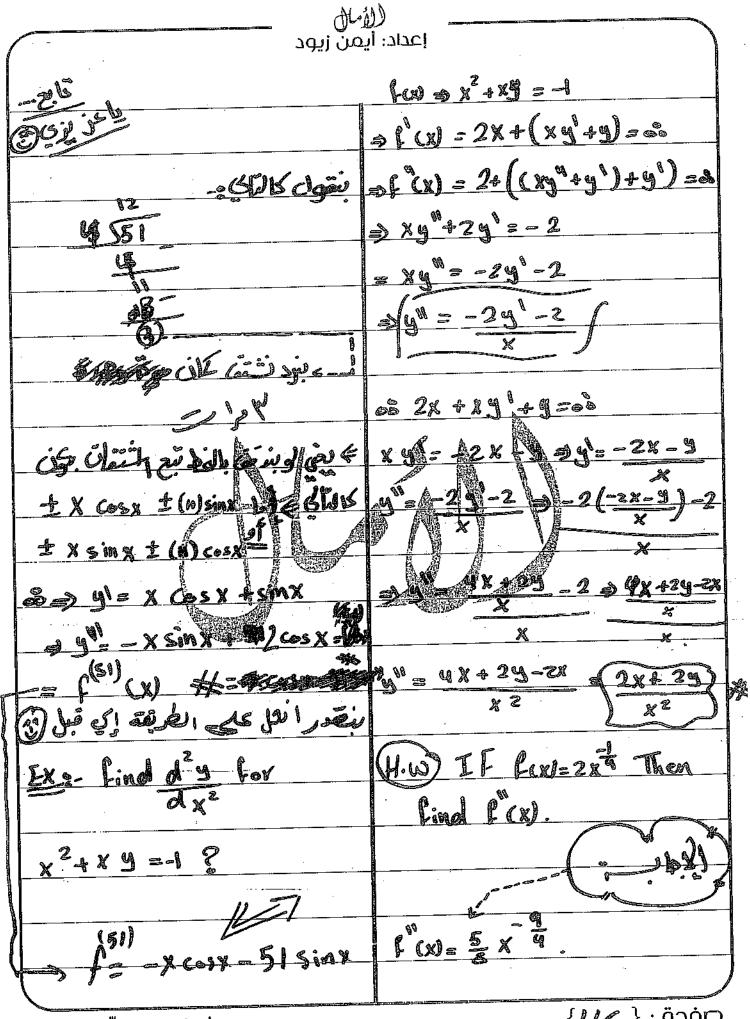
Scanned by CamScanner

((وُمال إعداد: أيمن زيود

| ش ریود                                                                                                         | ן פרור: ו"כ י                                         |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                | g · • • ·                                             |
| #Higher-Derivatives                                                                                            | i da                                                  |
| lla "lastit to                                                                                                 | Exs-find d (fix)) for                                 |
| · had, Clary &                                                                                                 | Exs-ring (A (F(X)) For                                |
|                                                                                                                | O X                                                   |
|                                                                                                                |                                                       |
| رمن في وي المنتقة بكانكان الأس المناه                                                                          | $f(x) = 2x^4 + 3x^3 + 5x^2 + 1$                       |
|                                                                                                                |                                                       |
| ع بكانيا له أي وتية (٢٠٠١) والم                                                                                |                                                       |
| n (2)/ nn 13) 30                                                                                               | 3 2 2                                                 |
| f" -> f(2) / => f" -> d 3(x)                                                                                   | $\Rightarrow -(x) = \delta x + qx + lox$              |
| d x 3                                                                                                          | $f'(x) = 24x^2 + 18x + 10$                            |
| => f" => d"f(x)                                                                                                | _                                                     |
| ⇒ F" ⇒ f → d fw                                                                                                | f"(x) = 48 x + 18                                     |
| dx                                                                                                             | F ( 48 44                                             |
|                                                                                                                |                                                       |
| ع الم يَعْلَقُ النَّهُ النَّهُ اللَّهِ | <b>745</b>                                            |
|                                                                                                                | Tyle Ciall old (ciax)                                 |
| (9)                                                                                                            | 745                                                   |
| Ex= find f Cx for                                                                                              | <b>7. A</b>                                           |
| P. S. S. S.                                                                                                    | . 10                                                  |
| $f(x) = 2x^{5} + 4x^{4} + 5x + 1$                                                                              | لا منا دنا كانت بافتة كبية كثير فلازم                 |
| $\Rightarrow f'(x) = 10x^4 + 16x^3 + 6x + 5$                                                                   | رُجُلُ لَالِدَيِّةِ .                                 |
| e <sub>m</sub>                                                                                                 |                                                       |
| => 1 (x) = 40x3+ 48x2+6                                                                                        | ع مي <u>ة إ</u> كار المنتقة -                         |
| = f (x) = 120x2+ 96x                                                                                           | الا ينفل ونشق على والى للاقة                          |
| naa a                                                                                                          | _                                                     |
| ⇒f(x) = 240 x + 96                                                                                             | ع اللاقة : أنع للا يو بع معك المقران                  |
| ≥f (x) = 240 = ×                                                                                               | تنسة ألا يكن سنيه الشنقات إ                           |
|                                                                                                                | 6                                                     |
|                                                                                                                | <u> </u>                                              |
|                                                                                                                | (745) فِي أَنْ النَّهُ النَّهُ فَي وَلَمُا لِلْحَدَةِ |
|                                                                                                                | 45)                                                   |
|                                                                                                                |                                                       |

خط : عبد الله دياك

{**//4**}: قعفت


((زُمل عداد: أيمن زيود

|                                                                                 | رروس<br>إعداد: أيمن زيود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| تابع                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The state of the s |
|                                                                                 | <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | الأشلة بنوى مسمة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $f(x) = \sin(x)$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ع لهيت معوفة نظ الاشتاق                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| =) f'(x) = (0)(x) = f'(x) = -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X Sin X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $f(x) = -\cos(x) = f(x) =$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 (X) = - COS(X) =) (X) =                                                       | The same of the sa | find f (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                 | J·(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = X 605 X+Slax dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| انتول كالناك اه                                                                 | (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= (-x \sin x + \cos x) + \cos x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 74                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - x sin x + 2 cos x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34                                                                              | ataria ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =(-x sin x + cosx) +cosx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3 2                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = x sig x + 2 cos x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24                                                                              | - (e <sup>(3)</sup> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-X COS X - Sinx) -25 inX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| المنتفع والما والما المنتفع الما المنتفع الما الما الما الما الما الما الما الم |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -X cos X + 3 sin X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| كالى 6 كىنىت موتن                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K SON E - ( XX e) - 3 Cos X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| الماقي كا بنشت ثلاث وات                                                         | ز = ا€ لاكان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X sim X =4 Cos x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| عنى ب بندارة زكاط مو.                                                           | (s) = (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (X cos x + sin x) + 4 sin x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x cosx + 5 sin x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 744                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{\partial}{\partial x} \frac{\partial}{\partial y} = \sin(x)$             | - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | هان بنوش لآنه تو تف بدخ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                 | Extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | الوالا قول كانت مستقة ما ي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| => d f = cos(x) *                                                               | ر المنسّة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ه الفطوع في ألك في هديد عن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| dx 795                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ا كامسة .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ·                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

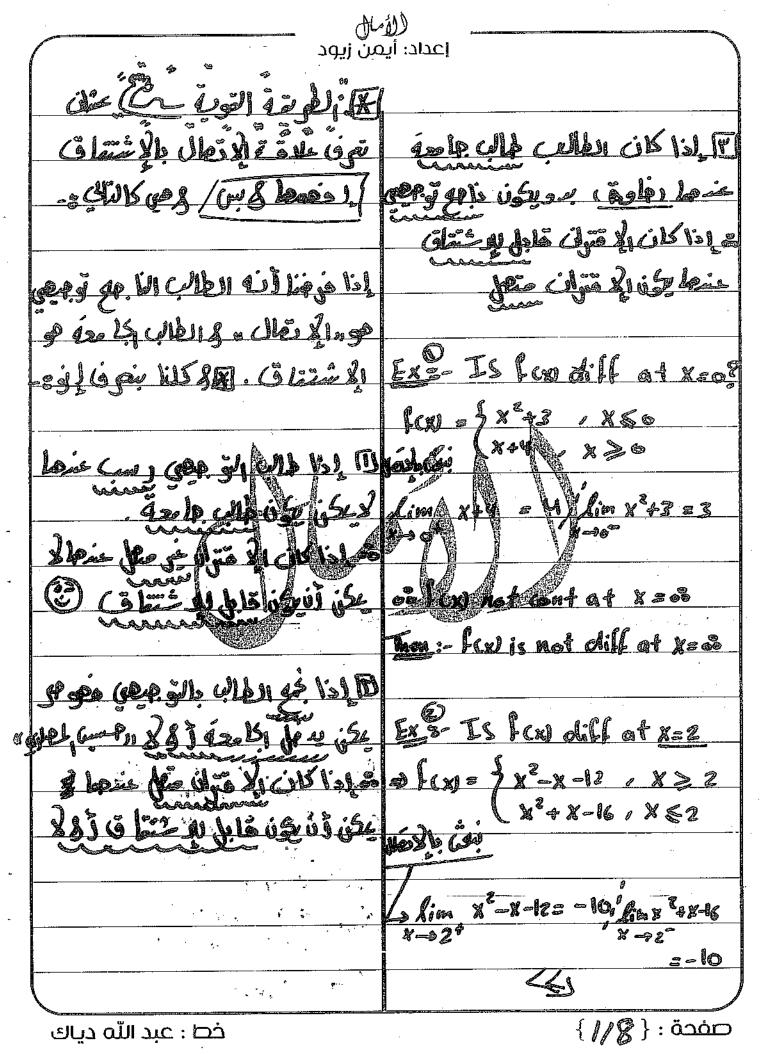
خط: عبد الله دياك

148<u>.</u> مكتبة حواطر

صفحة : { 115}



خط : عبد الله دياك


صفحة: { ١/١/

الأمال إعداد: أيمنّ زيود Differentia bility Ex = If x2+ y2= 19, Then Show that d'y = -19 \* قابلة المستقاق 8-=) 2x + 2yy =00 Thm =- The function fey) is  $\frac{3}{29} = \frac{-2x}{29} = -\frac{x}{9}$ diff at x=a if f'(a) exist وذاكا ن (عدا طبل لاشتقاق عنه الثلاثة  $\Rightarrow y' = -\frac{x}{4} \Rightarrow y'' = \overline{(y - xy')}$ (a) فإن المشتق عنه (a) تكن وجودة ¿ فكان صفط إلمّار في ( في ) لللا عن لؤ الي  $\frac{3c}{(X-)X-K)-z}$ Thung-O'E F Aco diff at x=q Then fex contrat x = a Offenset cont at x=a Then fix) not diff at x=a المالان ما علم لع شنقاق عس (ع) فأناب إحت إربان إنه (4) عَلَيْهِا (0) قلقارسة لمحتصرية المناك اغار (2) فان لا عرن غو مال لا تعتقال 111 الغرية أفكن سَال

خط : عبد الله دياك

مكتبة خو الطر

صفحة : { **/ [ / ا**] } ---



إعداد: أيمنّ زيود  $\Rightarrow f'(x) = \frac{1}{2}6x \cdot x < 1$ f(2) = -10, Then f(x) Cont at x=2, الآن نشق = f(x) = 52x-1, x>2 => f'(1) = 6 , f'(1) = 6 1618 (2x+1 , x<2 للإ تشقاقا 3 f'(1) = f'(1) 5 f(2) = 2(2)-1=3 : than f(x) is diff at [x=1] - f'(z) = Z(z) +1= (x) أغلى الأمثلة اللي الكور الأمثلن تهي ر به کاها منا مان ع إذا مكالل المية الكانية Exelo 13x / X SI للا شتقاق عنه ما ينعكي :f(x) = (6x-3, x>1 = lim & = f(a) = f(a) Is f(x) diff at x=1نعني بالإتصال: \$ lim 6x-3 = 3 F(1)=3 f(x) & f \  $\lim_{x \to \infty} 2x^2 = 3$ X-1as far cont atx=1 f(7): d.n.e

خط : عبد الله دياك

<del>152</del> مكتبة **خ**واطر

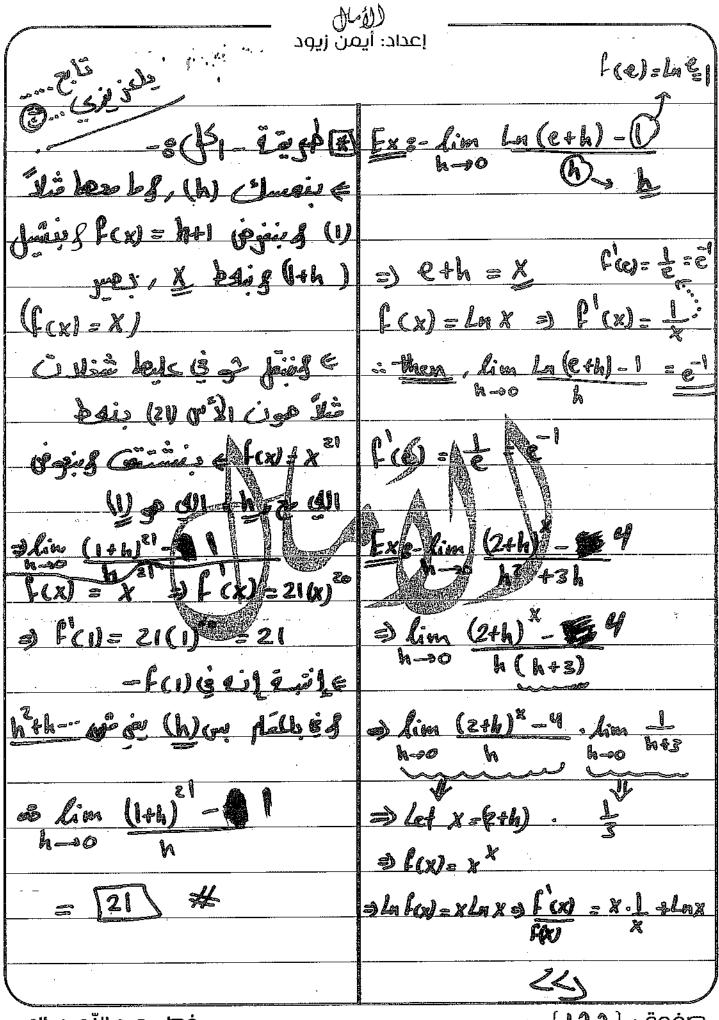
-صفحة : { ۱۱۹ }

َ إعداد: أيمنّ زيود Ex=- If fcw is diff at 1(x) = \(\frac{1}{4} \) = \(\frac{1}{4} \) = \(\frac{1}{4} \) = \(\frac{1}{4} \) [X=1], Then find the value of asb? If fouldiff at x=2 find 3fa) = \ \ ax2+bx, x \le 1 a, b 3 Resignation de proposition de propos  $\lim_{x\to 1^+} ax^2 + b = \lim_{x\to 1^+} 3x^2 + bx$ =) 4 - 16 (8/4)a(2) = 9(4)-b(2) Charles 1 x < 2 المرابعة المنافقة af(z) = f(z)  $\Rightarrow f'(x) = \begin{cases} 2\alpha x & -x > 1 \\ 6x + b & x < 1 \end{cases}$ = -3 b (4) + a = 2 a(z) - b 3 11 b +3a = 3, 6 = -11 بالوفي بالأول \$ 2a(1) = 6(1) + b 3 2(3)(1) = b+6 6-6-6 3 6= 8 \* 3

خط : عبد الله دياك

صفدة : {120}

الأمال


|      | يعدري |        |
|------|-------|--------|
| زيود | أيمن  | [בבוב: |

| 3*/4-6b-2(-11b)==                           | -za+b = -4b+a                                                                                                  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| → 12-18b+22b=00                             | =) -3a = -5b                                                                                                   |
| => b=-3                                     | = b= 3 a (2)                                                                                                   |
| : a= -11 (3) => a=+11 #                     | مِنْ اللهِ فِي اللهِ عِنْ اللهِ ع |
| 3                                           | 23b -za=1                                                                                                      |
| Ex:- If few is diff at [x=+]                | = (3 a) - 2a = 1 / *3                                                                                          |
| Then, find the values of (a, b)             | =) Ba - 10a = 5                                                                                                |
| <u> </u>                                    | = 1/a = 3/                                                                                                     |
| =>f(x)= \ ax2+bx+bx+b-1<br>(2bx2+ax ) x <-> |                                                                                                                |
| (26x +ak / KS-)                             | المنتقار في عند المنتقاد                                                                                       |
| =) Lim ax2+bx+1 = Lim 2bx2+0x               |                                                                                                                |
| (X-21+                                      | f(x) = lim f(z) - f(x)                                                                                         |
| =) a-b+1 = 2b-a                             | 2→x <u>5-x</u>                                                                                                 |
| =>Bb-2a=1                                   | => lim f(x+h) - fcx)                                                                                           |
| •                                           | h→0 h                                                                                                          |
| f'(x) = { 2ax +b / x > = 1                  | ,                                                                                                              |
| f'(-1) = f'(-1)                             |                                                                                                                |
| <b>Y</b>                                    | · · · · · · · · · · · · · · · · · · ·                                                                          |
| => 2a(-1) +b = 4b(-1) +a                    |                                                                                                                |
| 3 - 20 + b = -4b+a                          |                                                                                                                |
|                                             |                                                                                                                |

خط : عبد الله دياك

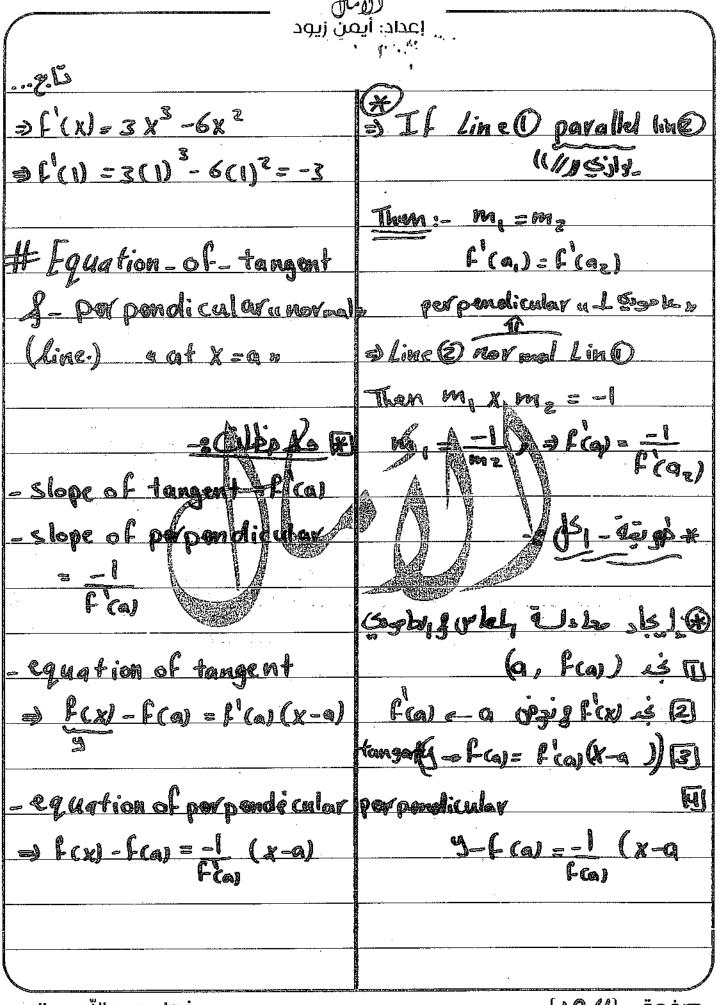
154 أ مكتبة خواطر

{**121**-}: قعف



خط : عبد الله دياك

 $\{122\}: \ddot{a}$ 


155

الفائل إعداد: أيمنّ زيود =) f(x) = f(x). (1+ Lnx) =) f'(x) = xx ( HLnx) (3+h) - 4 2h 2 - 3h  $= \int_{1}^{1} (z) = (2)^{(2)} \cdot (1 + Ln 2)$ = 4+ Lnz => lim f(3+h) - f(3) h->0 P=5=4 h(zh-3) (z+h)x- 4) o lin f(3+h) - f(3). lin h-00. (4+Lnz) 26) -3 => (4+Ln2). Exp. Find lim f(311-4)
h-0 21-31 if (-cz) = 4 Ex: f(x+h) = 3 x3 h-6x2 h+fr a) = f f (3) b) = f (3) find f'(1) d) \( \frac{1}{2} \) \( \frac{1}{2} \) ⇒ f(x+h)-f(x) = 3x³h-6x³ => f(x+h) - f = h(3x3 - 6x3) =) lim f (3th) - 4  $\Rightarrow F(x+h)^2 - f(x) = 3x^3 - 6x^2$ ZhZ-3h =)  $\lim_{x \to 0} f(3+h) - f(3)$  $\lim_{x \to \infty} \frac{f(x+h)-f(x)}{f(x)} = \lim_{x \to \infty} 3x - 6x^2$ h-0 h(2h-3) 4

خط : عبد الله دياك

156 مكتبة خو اطر

صفحة : { **123** 



خط : عبد الله دياك

 $\{124\}$ : and

157

﴿ (لُمُـالُ إعداد: أيمن زيود

| ן אבוב: וגַסט (גַפָּב                                                       |                                                                 |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|
| ﴿ فِي هَاكَ تلاص إِقْمَ النِّي                                              |                                                                 |
| Fax // 900 -8 ; bai                                                         | ⇒ Slope of tangent = -TT                                        |
|                                                                             | © 4 2 perpendicular = 1                                         |
| عندطه يون چې الله معالمي الله معالمي الله الله الله الله الله الله الله الل | 6                                                               |
| f(a) = g(a) $f'(a) = g'(a)$                                                 | equation of tangent  => y - y (正) = f'(王) (X-王)                 |
| J F (M)= J (M)                                                              | => y =- \(\(\frac{\x}{\x}\)                                     |
| Ex: find the equation of                                                    | シリニーマメナガ2                                                       |
| tangent & perpendicular                                                     | @ Equation of perpendicular                                     |
| & Slope                                                                     | 의 4-4(토) + - (X-토*)                                             |
|                                                                             |                                                                 |
| y= x Sin(数at k=要<br>y(更) = 更 Sin(更)                                         | ⇒ (本-直)⇒(元-1)                                                   |
| J T . Sin TT = 08                                                           | Exe-ex+ex at x=Ln3                                              |
| y' = 2x cos (x)+ sin (xx)                                                   |                                                                 |
| y'(基) = 2(基) cos(2.基)+                                                      | $y = e^{x} + e^{2x}$ $= ln3  2ln3$ $= y(lne) = e  + e$          |
| Sin (5. I)                                                                  | => 3+(3) <sup>2</sup> => 3+9=[12]                               |
| 3 T. (05 (T) + Sin T = -T                                                   | $y' = e^{x} + 2e^{x} \Rightarrow y' (\ln 3)$ $l_{13} = 2 \ln 2$ |
|                                                                             | = e <sup>3</sup> +2e <sup>3</sup> = 3+2(3) <sup>2</sup>         |
|                                                                             | 当 3 + 2(q) = 包]<br>(公                                           |

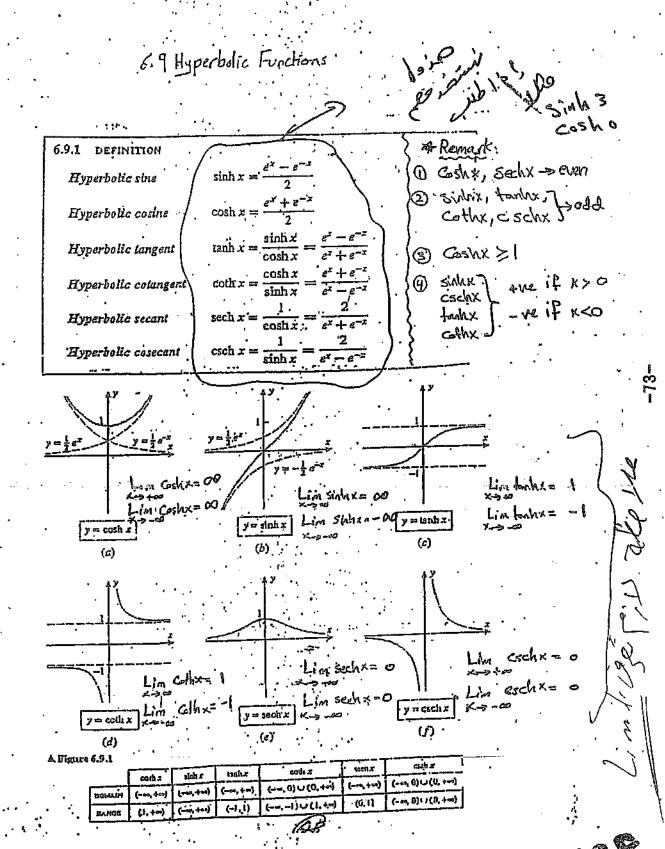
خط : عبد الله دياك

158 مكتبة خواطر <u> (125 ؛ قعف</u>

الأمال إعداد: أَيْمَنَّ زيود ≥0 at (√5,0) 2x + 29y 2 08 3y = -X ES slope of tangent = 21 \$ slope of perpendicular= 1 = y'(15,0) = -15 a slope of tangent = - 10 a equation of tangent Esequation of tangent d X=15 s y-12 = 21(x-Ln3) B equation of perpendicular 3 4-12 = = L (x-1) 26+ 60, VE -X 9'61/5) = = (21-10) a (shop) if it the in stope of targent = 3 9= fcd Ully is equation of tengent = y=15 we (stop the line of the chapethe to (T00000000000000000 .. (X = a) Elsh cisi Exz-x2+y2=5, find the slope sequation of tangon for (VE,0) & (0,15) 

خط : عبد الله دياك

 $\{126\}:$  and one


((زُمال إعداد:-أيمن زيود

| إعداد: آيمن زيود           |                                   |               |
|----------------------------|-----------------------------------|---------------|
| القالات القالات            |                                   |               |
| (horizontal tangent) click | 2                                 | if x e To, zi |
| ·                          | =) 4'= 1- 2 sin x = 08            | ':            |
| -8 /5 1 a ch c             | 3 2 sinx = 1 3 si                 | n×==          |
| بفد المثنة فيساويه بالعض   | X= T, 5 T                         | っ sin eiz     |
| بغد المتتة فيساويه بالعض   | ربع الني ربع أول                  | reis vego     |
| لا بن قع بن قيم ولا الله   |                                   |               |
|                            | 9 y = x - 2 cos x                 |               |
| Ex find all values of x    | y \$ 1+ 8 sin x = 8               |               |
| at which the tangent line  | 3 Sin X= -1                       | لأن إلان م    |
| of the curve y harizontal  | XETT, ILT                         | حون بال       |
| 0 4 = x3-27x+4             | ع راج کراچ کال کے                 | 1             |
| y'=3x2-27=8                | 2                                 | -14.0         |
| =) 3 (x2-q) = 08/0 X2-q=0  | $6y = \frac{x^2 - 3}{3x + 4} = 7$ | 33,           |
| ⇒ X= { x ± 3 }             | <i>J</i> .                        | 1.50          |
|                            | ⇒ y'=(3x+4). Zx -(                | x -3)3=8      |
| @ y = x ex                 | (3x+4) <sup>2</sup>               |               |
| = 4x3ex+xex=08             | بعالم في المناوية والعنو          | ۽ يتوخذ بس    |
| => exx3(4+x)====           | إذايادي منفر                      | لأنه القام    |
| 3 X3 3 X+4=08 - X= 20,-4   | الانطانة ( ١٥٥)                   | ج لل و        |
| حُط: عبد الله دباك         | 160.                              |               |

خط : عبد الله دياك

مكتبة خواطر

<del>[1**27**] : ق</del>عفت



Range Fasha
(-1,1)

```
6.9.3 THEOREM

\frac{d}{dx}[\sinh u] = \cosh u \frac{du}{dx} \qquad \qquad \int \cosh u \, du = \sinh u + C

\frac{d}{dx}[\cosh u] = \sinh u \frac{du}{dx} \qquad \qquad \int \sinh u \, du = \cosh u + C

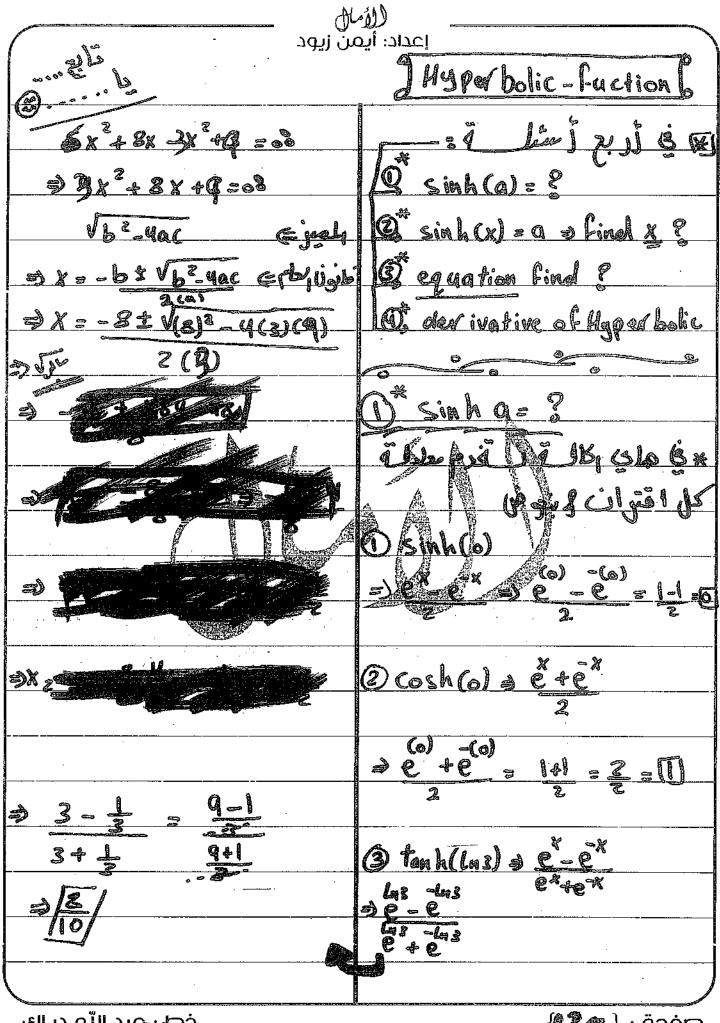
\frac{d}{dx}[\coth u] = \operatorname{sech}^2 u \frac{du}{dx} \qquad \qquad \int \operatorname{sech}^2 u \, du = -\coth u + C

\frac{d}{dx}[\operatorname{sech} u] = -\operatorname{sech} u \tanh u \frac{du}{dx} \qquad \int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C

\frac{d}{dx}[\operatorname{sech} u] = -\operatorname{sech} u \tanh u \frac{du}{dx} \qquad \int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C

\frac{d}{dx}[\operatorname{sech} u] = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx} \qquad \int \operatorname{csch} u \operatorname{coth} u \, du = -\operatorname{csch} u + C
```

## 6.9.2 THEOREM


 $\cosh x + \sinh x = e^x$   $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$   $\cosh^2 x - \sinh x = e^{-x}$   $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$   $\cosh^2 x - \sinh^2 x = 1$   $\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$   $\sinh(x - y) = \sinh x \cosh y - \cosh x \sinh y$   $\cosh^2 x - 1 = \operatorname{csch}^2 x$   $\cosh^2 x - 1 = \operatorname{csch}^2 x$   $\cosh^2 x - 1 = \operatorname{csch}^2 x$   $\cosh(-x) = \cosh x$   $\cosh^2 x + \sinh^2 x$   $\cosh(-x) = -\sinh x$   $\cosh^2 x = 2 \sinh^2 x + \sinh^2 x$   $\cosh^2 x = 2 \sinh^2 x + 1 = 2 \cosh^2 x - 1$ 

$$sinh^{2}x = \frac{Cosh(2x)-1}{2}$$

$$Cosh^{2}x = \frac{Cosh(2x)+1}{2}$$

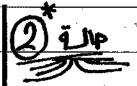
102

.162 مكتبة حو اطر 129



جصّ عُلْد الله دتاه

صفحة : { ﴿ إِنَّ اللَّهُ اللَّلَّا اللَّهُ اللَّا اللَّهُ اللّ


163

((رُبُمَالُ `` ' ا إعداد:-أيمن زيود

$$\frac{2}{e^{45} + e^{465}} = \frac{2}{5 + \frac{1}{5}}$$

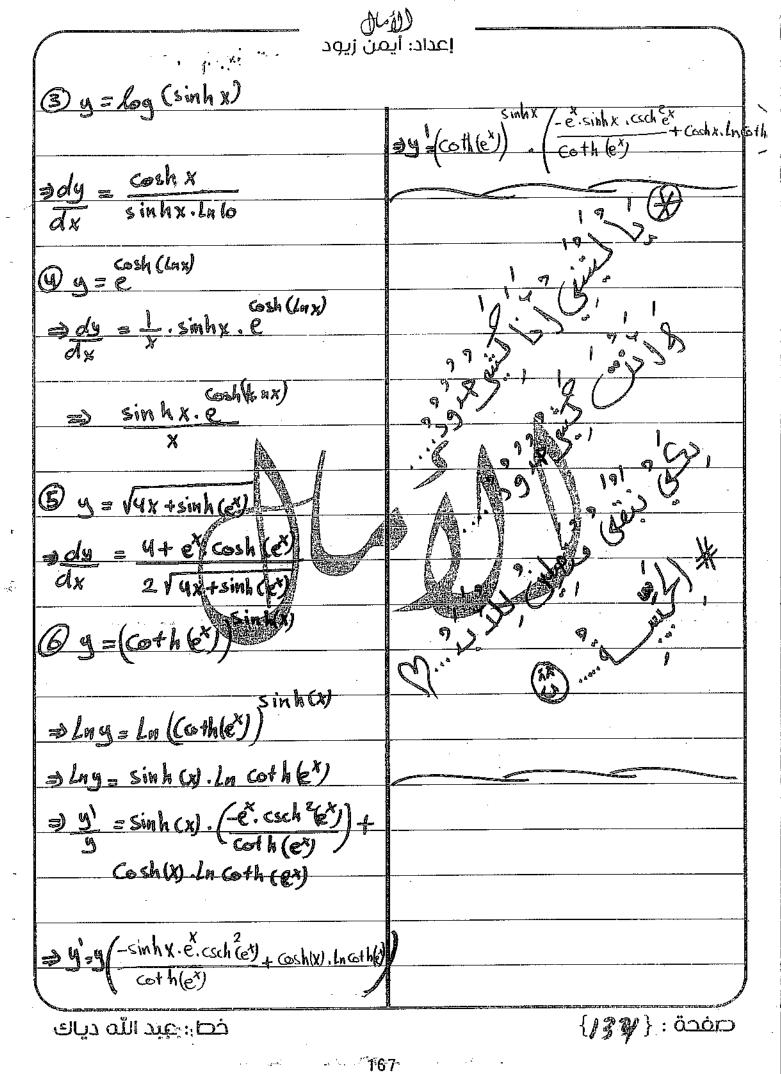
(b) cot (2lnx) = 
$$\frac{e^x + e^x}{e^x - e^x}$$

$$\frac{x^2 - x^2}{x^2 + x^2}$$



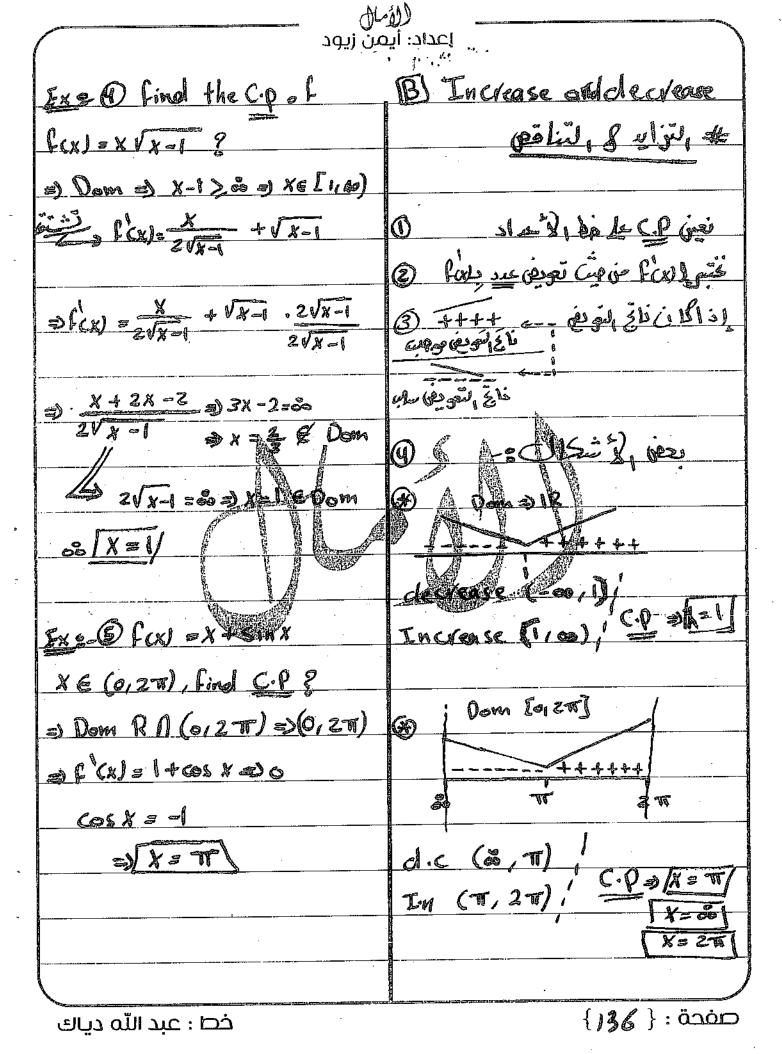
## El sinh x = a , find « All of the other Hyperbolics functions n

$$\cosh^2 x - \sinh^2 x = 1$$

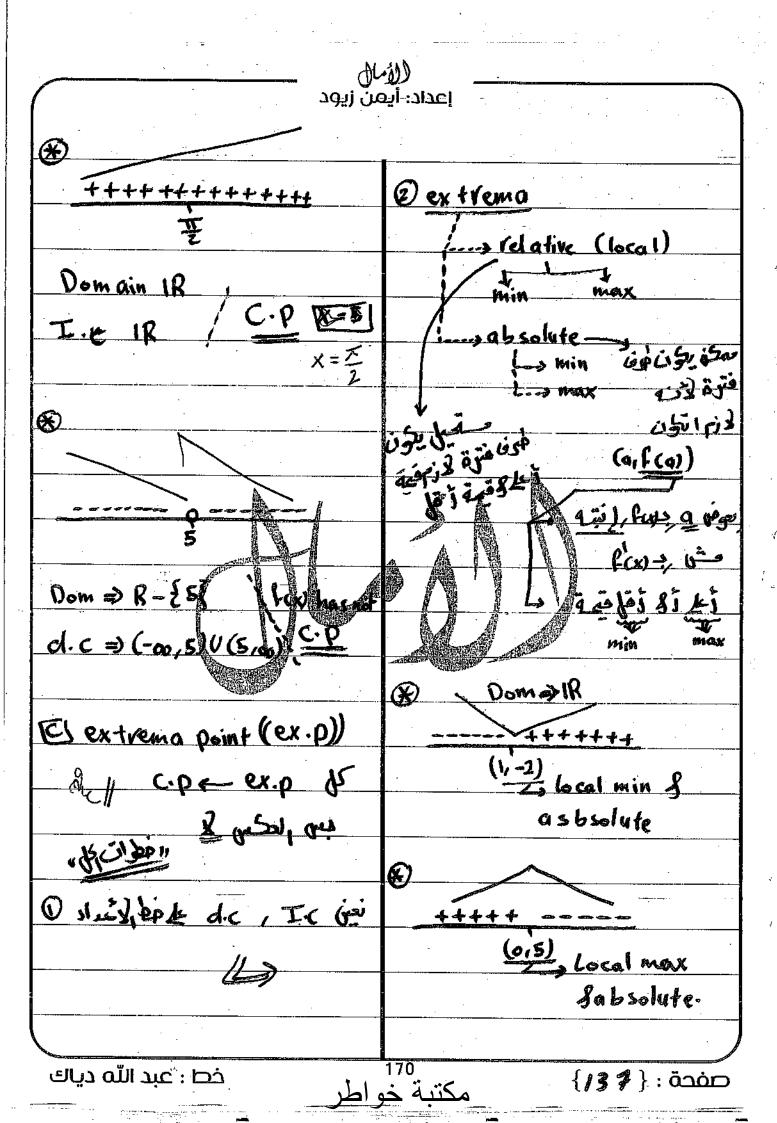


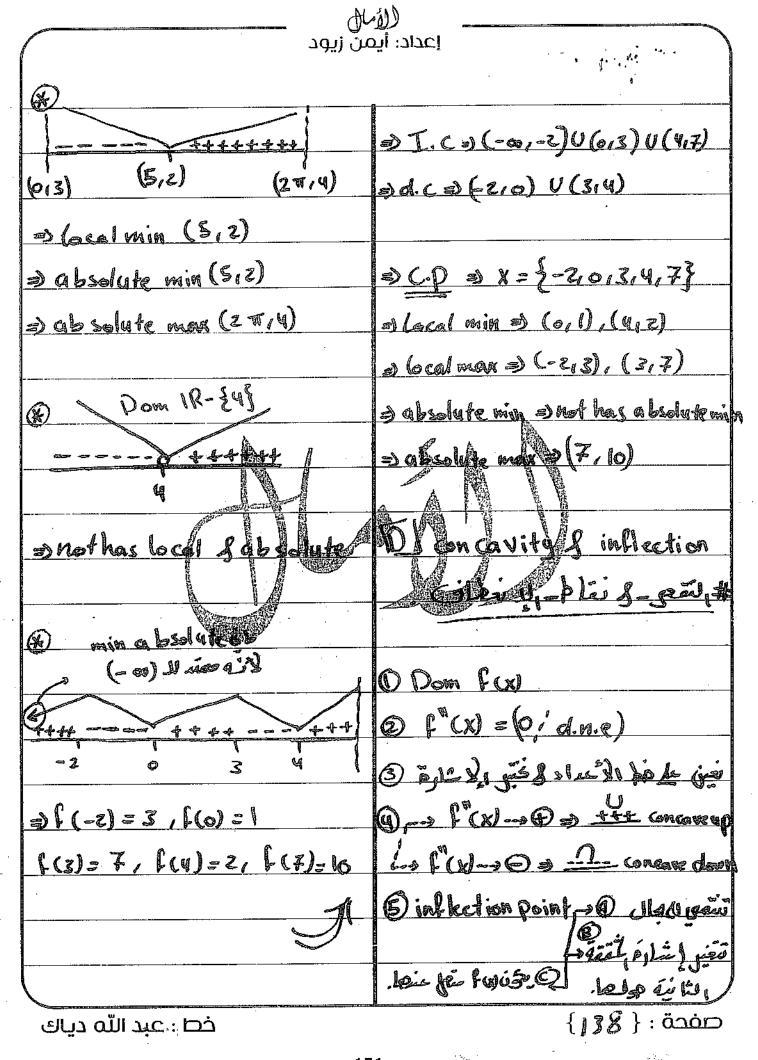

165

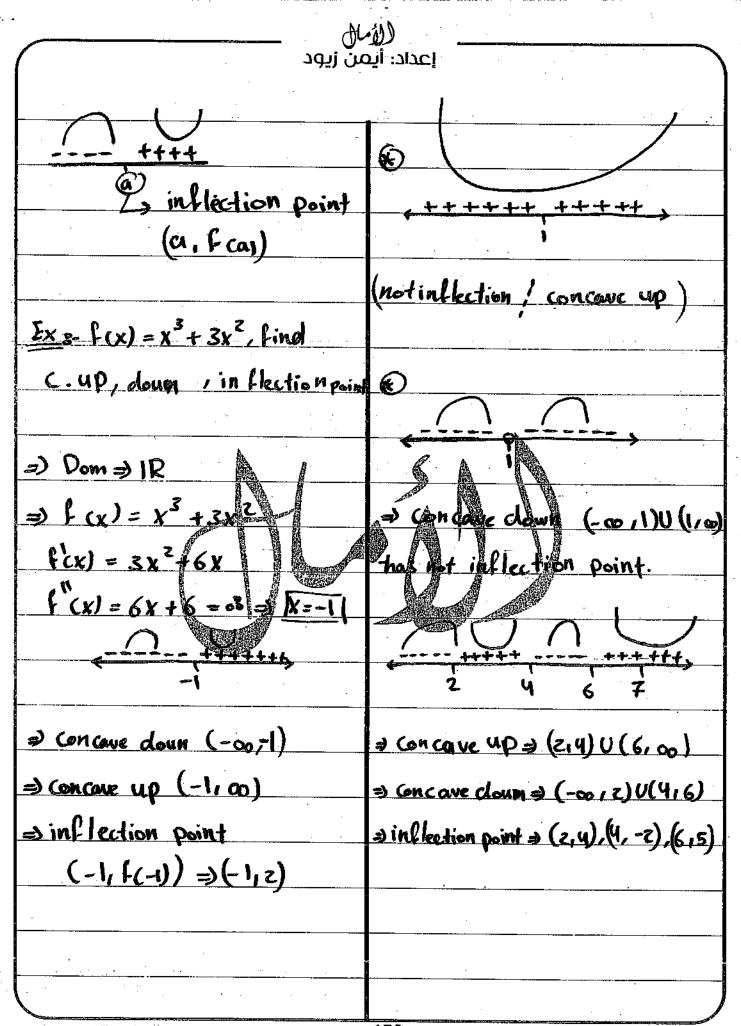
(الأمال إعداد: أيمنّ زيود 3 sin hx - ex = -3, find x ? equation قيلمنكارة على المعدلة عن عن عن المعدلة المناسكة =3 ولا عن عن المعدلة ألمن تنظ عر متابقات  $\Rightarrow e^{x} - e^{-x} - e^{x} = -3$ 1 sinhx + cosh x = 4, find x & => -ex = 3 => ex =+6 ع تنالحة و٢ = 43 Lnex = In & = Ln+6 = -x = Ln+6 > X=-L+6=) X=/Ln =/\* @sinhx + e 4 derivative:final dy => et-ex+ex=3 0 y = cosh (5 x-4) = dy = 5 sinh (5x-4) ≥<u>e</u> =3 = e = 6 2 y = sech (x5) => Lnex=Ln6 => K= Ln6/dy = -5x4 sech (x5). +anh (x5) خط: عُبد الله دياك


مكتبة خواطر

{**133** } : قعفت





٬۰٬ مكتبة خواطر


| di-                                                                                     | ا الله                                      |
|-----------------------------------------------------------------------------------------|---------------------------------------------|
| Application of Differentable                                                            | וְאַבוּב: וֹֹעֵב                            |
| # دَلْمِيقَانَ عِلَ - (لِمُستَقَاقَ.                                                    |                                             |
| [A] critical point.                                                                     | Function, $f(x) = x^3 - 3x^2$ [1,4]         |
| النقاء ألحي على المالة                                                                  | Dom => 1RN[1,4] => [1,4]                    |
| () F(x) => Domain                                                                       | Ex f(x)=3x²-6x                              |
| 2) critical point (f'cx) final x                                                        | =) 3x2-6x=60,> x=63 & Dom x                 |
| fix)=dn.e                                                                               | x(3x-6)=&> x=z ∈ Dom r  ->> x=1 [ (igh)     |
| (جا المغلمة المعنى المعالى» (ع) المعالى» (ع)                                            | خترة ال × × × × × × × × × × × × × × × × × × |
| <u> </u>                                                                                | Exe-10 f(x) = \$ / find C.p?                |
| بشى طائل تكن لمين فترة عناقة.                                                           | =) f'(x)= -1~ =) x == ==                    |
| Ex 2-0 The function                                                                     | x²<br>⇒ X=80 € Domain                       |
| $f(x) = x^3 - 3x^2, find C.D.g.$                                                        | os fix). not has C.p of fix                 |
| => Dom FCV=1R                                                                           |                                             |
| $=)\frac{G_{\infty}}{2\pi} f(x) = 3x^{2} - 6x$                                          |                                             |
| ⇒ X(3x-6)=%                                                                             |                                             |
| $\begin{array}{c c} X = 86 & 3x - 6 = 3 \Rightarrow \boxed{X = 2} \\ E & E \end{array}$ |                                             |
|                                                                                         |                                             |
| خط: عَيْدُ اللّه دياك                                                                   | 168                                         |
| واطر                                                                                    | 168 مکتبة خر<br>مکتبة خر                    |



169







خط: عبد الله دياك

172 مكتبة خو اطر

صفحة : { 139 }

إعداد: أيمنَّ زيود # إخاد\_ المعاهيل = f(x) = 2ax-b=2a(z)-b=63 Clatine 1/3/6/5/10 = 14a-5=8/0 مدرات به المعالى المدى كالوق extrema, critical, local به علاد انتخارني الأوكاناي مو. = (a) S-AP (= f'(x) = =3 3-4a=4 3/a=-1/ inflection dist, & escil [b=-4] # 3-4/4 2-4 (150 → f"(x)=3 1 (a,fa) CUS Lil Little O/((x) = -Dom f(x) → R-{±1} Ex:- find the constant (a,b) => (x) =) (x2) (1-x) (xx) - x 2 (2x) Ns-1) S for f(x) = ax 2-bx such = -2X - X 2112 that (2,4) extrema point > f(z)=4 > a(z) 2 = 4  $f'(x) = \frac{x^2-17^2}{-2x} = f'(x) = 8$ => Ma-2b=41-0 3-7x=3 -> X=3 E Dom 30-5(x)=dne =)(x2-1)2-08 X= 11 dpom =

خط : عبد الله دياك

{146} : äain

((رُمَال إعداد: أيمن زيود

| =) 05 Then Witical point                                                                     | =) f (x) = 63                                            |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| (o, f(0)) = (0,0)                                                                            | =)6x <sup>2</sup> +2 + 68 = 5+ x 6 ==                    |
| =) f(u) = +++ +++                                                                            | f"(x) = d.n.e                                            |
| -1 0 1                                                                                       | $(x^2-1)^3=00 \Rightarrow x=\pm 1 \notin Dom$            |
| in creasing (-00,-1) U (-1,0)                                                                | (tr p p tttt)                                            |
| de creasing (0,1) U (1,00)                                                                   |                                                          |
| =) Net towal Sabsolute ming                                                                  | Com Cove up (-00/-1)U (1:00)                             |
| absolute max flocal                                                                          | Contave Hown (-1,1)                                      |
| local min attso                                                                              | FCN net has Inflection point.                            |
| => f(x) = (x-1) (-2) + 2x) + (2x-1) x-1                                                      |                                                          |
| (x²-1) <sup>4</sup>                                                                          | O. PEXT = SINX - COS X, SO, F)                           |
| => f(x) = 2(x2-1) = (x2-1)+4x2                                                               | 3 Dom RA [O,T] 3 [O,T]                                   |
| (x 2-1) 4                                                                                    | $\Rightarrow f'(x) = \cos x + \sin x$                    |
|                                                                                              | $\Rightarrow f'(x) = 0 \Rightarrow \cos x + \sin x = 0$  |
| $= \frac{1}{(x^2 - 1)^3} = \frac{2 \left[ 4 x^2 - x^2 + 1 \right] = 6 x^2 + 2}{(x^2 - 1)^3}$ | $\Rightarrow$ $-\cos x = \sin x \Rightarrow \sin x = -1$ |
| (x <sub>5</sub> -1) <sub>3</sub> (x <sub>5</sub> -1) <sub>2</sub>                            | = tanx = -1                                              |
| 117                                                                                          | $X = \frac{3\pi}{4} \Rightarrow ++++$                    |
|                                                                                              | 0 3 <u>4</u> 4                                           |
|                                                                                              | د کی                                                     |
|                                                                                              | <i>)</i>                                                 |

خط : عبد الله دياك

مكتبة خواطر

صفحة : { ۱۲۱}

خط : عبد الله دياك

{142 } : قعفت

((رالمال) إعداد: أيمن زيود P"(x)=-zex+xex =) e x (-2 +x) = 08 إذا كا نسك المشتة الأوك من المعطفا) وق =) ex + 68 /-2+X=08 = X=2 المنتقة النانية مذا المنتق النانية عند النظة (٤) وَاللَّهِ النظمة (٤) وَاللَّهِ ونا عِنْ يُولُ لِنُولُهُ إِمِنْ مِنْ مِنْ لِكُولُ إِلَيْكُولُ إِلَيْكُولُ إِلَى الْمِنْكُ الْمُعْلَمُ - concorredown (-co,z) (c) 2000 8 (c) (1) que 20 8 (c) -concave up (2100) inflection point ( ) ( (2) النتية = أجمع عد جميم  $=(2,2\bar{e}^2)$ أكبي في المهر Ca50 (0) # The \_ Second clear vative. test ' Ex=-F-(x)=4x3-48x+4 First (ocal ex trema point => Suppose 1"(x) is cont by using the second derivative test. near E 0 f'(c)=& f f'(d)>o then => f (x)=12 x 2-48=3 thas local minat C => 12 (x2-4) === == X = ] 21 (= @f'(c) = 3 ff (c) < 0 then f = ) f (x) = 24 x => 1/2 (2) = 48 >0 - min local has boalmax at c P'(2) =- 48 CO max local. خط: عبد الله دیاك صفحة : { 143

ر ماسم و بسال ١٠ ما بنال مالولا ١٠٠٠ ما بنال مالولا ١٠٠٠ ما بنال مالولا ١٠٠٠ ما بنال مالولا ١٠٠٠ ما بنال مالولا WIII f  $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{g_0}{g_0} = \frac{g_0}{g(x)} \Rightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f(x)}{g(x)}$ # Engine- Leam  $\frac{Lx}{x\to 0} = \lim_{x\to 0} \frac{e^{x}-1}{x} = \frac{8}{8} = \lim_{x\to 0} \frac{e^{x}}{1} = \frac{1}{1} = 1$ الكن الدود ، ال نشت  $2) \lim_{X\to 0} \frac{X-\sin(X)}{x^3} = \frac{8}{8} = \lim_{X\to 0} \frac{1-\cos(x)}{x^2} = \frac{8}{8} \quad \text{SPIPE Give} \in$  $\frac{2 - \delta}{1 + \delta} = \frac{\sin(2s)}{6 \times 1 + \delta} = \frac{\cos(2s)}{6 \times 1 + \delta} = \frac{$ 3  $\lim_{X \to -1} \frac{x^2 - 1}{L_h(3x + 4)} = \frac{60}{00} = \lim_{X \to -1} \frac{2x}{3} = \frac{-2}{3}$ 11 = 8) Dim X = 00 = Lim = Lim = Lim = Zero

X -> 00 ex = 00 x -> 00 x  $5) \lim_{X \to \infty^+} \frac{\ln x}{x} = \frac{\infty}{\infty} \quad 6 = \lim_{X \to \infty^+} \frac{1}{x} = \frac{1}{x^2} = \lim_{X \to \infty^+} \frac{1}{x^2} = \frac{1}{x^2} = \lim_{X \to \infty^+} \frac$ 

> ۱۲۲ مكتبة خواطر

(144)

$$\frac{\text{(1)} \ \text{Lim} \ \ x^3 - 2x + 1}{x \to 10} = \frac{10}{4x^3 + 2} = \frac{10}{12x^2} = \frac{10}{4x^3 + 2} = \frac{1$$

[10-0] [10-0] [10-0] [10-0] \*\*

عَنَمُ لِذَا بُنَ بِطَ مَكُمْ إِذَا نُن بِطَ مَكُمْ الْحُالُ فِيثَ يَعِبُ زُعِي الْحُونِي عَلَى الْمُونِي عَلَى الْمُونِي عَلَى اللَّهِ اللَّهِ اللَّهِ عَلَى اللَّهُ عَلَّهُ عَلَى اللَّهُ عَلَّ اللَّهُ عَلَّا عَلَّهُ عَلَّهُ عَلَّهُ عَلَّهُ عَلَّهُ عَلّه

$$0.00 \Rightarrow \frac{0}{\frac{1}{0}} = \frac{0}{0} \qquad \text{find} \qquad \frac{0}{0} = \frac{0}{0} = \frac{0}{0}$$

$$\lim_{X \to \infty} \frac{X}{eX} = \frac{\infty}{\infty} \xrightarrow{\text{Lim}} \lim_{EX \to \infty} \frac{1}{eX} = \frac{1}{\infty} = \frac{1}{100} = \frac{1}{$$

مكتبة خواطر

(145)

$$\frac{E_{X}}{E_{X}} \lim_{X \to 0^{+}} \frac{X \ln X}{1} = 0.00$$

$$\frac{E_{X}}{E_{X}} \lim_{X \to 0^{+}} \frac{1}{1} = 0.00$$

$$\frac{E_{X}}{E_{X}} \lim_{$$

图 a) 181 י אונה י 100, 100 - किंग्रे हैं। उंदे के عِنْ إِلَى إِلَى إِلَى إِلَى اللَّهِ عَ- إِلَى نَوْنَى طَدَا اللَّهِ إِلَى إِلَا (Lm) إِلَا اللَّهُ اللَّهِ اللَّهِ اللَّهِ عَالَمُ اللَّهِ اللَّهُ اللَّ الط المون المفاحل ا Piels piemis & g (per U (Ln) iplice . فَالْمَا يَّ الْمَالِيَّةِ (Lim(Kny) عَبْ الْمَالِيَّةِ الْمَالِيَّةِ الْمَالِيَّةِ الْمُالِيَّةِ الْمُالِيَ (Ble 10/81) أطابحال العافى عدن سارمني

Lim 
$$(1+ax)^{\frac{1}{x}} = e^{\frac{1}{x}}$$
 All  $\frac{1}{x}$   $\frac{1$ 

5 #Engine-team,  $\frac{Ex}{x \to \omega} \lim_{x \to \infty} (1 + x^2)^{\frac{1}{2} \ln x} = \infty^{c}$  $\Rightarrow \lim_{X \to \infty} \frac{\ln(1+x^2)}{\ln(x)^2} = \frac{\infty}{\infty}$  $\Rightarrow \lim_{\chi \to \infty} \frac{2\chi}{1+\chi^2} \Rightarrow \lim_{\chi \to \infty} \frac{2\chi^2}{1+\chi^2} = \frac{1}{1+\chi^2}$ 65 (a.) المراقع المحاري Ex Lim (sing) Tinx  $\frac{2 \operatorname{Lim}}{1 - 80} = \frac{3 \operatorname{Ln} \sin x}{2 \operatorname{Ln} x} = \frac{00}{00}$ y = (sink) fink (ségai  $\ln \sqrt{|\psi\rangle}$   $\ln y = \ln \sin(x)^{\frac{3}{2nx}} = \ln y = \frac{3}{\ln x} \ln \sin(x)$ د منه الهنا  $\Rightarrow \frac{3 \times * \cos(x)}{\sin^2(x)}$ لوزل إسطارية.  $\Rightarrow \lim_{X \to \infty} \frac{3x}{\sin(x)} + \lim_{X \to \infty} \cos(x) \Rightarrow 3(1) = \mathbb{B} \downarrow 0 + \mathbb{A}$ 

> (148) مكتبة خواطر

10 Lim sin ax)  $\frac{-\lim_{x\to 8} bx}{\sin(ax)}$ Lim bx stim bx tan(ax) x-s bx X -> 8 χb ع. والعا ع.واريط \*स्थि العالع د 19491 مكتبة خواطر

الأمال إعداد: أيمنّ زيود de joli etaj X COSX + SINX Ex Lim Sec 3 x Cos 5 X (x (-sin + cos x) + cosx = Lim GS SX N = E GS 3X L'H <u>-5 sin 5x = -5 (1)</u> -3 Sin 3 X Lin Cose & = 5 (1 - (3)) = lim ( fin = +) e0(1-0) 2 (00) x 30° XSin X = lim \_\_\_GSX X 30° CXGSX+SINX) =iV &p خط : عبد الله دياك {150}: aaio

183-

راؤمال عداد: أيمان أيوا

| مِنْ زيود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ן בבוב: וע                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| - 1X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / / / / / / / / / / / / / / / / / / /                               |
| For Lim 5-4X<br>x-30 3x-2X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ex Lim Can (VX)                                                     |
| ×->0 3×-2×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X-3 00                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = tan-1 (Lim XX) 00                                                 |
| CH 1-1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= tan^{-1} \left( \lim_{x \to \infty} x^{x} \right) \frac{CH}{CH}$ |
| CH 1-1 = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X+000                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| lim 5"ln5-4"ln4 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y=xx = Lnx                                                          |
| x-30 3 Ln3 - 2 Ln 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| 0 0/13 = 2 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cim Inx + sol                                                       |
| Ln5-ln4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 790 X                                                               |
| Control Contro | 9                                                                   |
| 603 - Ln2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ ⇒ e <sup>0</sup> =1.                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 LA-1 CM 175 1                                                    |
| N. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| Ly Lin (XXX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
| X 3800 / 4 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |
| / x41 \3 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| = Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| X-300 / X+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                   |
| = lim (1++)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
| X+00 1+2 X-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |
| - Zim ()+ Z) ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| _ 30 _ 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |
| 6 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |

خط : عبد الله دیاك

184 مكتبة خواطر

{\f\ }:äaoo



18<del>5</del>

إعداد؛ أيمنّ زيود # Mean - value - thin (M.V.T) Def = fory=f(x) on In, b]if [Ex=-f(x)=x2-x, find all number @ f cont on [a, b] of c that satisty the inclusion of M.V. Ton 6) f'exist on (a,b) Them 3 at least CE (a, b) [2,5] Such that f'(c)=f(b)-fa) = f(x) cont on [2,5] f (x) exist on (2,5) Remark:-iff(w)=fa) then => f(z) = z / f(s)= 20 The called Rolleather 36 Vol-1-(5) [1](2) f'(c) =08 Ex:- find all number c that satisfy Rolle's thm + (c) = 6 + 2x -1 => (c) = 2c-1 C(x) =5 -12x +3x 2 X = [13] => 2C-1 =6 => C= 7 =)f(x) conton [13] (x) exist on (1/3) f'(c) = 03 : f'(x) = - 12 + 6x f(c) =-12+6(c)=08 C=2/

خط : عبد الله دياك

{154 }: <u>ä</u>aåp

187

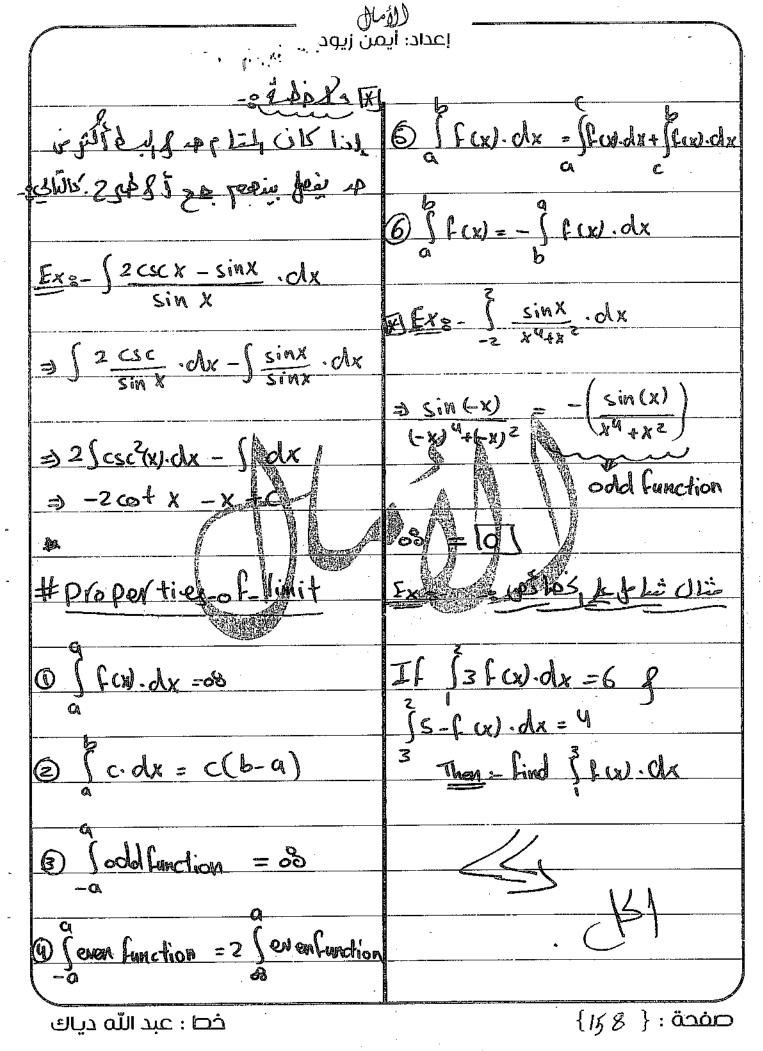
إعداد: ٰأيَمنَ زيود Intergration ( " Sill, \Silsx'.dx ≥8x ] =)(2) 5 (1) = 32 -1 = 31 Secw.dx a:- de 1 5 / b:- Ode 15 1 1 5 7 = 5 x 1/2. dx الافتران الي العند الدال الي على الافتران الي على الدير الدير العالم على العند الدير العالم على العند 3 2VZ - ZVI \$ 2VZ - Z EJ [z.fw.dx] zfe.dz (المعرفية على المعرفية على المعرفية على المعرفية المعرفية على المعرفية المعرفية على المعرفية a(Y+1) \* Rules of Internation. Ex (3x +4)2. dx = (3x +4)3 +C  $\overline{U} \int 1 \cdot dx = X + C$ =) (3x + 4) + C  $2 \int x \cdot dx = \frac{x^{r+1}}{r+1} + c_r r_r + 1$  $3) \begin{cases} x^{2} dx = x+1 \\ x + 1 \end{cases} = (b) = (a)$   $(c) \frac{x}{(+1)} = (a)$ الم إليك زا قع الم اللوي

مكتبة خواطر

{ 155 } : aaao

خط : عبد اللهُ دياك

إعداد: أيمنّ زيود راقتران فلى integration > 1 sin (ax+b) +c (cos (ax+b).dx 2 -1 cos (ax +b) +( (sin (ax +b) dx -> a tan (9x+b)+c ( Sec (ax +b) ·dx -= 1 de (dx +6)+c S CS C2 (ax+b).dx Sec Caxth ton(axth).dx-> 1 sec Carth)+C S CSC (ax+b)-cot (ax+b)-12-1 csc (ax+b)+C 3 I COC (XT) +C XD-(1+x5) ni2 2 -= x3 3-2 csc (x+1)+C 3 -1 00 (5x +1)+( E) ((±9)(x).dx= Ex = Scsc (x+1) cot(x+1) de Sfcx) de t Sgcx) dx =) [ csc ( = + ] ) · cot( = + ] ) · dx [ ] [ f (x) · dx = c [ f - cx) · dx صفحة : { ١٢٦ خط : عبد الله دياك


189

((زُمَال اعداد: أيمن إيوا

| من زيود                                  | ן בבוכ: וֹעַ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ©Stan x.dx                               | × علا م ط قه- بالتفايقات إدا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| => ((sea)-1)·dx                          | مَن بِنَ زامِيةَ بعد دِعُوبِ كَل الزواط                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| =) Sec(x).dx - 1.dx                      | بغيها الحدد .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| => tan x - x + c                         | $\frac{1}{2} \cos (2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          | =) (652 X = = = + = (XX) (= )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| El Jest x .dx                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ≥) ((s( x -1) .dx                        | $2 \sin^2 x = \frac{1}{2} - \frac{1}{2} \cos(2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| => \csc2x \cdx - \land 1 \cdx            | =) $\sin^2(3x) = \frac{1}{2} - \frac{1}{2}\cos(6x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2) -Cot X - X + 1.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | 05 sin(\$x) = 2 sin(x) cos(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EX Sinex dx                              | ⇒ Sin (8x) = Zsin(x) (05 (4x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A Sesinx Cost . Clx                      | Scos 2 (4x) · dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COST                                     | 3) = + = (8x) ·O/X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| =) 2 sin x · dx = -2 cos x +c            | => \frac{1}{2} \times + \frac{1}{2} \times \ |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exs- Szsinx.cosx.dx                      | $\Rightarrow \int \frac{3}{1+\cos x} dx \Rightarrow \int \frac{3}{3\cos^2(\frac{x}{x})} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| =) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1_7                                      | = = Z +an(*) 2cos(*) = How                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | ⇒[3 tank )+c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| خط ، عبد الآم در الع                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

خط : عبد الله دياك

190 مكتبة خواطر {157}: öado



191

ولإفاق

إعداد: أيمن زيود

=) 
$$\frac{3}{3} + \frac{1}{3} + \frac$$

$$\Rightarrow \int_{1}^{2} f(x) \cdot dx = 2$$

$$3 \int_{3}^{2} 5 \cdot dx - \int_{3}^{2} f(x) dx = 4$$

$$\Rightarrow 5(2-3) - \int_{3}^{2} f(x) \cdot dx = 4$$

$$\Rightarrow -5 - \int_{3}^{2} f(x) \cdot dx = 4$$

= 
$$\int_{3}^{2} f(x) \cdot dx = 9 = \int_{3}^{3} f(x) \cdot dx = 9$$

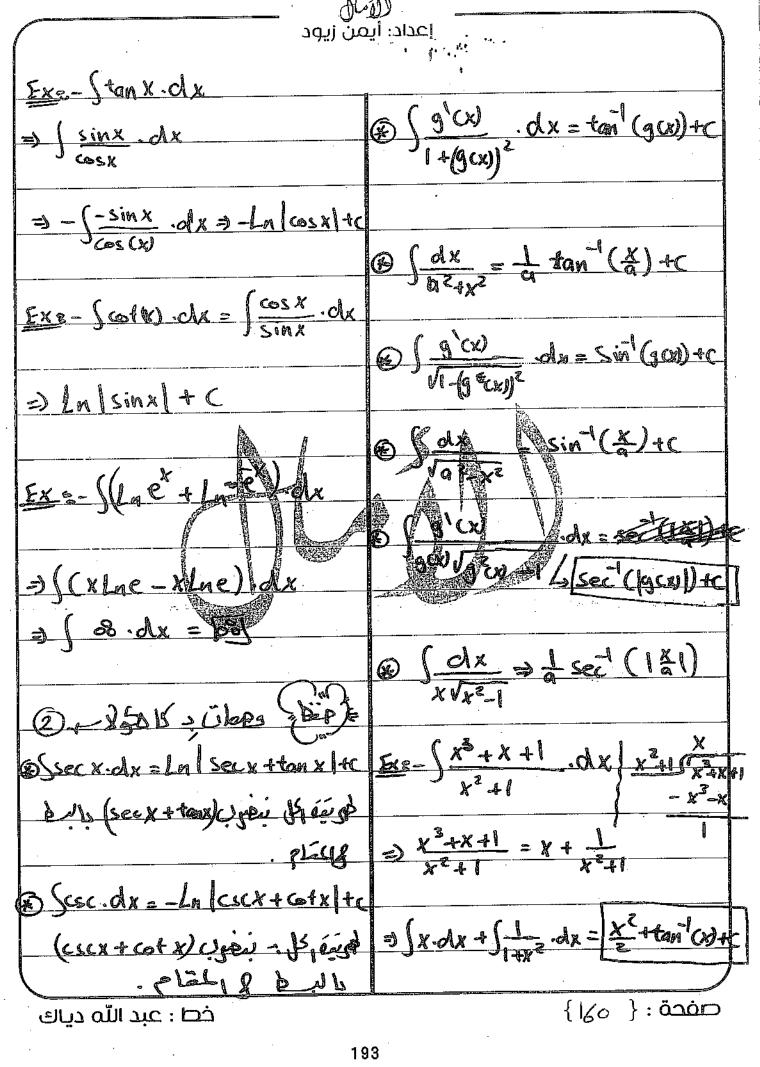
$$=) \frac{1}{3} f(x) = \int_{-\infty}^{\infty} f(x) dx$$

$$= \frac{b^{(ax+b)}}{a \cdot Lnb} + ($$

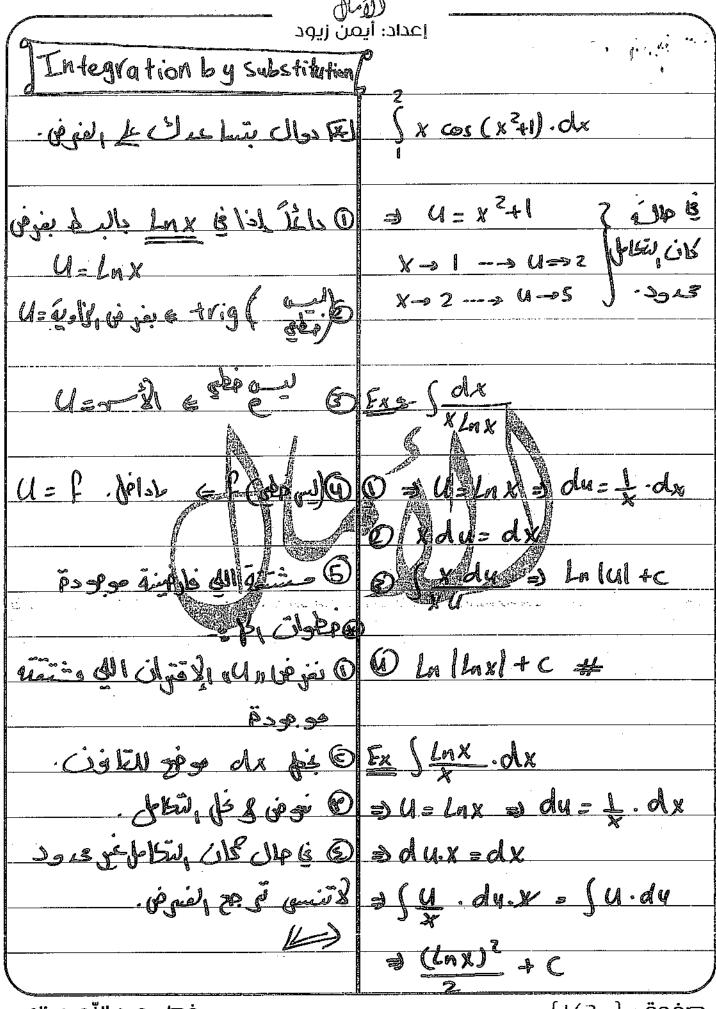
$$\frac{Ex_{4}}{(3x+1)} dx$$

$$= \frac{(3x+1)}{2} + (3x+1)$$

$$\mathbb{E}\int_{0}^{6x+b}dx=\frac{(ax+b)}{a}+C$$


$$\frac{\text{Exe} \int \cos 2x}{1 + \sin 6x} = \frac{1}{5} \int \frac{1 + \sin 6x}{1 + \sin 6x}$$

4


خِطِ: عبد الله دياك

مكتبة <del>خ</del>واطر

{159 } : قعفت

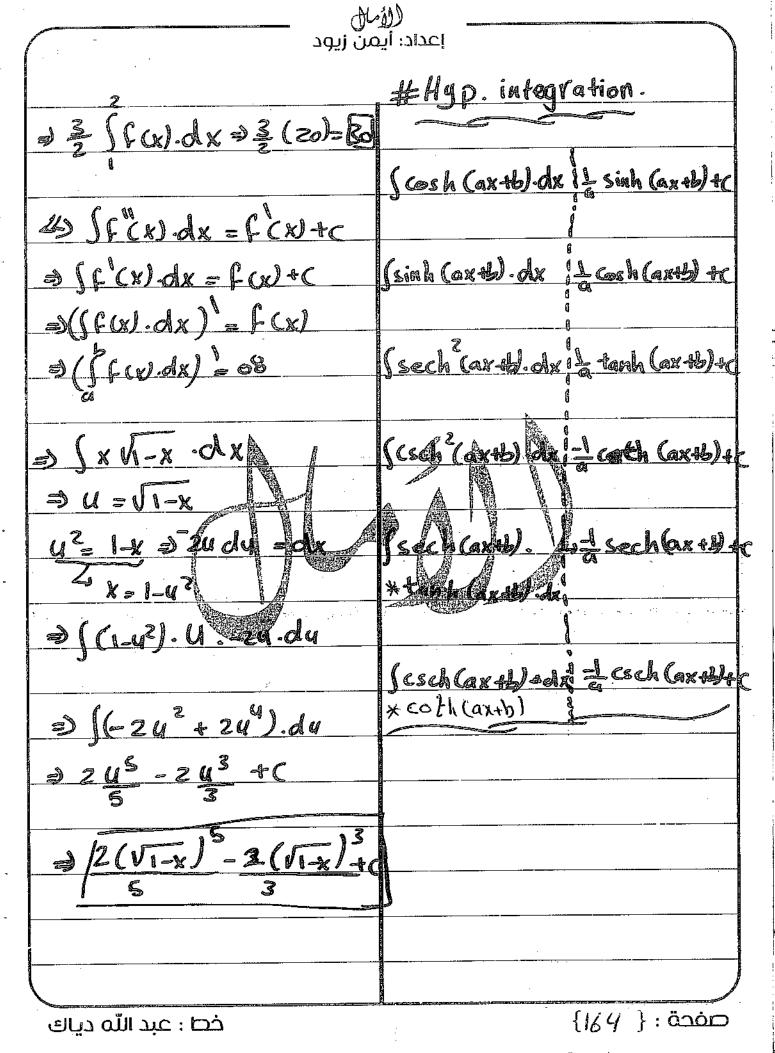


(الأمال إعداد: أيمنّ زيود Ex = - 16+x2 ·dx Ex Sex dx  $\Rightarrow \frac{1}{4} \tan^{-1}(\frac{x}{4}) + c$  $\frac{3-\left(-e^{-X}\right)}{\sqrt{1-\left(\bar{e}^{X}\right)^{2}}} clx$  $\int \frac{1}{1+qx^2} \cdot dx = \int \frac{3}{1+(3x)^2} \cdot dx$ => /- Sin-1 (e-x) + C/ =) = +an' (3x)+C see x · cle = 3·sin (+anx)+c  $\Rightarrow \int \frac{1}{4(\frac{q}{2}+x^2)} \cdot d$ = 4 \ = +x2 xx X VI-(Lnx) 2  $\Rightarrow 3 \int \frac{x^{-1}}{\sqrt{1-(L_{1}x)^{2}}} dx$ = 1 4. \( \frac{4}{9} + an \( \frac{4}{9} \) + c =) 3 sin-1 (Lnx)+c =) 4 tan-1(2x) +c Ex = - S = - dx 35( x / x = 3 olx = 5 sec (1) خط : عبد الله دياك {-161--} : ösör



خط : عبد الله ٍ دياك

صفحة : { 162


((رُمَالُ إعداد: أيمن زيود

| <b>S</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Ex = 5x4 ex. dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(x^2\cos(3x^3)\cdot dx$                                                                                                   |
| $\Rightarrow y = x^5 \Rightarrow dy = 5x^4.dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Rightarrow U = 3x^3$                                                                                                     |
| $= \int \frac{dy}{5x^4} = dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Rightarrow \frac{dq}{qx^2} = dx$                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| => (5x9e4.dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =) Sx2. cos u. du                                                                                                          |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |
| => Se du => e4+c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =) = S cos u.du = sinutc                                                                                                   |
| => (e <sup>5)</sup> + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =) = sn(3++c                                                                                                               |
| Ex =- ( V4-1 . dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exect f f fcw dx = 20                                                                                                      |
| x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Then Sind I sx C cx 2 H) ·dx                                                                                               |
| 3U=V4-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =) \( 3x \int (x^2+1) \cdx                                                                                                 |
| =) 24 du · x 2 = dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $u = x^2 + 1 \Rightarrow du = 2x \cdot dx$                                                                                 |
| \ (\lambda \\lambda \ | $\frac{1}{2} \frac{dy}{2x} = dx$                                                                                           |
| =) Su.zu.x2.d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x \rightarrow 0 \rightarrow 0 \rightarrow 0 = (a)^{2}+1=1$<br>$x \rightarrow 2 \rightarrow 0 \rightarrow 0 = (a)^{2}+1=5$ |
| \(\(\alpha\)^2 \(\lambda\) \\ \(2 \\ \dagger\) \(2 \\ \dagger\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 Cal de 20 - 1                                                                                                          |
| $\Rightarrow \int 2u^2 \cdot du \Rightarrow \frac{2}{3}u^3 + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =) \ 3x \ \ \( (u) \. dy = \frac{3}{2} \) \ \( \text{f(u) \. dy} \)                                                        |
| =) = (V4-1)3+C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |

<u> 196</u> مكتبة خو اطر

{1*6*} } : äaén

خط : عبد الله دياك



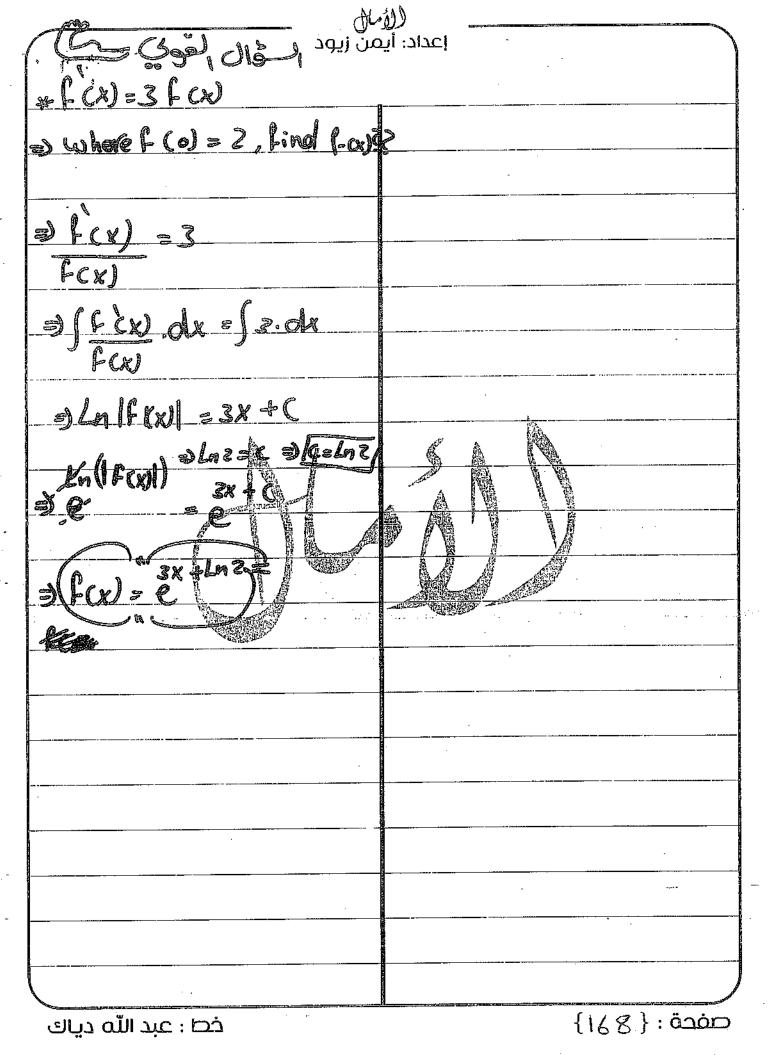
197

مكتبة خواطر

{|*{*|*{*|} | + **ā**aio

إعداد: أيمنَّ زيود Ex (f'(x).dx = x2+3x+3 If: 2x+ ff(+).d+=8 8 F(1) = 2, find f(4) 3 f(x)=x2+3x+3+( Then find th value of c? a) f(x) = x 2+3x+3+c 3 f(1)=(1) 2+3(1)+3+C=2 C=X \_= 6 juli 6 والقران والمن نالقد 3/C=-5/ = 2C+ SFED.d+ = 8 => f(x)=x2+3x-2 = f(y) = (y) 2+3(y) - 2/ = 16+12-2=128 Ex = f'Cx = 3x + 5x 4+ 2x a) The funderial thm of if f(0) =0 / FM F(1) cal cula spe ad ( h(+).d+ =) [ (x). dx = (3x2+5x4+2x 3 fal = x3+x5+x2+c =  $h(g(x))\cdot g'(x) - h(f(x))\cdot f'(x)$ a (co) =) [c=08/ F(x) = x3+x5+x2 14.14.14.14.200 x 10 = 1+1+1 = B1 #

خط : عبد الله دياك


صفحة : { 166

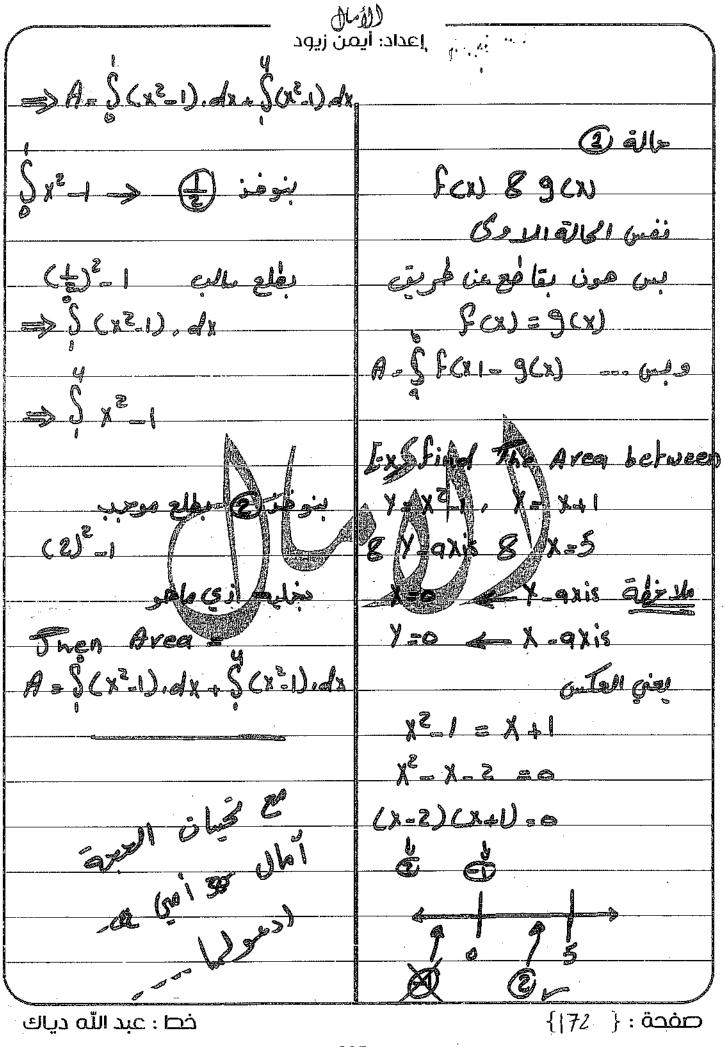
َ إعداد: أَيْمَنّ زيود =) If  $g(x) = x^2 \cdot \int \frac{t^5}{2t^2+5} dt$  $2x^3-4x$ => find g'(z)  $= \frac{9(x) = x^2 \cdot (3x)^2 + 5}{(3x)^5 \cdot 3}$ = Ex d Sint . df (6)  $+2x\int_{-6}^{3x} \frac{t^{5}}{t^{2}} dt$ => Sin x . 1 - Sin (1) . (68) => Sin(x) = (2) 26  $\frac{3(2)^{2} \cdot (3+2)^{5}}{(3+2)^{2}+5} + 2(2) \left(\frac{+6}{7}\right) + 2(3) \left(\frac{+6}{7}\right) + 2(3)$ **⇒** X((x+2)(1)-(2)-(36) =) 9 (2)= 12. (6) 5 =[3] (6)<sup>7</sup>+5

خط: عبدالله دباك

مكنية حو اطر

{1<del>67 } : ö</del>⊃ó⊨




201

| JU.                     |                                                                                                                |
|-------------------------|----------------------------------------------------------------------------------------------------------------|
| من زيود : الله الله     | יוֹבוב: <u>أ</u>                                                                                               |
| *                       |                                                                                                                |
| Alea                    |                                                                                                                |
|                         |                                                                                                                |
|                         |                                                                                                                |
| The area of the origion | الم الأنوف عدد بن ه.ط                                                                                          |
| ·                       | -                                                                                                              |
| bounded by the Curve    | حق لخدد لذا كانت الكامل                                                                                        |
| fcx) . gcx)             | الموحية الله الله على على على على الله |
|                         | وهل سالة نعكن حدود                                                                                             |
| from X: 9 To X=b        | <i>,</i> , <u> </u>                                                                                            |
|                         | النكامل .                                                                                                      |
| ros fas, x- gris        |                                                                                                                |
|                         | As as                                                                                                          |
| ·O F(x) · 9 (x)         | 35 A W 8 Lis                                                                                                   |
| of fan, gaz, hand       |                                                                                                                |
| a ray jay               |                                                                                                                |
| مرية دي ملى دانية       | الله ملكام المامولات                                                                                           |
|                         |                                                                                                                |
| 0°16                    | معانه بناي حيكم الكاماتي                                                                                       |
| fcx) · x=exis           | . ماهم                                                                                                         |
|                         |                                                                                                                |
| THE POST                |                                                                                                                |
|                         | 3 es (e) Ulâ                                                                                                   |
| 4 6                     |                                                                                                                |
|                         | QX=1                                                                                                           |
| A= S fcs) · dx          | de de (2) ce si                                                                                                |
| a a                     | نوس (2) بغلا مالی<br>معناته بعکس حدود النکامل                                                                  |
|                         | Cath 1312 (maj 2012)                                                                                           |
|                         |                                                                                                                |
|                         |                                                                                                                |
| · ·                     | 3                                                                                                              |
|                         |                                                                                                                |
| خط ع عبد الله ديالي     | {  <b>7</b> 0 }:änòm                                                                                           |

(لأمال إعداد: أيَمنُ زيود Ex find the area of region that is by مه لق خلال دلا لهاء Y= x2+1 & x-axis & x=0, X=2 ? A = S (x2+1). dx ١٠١١) ٥٠ مرصب نأخذ شال تحالي منالته عدد التكامل بفل ذي A=SCx=1).dx A = S(x2-1) .dx + S(x2-1) . dx

خط : عبد الله دياك

204 مكتبة خواطر صفحة : { | 4| }



205

إعداد: أيُمنّ زيود  $A = S((x^2-1)-(x+1)), dx$  Y = Sin X . Y = Cos X+  $S((x^2-1)-(x+1)), dx$   $Y = 0 , X = \frac{\pi}{2}$ => ) ((x2-1) - (x +1)) ,dx مبنوطذ لك مطلع سالب Cos X de puis -> S ((x=1) - (x+1)) . dx tan x=1 => S (CXZI) - CAI) JAX بزخر و لي م Then Brea A. S (Sinx- Cos K) + S (Sinx-Cost) dx A=S (Cx2) - (x+1).dx + SCSINK-GSX) S (Cx2-1)-(x+1)),dx بنوخذ کم بلطح سالب ) (cosx-sinx) dx 5 5 (Sin x- Cos X) dx SNB UNS 3 A.S (Sin + - ESE 3) + S (Sin 1 475 24.

خط: عبد الله دياك

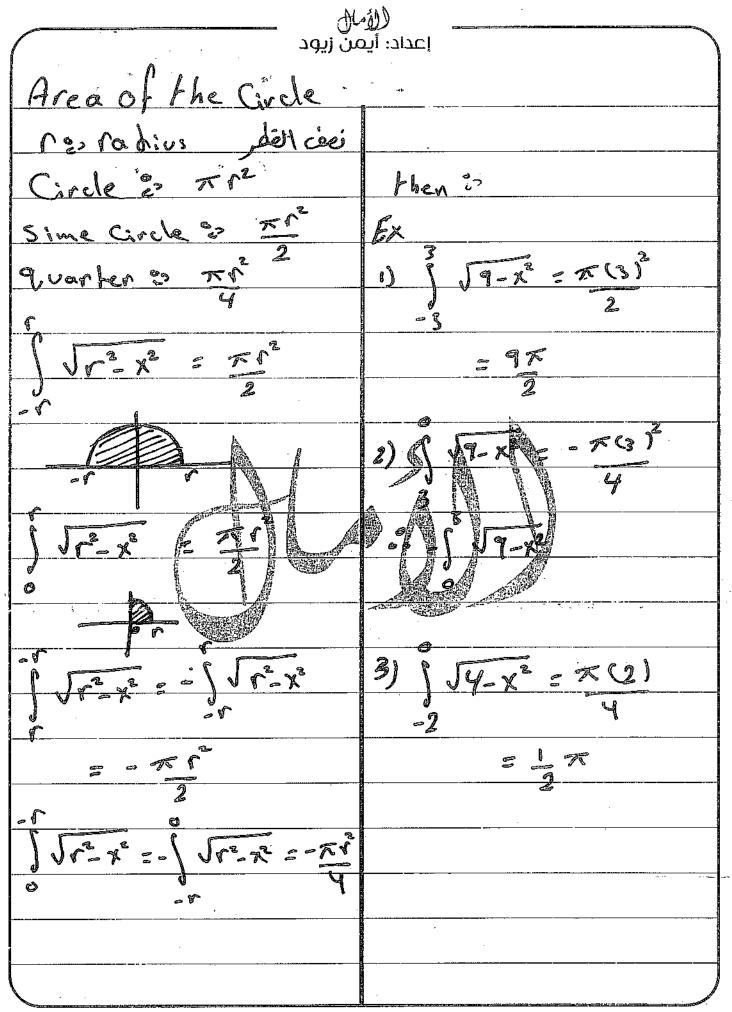
206 مكتبة خواطر { | 73 } : aaoro

الأمال إعداد: أيمنّ زيود ysex, ysex En Arca between 8 x=0, x=2nz Y=-ex X-gxis with Ln is ju Lnex Lnezh > x = 2x 8 x = 2 n 2 8 x 2 n 3 lns A=S-ex,dx -2+3 =1TI

خط : عبد الله دياك

صفدة : { ۲۲ } }

207


((زُمال إعداد: أيمن زيود = fcx , gcx) Volumes -fw:9(x) a sil- Brea compar miss عليه في عدد المعلى كر المعلق في بس المقانون بختلف ally fcx) & x-axis by fex = (x+1) FCN=0 V=FJ(fcx)).dx 900 = Cx2 U at x6[0] by volume for xxx NE Z4 10] 0: ( 1+x) (5-1-2:0 BY 22

 $A = \frac{1}{2} \left( \frac{1}{2} \cdot \frac{1}{2} \cdot$ 

خط : عبد الله دياك

208

{ <del>| 75</del> } : aaoo



خط: عبد الله دياك

صفحة : { المُحْا}

209

## فرست محوالي

Choose the best correct answer (2.5 points for each)

1) If  $f(x) = \frac{1}{x}$ ,  $g(x) = \frac{x-1}{x-2}$ , then the domain of  $(f \circ g)(x)$  is

a)  $\mathbb{R} - \{-1, -2\}$  b)  $\mathbb{R} - \{1, 2\}$  c)  $\mathbb{R} - \{-1\}$  d)  $\mathbb{R} - \{-2\}$ 

(2)  $\lim_{x\to 2} \frac{\sqrt{x^2+5}-3}{x^2+x-6}$ 

a)  $\frac{1}{3}$  b)  $\frac{2}{15}$  c) 2

d) -2

3)  $\cos^{-1}(\cos(\frac{11\pi}{7}))$  Ulo 3 are graph 3

a)  $\frac{11\pi}{7}$  b)  $\frac{4\pi}{7}$  c)  $\frac{3\pi}{7}$  d)  $\frac{6\pi}{7}$ 

4) Let  $3e^{2x} = 1$ , then the value of x is

a)  $-\frac{1}{2}ln3$  b)  $\frac{1}{2}ln3$  c)  $-ln\frac{1}{3}$  d)  $2ln\frac{1}{3}$ 

5) The vertical asymptote(s) of  $f(x) = \frac{x^2-4}{(x-2)(x-3)(x+2)}$ 

a) x = 2, x = 3, x = -3 b) x = 3, x = -3 c) x = 3

6) The range of  $f(x) = \frac{1-6x}{2x-1}$  is

a)  $\mathbb{R} - \{\frac{1}{2}\}$  b)  $\mathbb{R} - \{3\}$  c)  $\mathbb{R} - \{-\frac{1}{2}\}$  d)  $\mathbb{R} - \{-3\}$ 

7)  $sin(tan^{-1}(x)) =$ 

a)  $\frac{1}{\sqrt{1+x^2}}$  b)  $\frac{x}{\sqrt{1+x^2}}$  c)  $\frac{x}{\sqrt{1-x^2}}$  d)  $\frac{\sqrt{1-x^2}}{x}$ 

(0)

8) The range of 
$$g(x) = x^2 - 2x - 3$$
 is:

a)[4,
$$\infty$$
) b) [-4, $\infty$ ) c) (- $\infty$ ,4] d) (- $\infty$ ,-4]

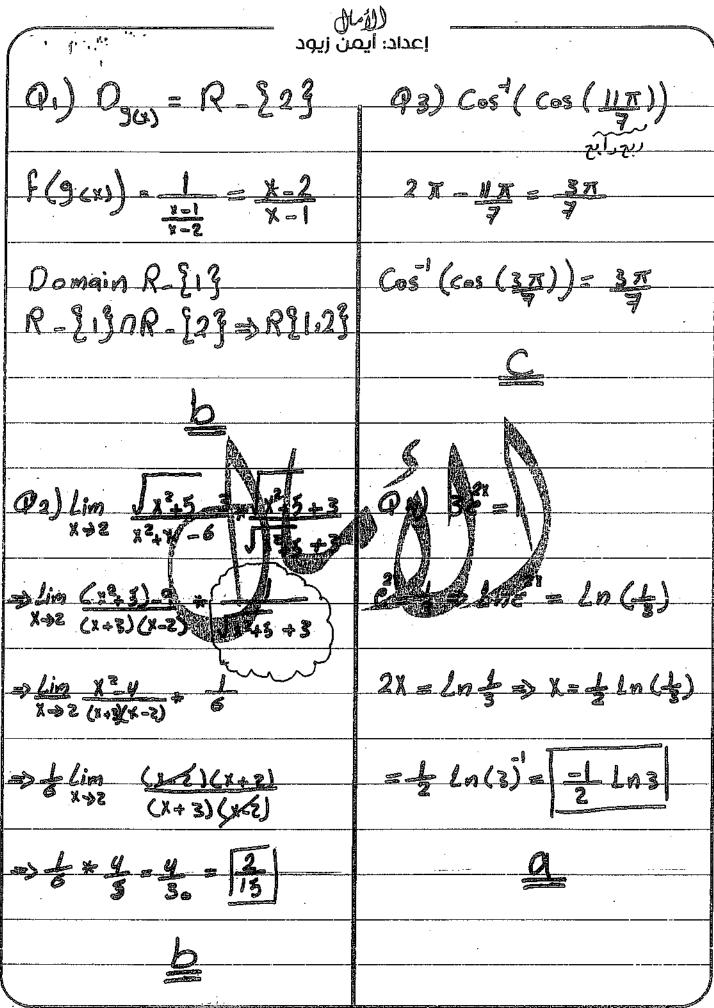
9) If 
$$f(x) = x^3 + 3x - 20$$
, then  $f^{-1}(16) =$ 

$$a) - 2$$
  $b) 2$   $c) - 3$   $d) 3$ 

10) 
$$\log_2 18 + \log_2 24 - \log_2 54 =$$

11) If 
$$\ln(x^2 - 5) - \ln(4x) = 0$$
, then

$$a(x) = 5$$
 b)  $x = -1$  c)  $x = -1, x = 5$  d)  $x = 0$ 


12) 
$$\lim_{x\to 3^+} \frac{x+3}{x^2-9}$$

d) -∞

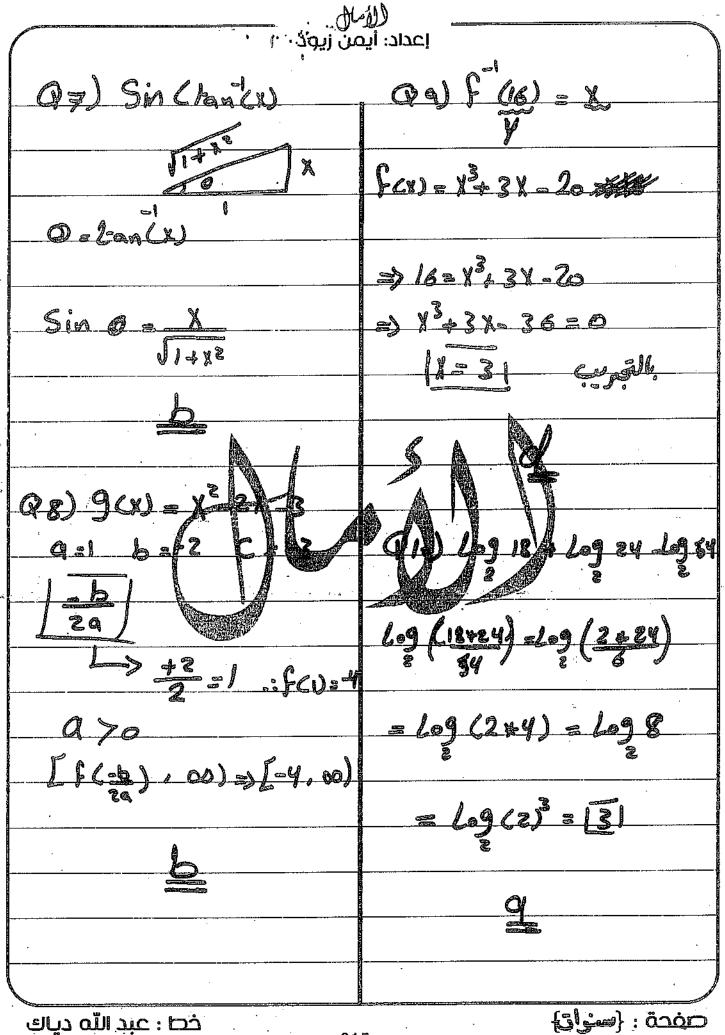
## ايمن زيول الدوسية الامال

Scanned by CamScanner

مكتبة خواطر مكتبة خواطر



خط : عبد الله دياك


صفحة: ﴿سنولها

213

|                                                            | اعداد: أيد                                                                               |
|------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                            |                                                                                          |
| $Q_5) (x-2) = 0 \Rightarrow x=2$                           | 06) fcx) = 1-6x                                                                          |
| Lim (x-2)(x-3)(x+2) = 47 = 74 = 74 = 74 = 74 = 74 = 74 = 7 | $\frac{y=1-6x}{2x-1} \Rightarrow 2xy-y=1-6x$                                             |
| not vertical                                               | $\Rightarrow 2xy + 6x = 1+y$                                                             |
| $(x-3)=0 \Rightarrow x=3$                                  | Y = 1+ Y -> 6-1 - 1 - V                                                                  |
| Lim (x-2)(x+2)                                             | $\frac{\chi = 1 + \chi}{(2\gamma + 6)} \Rightarrow f(\chi) = \frac{1 + \chi}{2\chi + 6}$ |
| X->3 (x-2)(x-3)(x-2) X-3                                   | Ofnail File Range For                                                                    |
| d.n.e vertical $(x+2)=0$ $(x+2)=0$                         | Donain Fax R- 2-39                                                                       |
| Z-3-5 (2+2)(2-3) (2+2) X-3 5                               | Then Range f(x) = R_ 1-39                                                                |
| not vertical                                               | d                                                                                        |
| Then [X=3] vertical                                        | -                                                                                        |
|                                                            |                                                                                          |
|                                                            |                                                                                          |
|                                                            |                                                                                          |

خط : عبد الله دياك

214 مكتبة خواطر صفحة: ﴿سَنَوْنَا



| ىن زيود                                | וארור: ויס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| an) Ln (x25) = Ln (4x)                 | Q12) Lim x-3 _ 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>e</u> 156                           | X+3+ X2-9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ⇒ x²-5 - 4x                            | کالب) من المین خذے در الحبر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| => X2_4X -5 =0                         | ا لنتوج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (x-3) (x+1) =0                         | (I) 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X=5, X=-1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·  | Lim X+3 = 7 >0 x = 4 > 7 = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| = X=5 E Domain                         | Then , + 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = X=-1 & Donain X                      | SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Then X:5                               | a de la constantina della cons |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>a</u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Lim XX3 Lim L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | x=32, Cx-27 CX+57 X-32, x-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (ان گفت بولان)                         | 4 4+4+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Then +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| خط: عبد الله دياك                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and an are: Fr                         | عفدة : (سنواق) 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

216 مكتبة خواطر

صفحة: ﴿سُولَةٍ}

| المانسين              |             |
|-----------------------|-------------|
| A Carrier and Carrier | ALIAN, TANK |

| • 3      | القوالثغرس: وقت المعاشر |   |    |                |    |         |          |          |             |                     |   |         |
|----------|-------------------------|---|----|----------------|----|---------|----------|----------|-------------|---------------------|---|---------|
| 1        |                         | 3 | A  | 5              | 6  | 7       | 8        | 9        | 10          | ان.<br>مورونشنشورون |   | 1       |
| <b>a</b> | Q                       | 9 | 3  | 8              | g) | <br>(1) | 3)       | 1        | Laster Sect | ener de             | 4 |         |
| b        | Ъ                       | b | b  | ь              | Ъ  | Ъ       | H        | Ъ        | B           | <b>5</b>            | 3 | 音を とき タ |
| <br>C    | C                       | Ç | c  | Ç              | Ç  | £       | Ľ        | C        | C           | T.                  |   |         |
| d        | d                       | d | d  | d              | d  | 3       | đ        | d        | ای          | J                   |   |         |
| e        | 0                       | 0 | C. | a saureca<br>E | e. | 10      | <b>3</b> | <u> </u> |             | 3                   |   |         |

مسكنه عم<sub>ح</sub>السيد جميع العلول خلف الاعتكان

Choose the best correct answer (2.5 points for each)

- 1) The equation  $x^3 + 3x = 2$ , has solution in
- b)[1,2]

2) The function  $f(x) = \begin{cases} \frac{x-2}{x+2}, & x \le 1 \\ \frac{x-2}{x+2}, & x > 1 \end{cases}$ 

a)  $\Re -\{-2, -3, 1\}$  b)  $\Re -\{-2\}$  c)  $\Re -\{-1, -3, 1\}$ 3) The function  $f(x) = \frac{x - tan^{-1}(x)}{2 - 4x}$  has horizontal as  $f(x) = \frac{x - tan^{-1}(x)}{2 - 4x}$ 

a)  $x = \frac{1}{4}$  b)  $x = \frac{3}{2} - \frac{1}{4}$  c)  $x = \frac{-1}{2}$  b)  $x = \frac{1}{3} - \frac{1}{3}$ 4) If  $f(x) = 2 + 2 \tan^{-1} 4x$ , then f'(1) =

a)  $\frac{2}{17}$  b)  $\frac{3}{17}$  c)  $\frac{4}{17}$ 

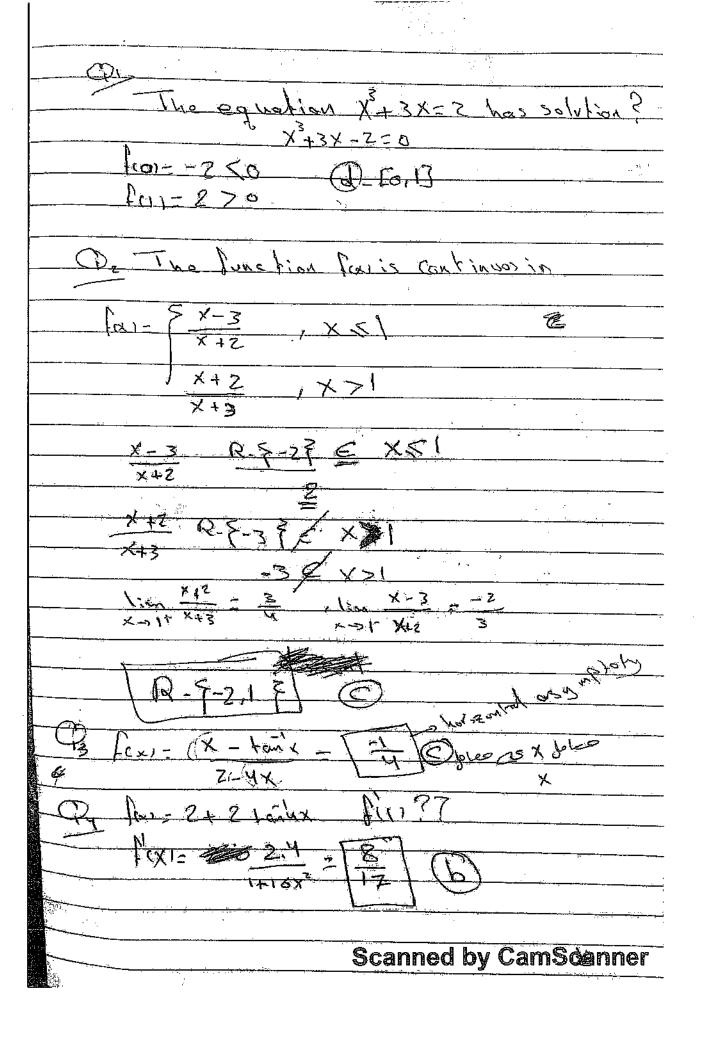
a) a e incerta

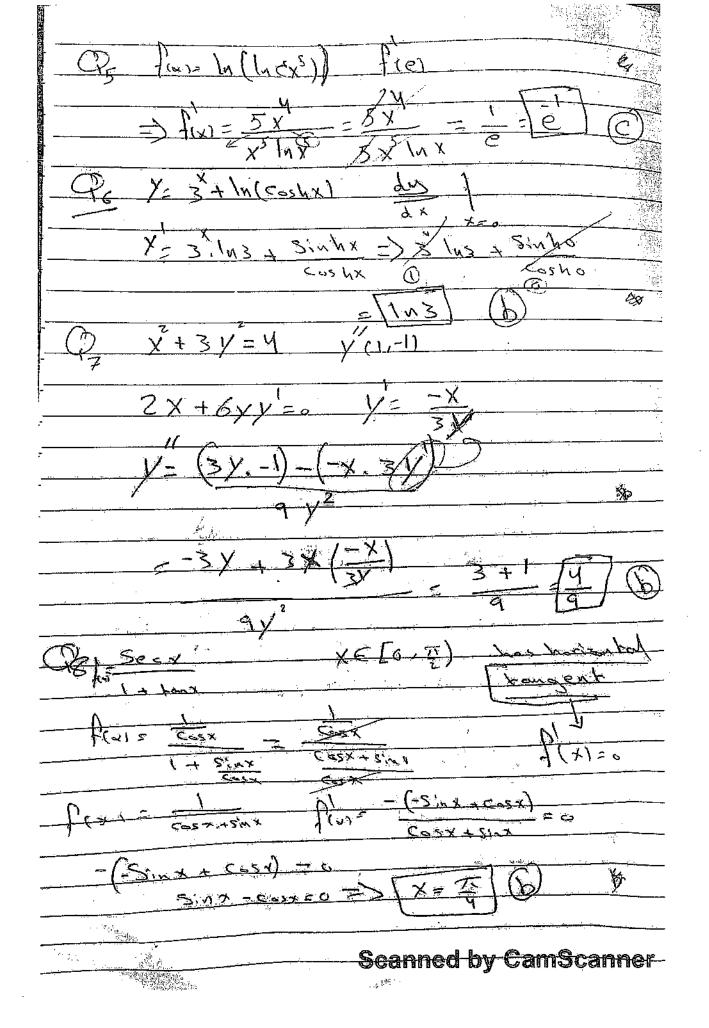
(00)

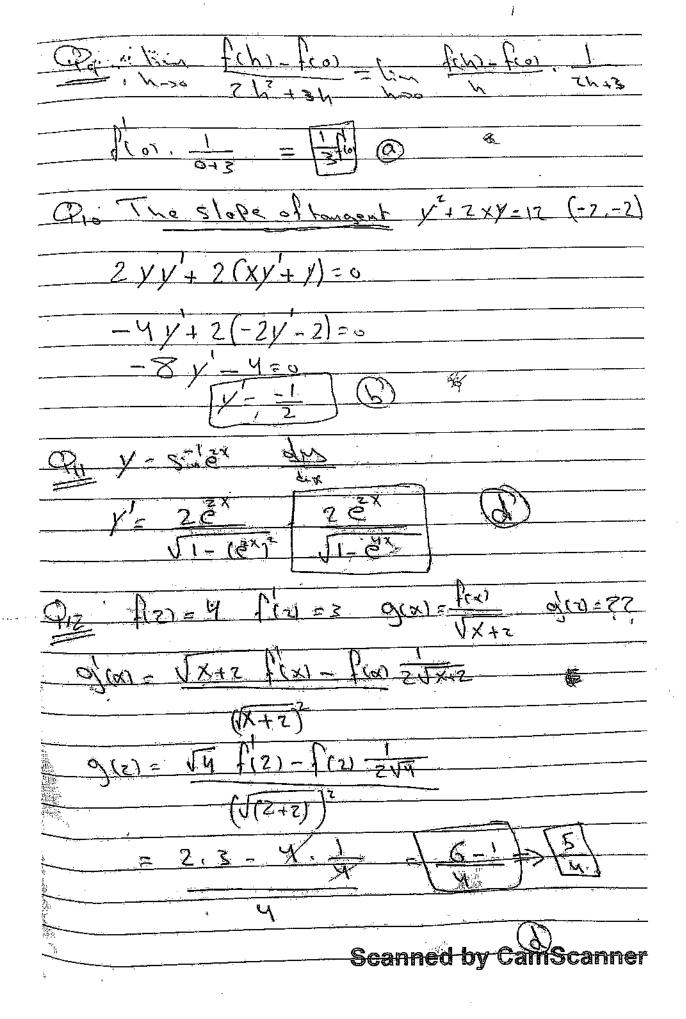
5) If  $f(x) = \ln(\ln x^5)$  then f'(x) =

(C) = -1

 $\psi(1)y = y + \ln(\cos hx)$ , then  $\frac{d}{dx} x x = 0$ d) In2 h) la 8 a) lu G 7) 11'n' + 3y" = 4 then y"(1,-1) = e) None of these  $\mathfrak{b})_{\overline{\mathfrak{g}}}^{4} \qquad \mathfrak{c})_{\overline{\mathfrak{g}}}^{2}$ 8) If  $f(x) = \frac{genx}{1 + tonx}$ ,  $x \in [0, \frac{\pi}{2})$ , has horizontal tangent at x =e) None of these d) 0 (b) M (n) 1 (n) 9)  $\lim_{h\to 0} \frac{f(h)-f(0)}{2h^2+3h} =$ e) None of these c)  $\frac{1}{2}f'(0)$  d)  $\frac{-1}{3}f'(0)$ b) 3f'(0) 10) The slope of the tangent line to the curve  $y^2 + 2xy = 12$  at the point (-2, -2) is e) None of these d) -2 c) 2 a) 1/2 b) =1/2 (11) If  $y = \sin^{-1}(e^{2x})$ , then  $\frac{dy}{dx} =$ a)  $\frac{-2e^{2x}}{\sqrt{1-e^{2x^2}}}$  b)  $\frac{-2e^{2x}}{\sqrt{1-e^{4x^2}}}$  c)  $\frac{2e^{2x}}{\sqrt{1-e^{4x^2}}}$ e) None of th 12) Let f(2) = 4, f'(2) = 3, and  $g(x) = \frac{f(x)}{\sqrt{x+2}}$ , then g'(2) =


Good Luck

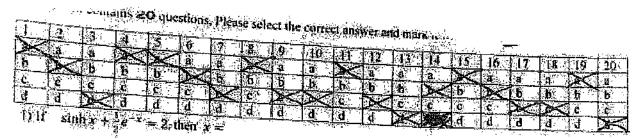

c) 3


b) 2

(00)

e) None of these








Department.

Date: #/1/2017

ic, L:40 minur



- a) In 2
- b) [n 4
- e) In 6
- d) In 8
- 2) The equation of the tangent line to the carve  $x^3+y^2=0$  at (-1,-1), is
- $x(y-1) = \frac{x^2}{x^2}(x+1)$

- b)  $y + 1 = \frac{1}{2}(x+1)$  c)  $y + 1 = \frac{3}{2}(x-1)$  d)  $y 1 = \frac{-3}{2}(x-1)$
- 3) The function  $f(x) = x^3 6x^2 + 1$ . Has inflection point(s) at
- n) x = -1 , x = 1

- b) x = 0, x = -1 c) x = 0, x = 1 d) Has no inflaction points
- 4) If x = 3 is an extreme value (max or min) for  $f(x) = x^2 2ax + 1$ , then a =
- 11
- c) -3

- 1) The domain of  $f(x) = \frac{1}{\sqrt{2-x}}$  is
- 3) (-Φ,3] U[3,Φ) b) (-ω,-3) υ(3,ω)
- c) [-3.3]
- d) (-3.3)
- خاينال عجر السيير

- 6) The range of  $f(x) = x^2 + 4x + 3$  is
- of tex all
- 60 (-1.00)
- r) [-2 ]
- d) [h.w.)
- الكلول خلف الاصكان

- 7) (6 y = sinhx, then  $\frac{dy}{dx}$  at x = 1n3
- **b)**

- 8) One of the following functions is decreasing on  ${\mathcal R}$ :
- (a)  $f(s) = s^2 + 2s + 5$
- b) f(x) = 1
- v)  $f(x) = (3x 4)^{3}$
- $d(x) = (2 3x)^3$

- 9) If  $f(x) = (x)^{\cos x}$  then f'(x) =
- a)  $(sinx)^x(\frac{xcosx}{sinx} + \ln(sinx))$
- b)  $(cosx)^{x}(\frac{-x \sin x}{\cos x} + \ln(cosx))$
- c) x<sup>ulne</sup>( + rosx ln(x))
- $d_1x^{\cos^2(\frac{\cos^2}{2} \sin x \ln(x))}$

(000)

 $\lim_{x \to \infty} \left(1 + \frac{x}{x}\right)^{4x} \approx$ a) e12 b) e6 c) e<sup>8</sup> 11) If y=6 and x=3 are horizontal and vertical asymptotes of  $f(x)=\frac{bx+1}{2x+a}$  then a,b=1b) a = 12, b = 6a) a = 6, b = 2c) a = 6, b = 12 d) a = 2, b = 6(2) If  $g(x) = x^2 \int_{5}^{5x} \frac{t}{t+1} dt$  then g'(1) =b)  $\frac{16}{8}$  c)  $\frac{25}{2}$  d)  $\frac{4}{8}$ a) a)  $\frac{9}{4}$ 13)  $\int \sinh(6-2x)\,dx =$ a)  $-2\cosh(6-2x)+c$  b)  $\frac{1}{5}\cosh(6-2x)+c$  c)  $2\cosh(6-2x)+c$  d)  $-\frac{1}{2}\cosh(6-2x)+c$ 14) The area of the region enclosed by  $y = x^2 + x_1$ , y = 2x is a)  $\frac{1}{2}$ d)  $\frac{3}{10}$ 15) If f continuous and  $\int_0^2 f(x)dx = 20$ , then  $\int_0^{\frac{\pi}{2}} f(2\sin\theta)\cos\theta d\theta =$ b) 5 c) 20 16) The volume of the solid generated by revolving the region enclosed by the curves  $y=x^4$ , y=x, about the x-axis is given by e)  $\pi \int_0^1 (x^2 - x^3) dx$  d)  $\pi \int_0^1 (x^3 - x^2) dx$ a)  $\pi \int_0^1 (y^2 - \sqrt{y}) dy$  b)  $\pi \int_0^1 (\sqrt{y} - y^2) dy$  $171 \int \left( \frac{1}{1-x} + \frac{1}{x-3} \right) dx =$ c)  $\ln|(x-3)(1-x)| + c$  d)  $-\ln|(x-3)(1-x)| + c$ a)  $\ln \left| \frac{1-x}{x-3} \right| + c$  b)  $\ln \left| \frac{x-3}{1-x} \right| + c$ 18) If  $\int_{5}^{1} 3f(x)dx = 6$ , and  $\int_{1}^{2} 5f(x)dx = 15$  then  $\int_{5}^{2} 6f(x)dx =$ d) 40 c) 30 a) 10 b) 20 19)  $\int_0^{\ln\sqrt{3}} \frac{2e^{-x}}{1+e^{-2x}} dx =$  $20) \int (2x-1)(x-2)^7 dx =$ a)  $\frac{2}{9}(x-2)^{9} + \frac{3}{6}(x-2)^{8} + c$  b)  $\frac{2}{9}(x-2)^{9} + \frac{5}{6}(x-2)^{8} + c$ c)  $\frac{2}{6}(x+2)^9 - \frac{1}{6}(x+2)^9 + x$  d)  $\frac{2}{6}(x+2)^9 - \frac{5}{6}(x+2)^9 + c$ 

(000)

Scanned by CamScanner

11

إعداد: أيمن ّ زيود 34) Pin 2x-2a X= 3 => N31=86 2(3)-20=0 20=6 => 0=3 Q5) for= 9-x30,97x2 737 X 137 X 7, -3 at-(1,-1) [53.3]-F3.3} (-3,3)<u>d</u> 06) full X2+4x+3 > **[**41=3(x+1)  $(03) \int_{10}^{1} y_1 + y_2^2 = 12x$ fezi = (2) \* 4(0) + 3 = (=1) 1= 12x-12=0=xx-100 [-[.00] b X= I\ [X=-I حلول غاينال عمرالسير Whitechen Powe [AFI] (XF)

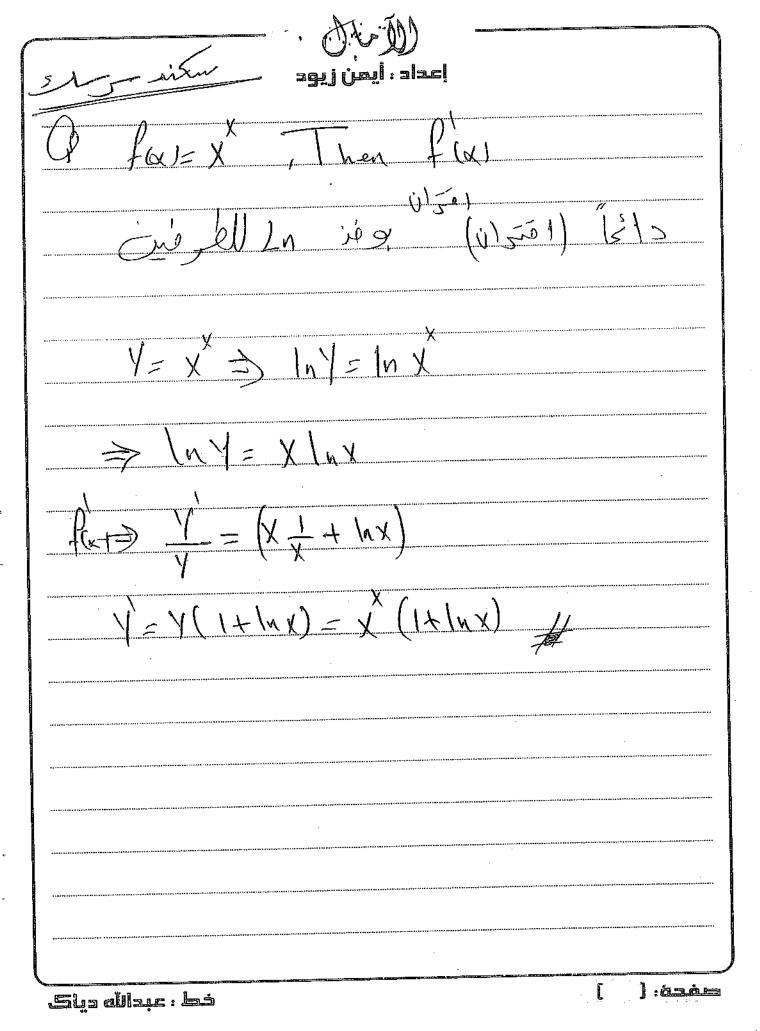
ALID) اعداد: أيعن زيود Q10) 41- (14 3) = 2 0 07) YE Suha Yelas QIV VS 6 , X 43 horizontal verbical 2(3)-0=0 => a=6 Q12) 3w= \$ 1 = 14 fwz (2-3) Nove 3 (2 fryfil then fine (2-3x) is Siak(6-24),dv increasing on P = -1 Ces (1/6-2x)+C\_b 99) Por (x5"x WI = COSX LIX -5:nvLnx + (21) # Piv = (SOTA - STAXLAX) [W 7)[6] = 18?"( S=1 = 18;14L+1)

إعدند؛ ايمن زيود 017) ](-x + 183 Q14) Y= X+X 1,2x X+X=2x - Ln/1-x/+Ln/x-3/ => Ln / 23/xc (4x=x,):9x=> x,-x, Q18) [3/w.dr. 6, ] forder 2 1-1=3-2=(1) \$5 fcw.de=18. | [Cc+1.d== 3 المناسبة المنافعة u = 25 ‰ <u>⇒</u> dù = -2 tañ (ē\*) fully = 1.20 516 Lai(+1-62(1) DIE X = X => X=0, X=1

Missin

20) 
$$\int (2x-1)(x-2)^{7} dx =$$

$$U = x-2 \Rightarrow du = dx$$


$$\int (2(u+2)-1) \cdot U^{7} \cdot du = \sqrt{2U+3U^{7}} \cdot du$$

$$\int (2(u+2)-1) \cdot U^{7} \cdot du = \sqrt{2U+3U^{7}} \cdot du$$

$$\Rightarrow \frac{2U^{7}+\frac{3}{2}U^{7}+2}{4} \cdot U^{7}+2 \cdot 2(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-2)^{7}+\frac{3}{2}(x-$$

Scanned by CamScanner

237



239

| AT TAN                                 |
|----------------------------------------|
|                                        |
| إعداد : أيمن زيود                      |
| [74]                                   |
| 6 fext= 3, f (0)                       |
| Temes les is y luc joins of a les      |
|                                        |
| f(x) = 3                               |
| fix= 3×1,3                             |
| $f(x) = 3^{x} (\ln 3 \cdot \ln 3)^{2}$ |
| f" = 3, (143)                          |
| (97) g-1                               |
| f = 3×.(1n3)                           |
| 42 1 97 (                              |
| f(o)= (ln3) 3 = (ln3)                  |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |

خط : عبدالله دیاگ

صفحة: ( )

 $|x-7| \implies x-7 = 0 \longrightarrow x=7$ 

 $f(x) = \begin{cases} 57 - x & x \leq 7 \end{cases}$ 

x-7, x≥7

 $\lim_{x\to 7^+} x = 7 = 0$   $\lim_{x\to 7^+} 7 - x = 0$ The conf x = 7

 $f'(x) = \int -1$  , x < 7

 $\left(\begin{array}{cc} 1 & 3 \times 7 \end{array}\right)$ 

P'(x) = -1

f(7) = d.n.e

خط : عبدالله دیاک

( ):<u>£så</u>:e

241

## إعداد : أيمن زيود

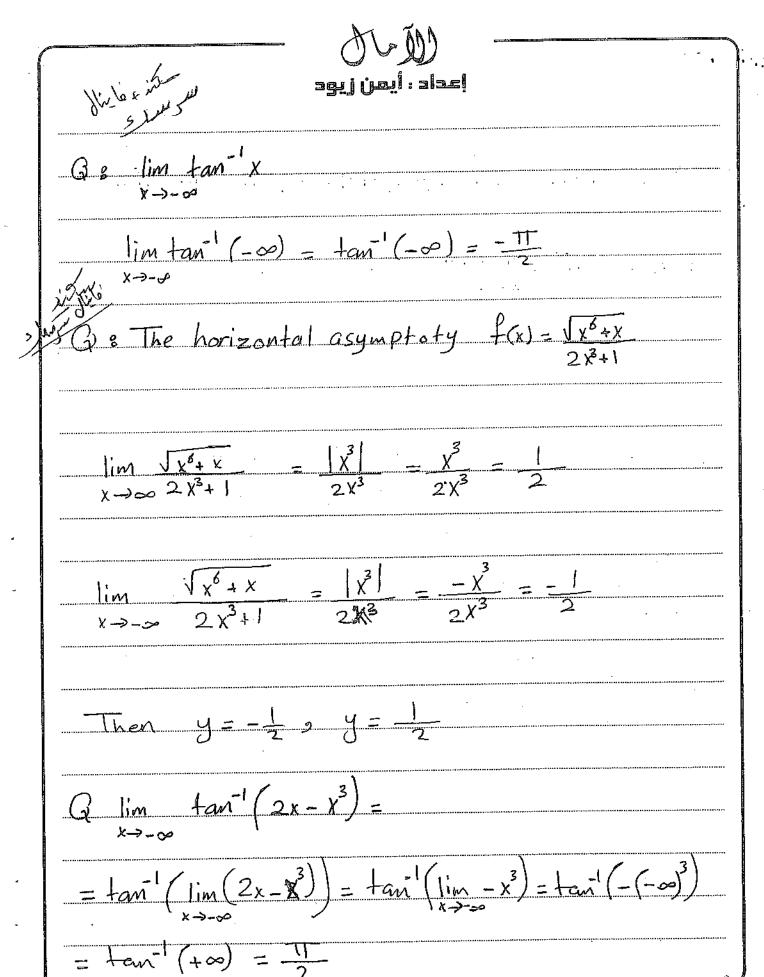
G: let 
$$f(x) = \ln\left(\frac{\sqrt[3]{x^2+1}}{\sin^8 x}\right)$$
 find  $f(x)$ 

$$f(x) = \ln \sqrt[3]{x^2 + 1} - \ln \sin^8 x$$

$$f(x) = \ln (x^2 + 1)^{\frac{1}{3}} - \ln \sin^8 x$$

$$f(x) = \frac{1}{3} \ln (x^2 + 1) - 8 \ln \sin x$$

$$f'(x) = \frac{1}{3} * \frac{2x}{x^2 + 1} - 8 = \frac{\cos x}{\sin x}$$


$$f'(x) = \frac{1}{3} \frac{x}{(x^2+1)} - 8 \cot x$$

$$\star \sqrt{F(x)} = F(x)^{\frac{1}{n}}$$

$$* \frac{\ln a}{b} = \ln a - \ln b$$

$$\times \ln a^b = b \ln a$$

$$\times \left( \ln f(x) \right)' = \frac{f(x)}{f(x)}$$



خط : عبدالله دیاک

## إعداد : أيمن زيود

Q: The horizontal asympototy of the function

$$f(x) = \frac{1}{4} \operatorname{an}^{-1} \left( \frac{1 + \sqrt{3} |x|}{x - 1} \right) \quad \text{is (are) } ?$$

lim , lim ald horizontanton ad i juille let x → -∞ x → +∞ asympototy

$$\lim_{x \to +\infty} \tan^{-1}\left(\frac{1+\sqrt{3}|x|}{x-1}\right) = \tan^{-1}\left(\lim_{x \to +\infty}\left(\frac{1+\sqrt{3}|x|}{x-1}\right)\right)$$

$$= \tan^{-1}\left(\lim_{X\to+\infty} \frac{\sqrt{3}X}{X}\right) = \tan^{-1}\sqrt{3} = \frac{11}{3}$$

$$\lim_{X \to -\infty} \frac{\tan^{-1} \left( \frac{1 + \sqrt{3} |x|}{x - 1} \right) = \tan^{-1} \left( \lim_{X \to -\infty} \left( \frac{1 + \sqrt{3} |x|}{x - 1} \right) \right)$$

$$\Rightarrow = \frac{1}{4} \left( \frac{1}{1} - \sqrt{3} \times \frac{1}{X} \right) = \frac{1}{4} \left( -\sqrt{3} \right) = \frac{1}{3}$$

The horizontal 
$$y = T$$
  $y = -T$ 

\* 
$$\lim_{x \to \pm \infty} \pm rig^{-1}(f\alpha) = \pm rig^{-1}(\lim_{x \to \pm \infty} f(x))$$

$$X \mid X \mid \begin{cases} X \Rightarrow +\infty & X \end{cases}$$

244 مكتبة خواطر [ ]:<del>daå</del>=

d w

## إعداد : أيمن زيود

 $\bigcirc \lim_{x \to 2} \frac{x-3}{|x-2|}$ يوْمن عدد أكم من هدير 2-3 =-1 برقم مغير شلاً  $X \rightarrow 2^{\dagger}$  2.00  $\chi$ \_ الب \_ 2.0001-3 2.0001-21  $x \to 2^{-}$  1.9999 = 21إذا طلع مهي موجب خط صد lim x - 3 إذا لملع مهي الت عط هد 1.1999-2 \*إذا كل من 2 × عط یس مواب الدکر 103 × 12 de 131 × <u>مواب الاصغر</u> مداد الماب من بتكل عام بدف إذا الهن والساراذا متكامين مخط العيمة d.n.e b.3 cilitian 1:1

245

مكتبة خو اطُرّ

خط : عبدالله دیاک

l.énèm

# DV (W)

# إعداد : أيمن زيود

|x| = 2

 $x - \pm 2$ 

x = 2  $\Rightarrow 2x - 4 = 2(x-2) = 2(not)$ x - 2 (x - 2) (vertical)

x = -2  $\Rightarrow \frac{2x - 4}{-x - 2} = \frac{-8}{-8}$  (vertical)

The vertical X =-2

Q: The vertical asymptoty f(x)=x2-25 is(are)?

دانخا إذا لملت الم vertical ملك الله المفاح سطعا معا مكارة مسود خال المفاح المفاح مدود عمر مبطلة المفاح المفاح

 $P(x) = \frac{x^2 - 25}{x^2 - 4x - 5} = \frac{(x - 5)(x + 5)}{(x - 5)(x + 1)}$ 

Then X+1=0

x = -1 The vertical asymptoty x = -1

خط : عبدالله دیاک

<sup>246</sup> مِكتبة خواطر طفحة: [

خط: طالب دلات

صفحة: [ ]

247 مكتبة خواطر ﴿لُلِّ مَا لُلُ إعداد : أيمن زيود

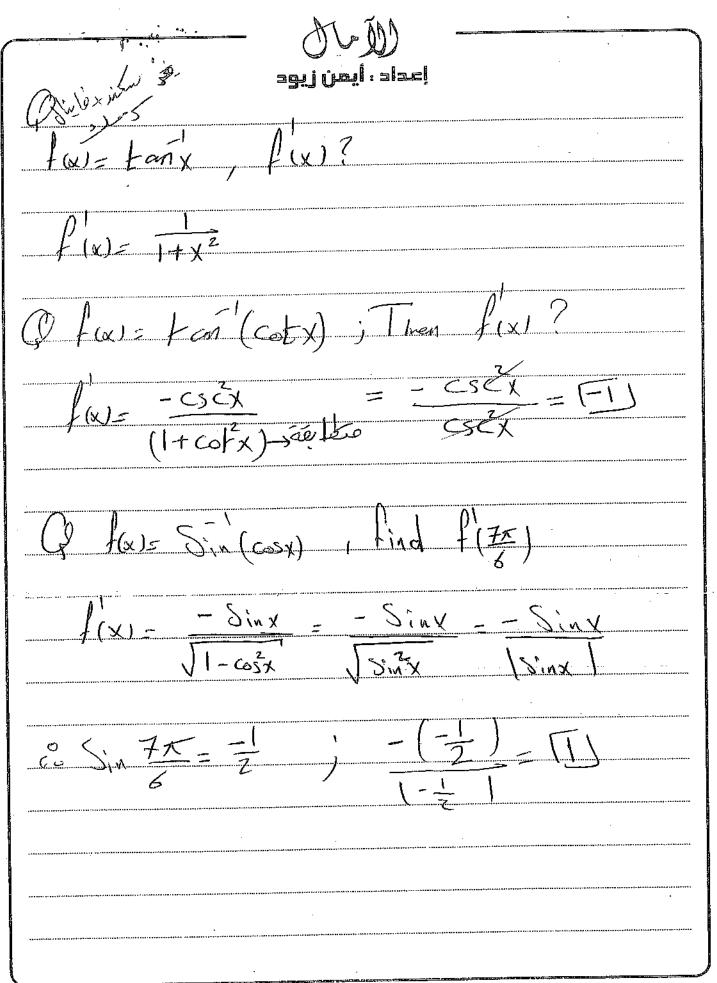
 $f(x) = \frac{1}{x^2 - 25}$ 

Then the values of "x" at which fox is dis cout?

\* ان طلب مدن من مالع اعتبال وبون القيم اعتشاه

 $\frac{1}{\chi^2 - 25} \rightarrow \mathbb{R}$ 

RAR- 8 x2-25=03 X= ±5


Then dis cont. at X=5, X=-5

 $Q \underset{X\to 0}{\lim} \quad S_{in} 2x = \boxed{\frac{2}{9}}$ 

x->0 bx Sinbx bx forbx b

ُ خط : عبدالله دیاک

248 مكتبة خواطر صفحة: [

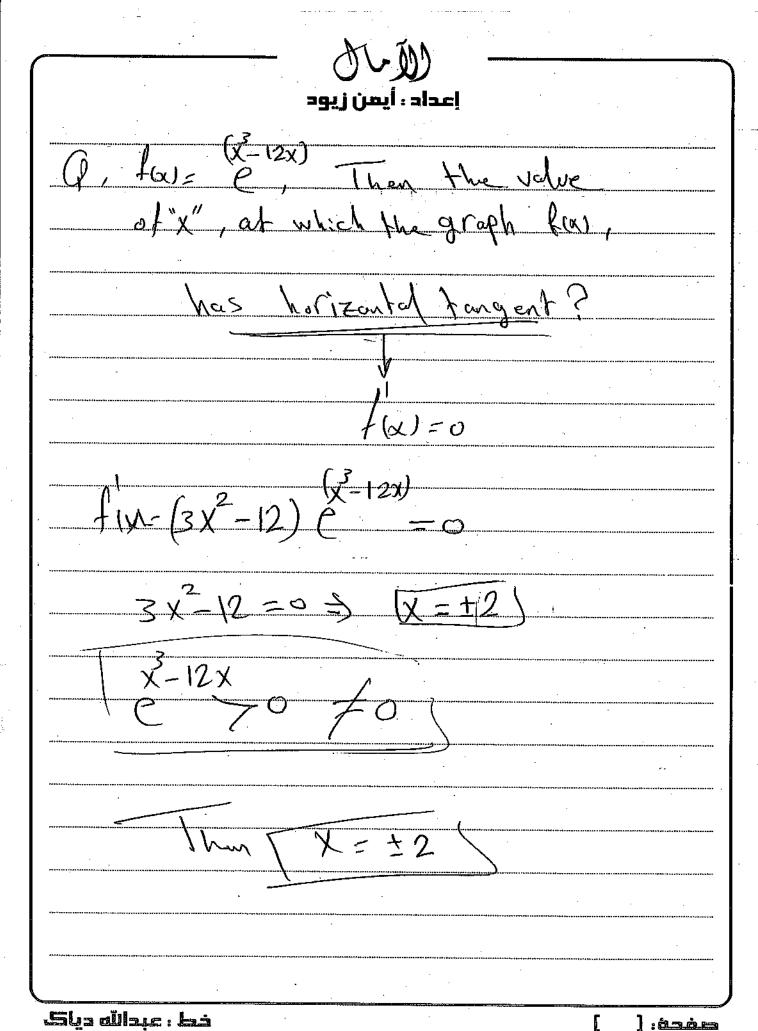


خط : عبدالله دیاک

**e**ocb:[ ]

| إعداد : أيمن زيود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q fax = (x-2) Then (im f (3+h) - fa)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| h->0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Leo hos = Fair < Iph July ai 15 cs;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| لات تعنے بحرفت ، 55 لانہ حاماً العَویف                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Jain W pley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| f(x) = lo(x-2) = 10(3-2) = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| West Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Die / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $X \rightarrow 2$ $X - 2$ $= 11 \times 101 \times$ |
| 20 0 1 c 2 5 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fee/=Inx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fix)= - = = = = [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\chi$ , $(-)$ $(-)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

مكتنة خو اطر مكتنة خو اطر صفحة: (


£

فط : عبدالله دیاک

| agijialasi                                                               |          |
|--------------------------------------------------------------------------|----------|
| Q fox1= log (1+9x), Then the                                             | Slop     |
| of tangent line of                                                       | f-Cx1    |
| at x=0?                                                                  |          |
| Stop fangert -> Plat                                                     |          |
| $\frac{\int_{-1}^{1}}{f(x)-\frac{9}{(1+9x)^{2}}} = \frac{9}{(1+9x)^{2}}$ |          |
| $f(0) = \frac{9}{(1+0)(n2)[1n2]}$                                        |          |
|                                                                          |          |
|                                                                          |          |
| Elpalia: Li                                                              | [ ]:ásés |

-251

مكتبة خواطر



252 مكتبة خو اطر

- 1. The domain of the function  $f(x) = \sin^{-1}(2x-1)$  is:
  - a. [0, 1]
    - b. [-1, 0]
- c. [1, 2] d. [-2, -1] e.

- 2. Let f(x) " tunh x. Then the range of f is:

- a  $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$  b. (-L1) c.  $\left[0,\pi\right]$  d.  $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$  c. none

- J. Let  $f(x) = \tan^{-1}(x)$ . Then f'(x) =

- a.  $\frac{1}{1+x^2}$  b.  $\frac{1}{\sqrt{1-x^2}}$  c.  $\frac{-1}{\sqrt{1-x^2}}$  d.  $\frac{-1}{1+x^2}$  e. none

- 4.  $\int \sqrt{9-x^2} \, dx =$

- a.  $\frac{9\pi}{2}$  b.  $\frac{9\pi}{4}$  c.  $9\pi$  d. 0 e. none
- غاينال عقد سرسك

- 5. | | | tan-1 x =

- $\frac{\pi}{2}$  b. -1 c. 1 d.  $-\frac{\pi}{2}$  e. none
- 6.  $\lim_{x\to 2} \frac{\ln x \ln 2}{x-2}$ 
  - 2 b. -2 c.  $\frac{1}{2}$  d.  $-\frac{1}{2}$  e. none

- 7.  $\lim_{x \to 2x-1} \frac{e^{2x}-2x-1}{x^2} =$
- does not exist b. 4

- 8. The horizontal asymptotes of the function  $f(x) = \frac{\sqrt{x^6 + x}}{2x^3 + 1}$  are:
- a.  $y = \frac{1}{2}$  only b.  $y = -\frac{1}{2}$  only c.  $y = \frac{1}{2}$ ,  $y = -\frac{1}{2}$  d. f has no horizontal asymptotes
  - 9.  $\lim_{x \to \infty} (x)^2 \ln x =$

- d.
- e<sup>2</sup> e. none

Scanned by CamScanner

Ħ

10. link (1+3x)2. ... It Let f be a sudestion such that f(r) = 1-1-1-0-1, xe [0.4]. Then the absolute maximum, value of f | 12. Let f(x) - sinh a. Then f(x) = ä. sinh " auli x b, -sin z 13. The value of  $\left(1 + \frac{\sin t}{t^2 + 1}\right)$  de is: 14. 4. 1 41 \*  $\frac{2x}{x^2+1} = \frac{2x}{x^2+1} = \text{none}$ 15. f2\*de # a.  $2^{r}+C$  b.  $2^{r}(\ln 2)+C$  c.  $\frac{2^{r}}{(\ln 2)}+C$  d.  $\frac{2^{r+1}}{(r+1)}+C$  e. none 16. Junta rete m  $\ln|\cosh x| + C$  b.  $\ln|\sinh x| + C$  c.  $\ln|\cos x| + C$ d. In his xi+C e. none Jeco ha a catalan de a  $e^{2\tanh x} + C$  by  $e^{\tanh x} + C$  c:  $\frac{1}{2}e^{2\tanh x} + C$  d.  $\frac{1}{2}e^{\tanh x} + C$  e. hone 18. If  $\int f(x) dx = 4$ , then  $\int \frac{f(\ln x)}{x} dx =$ .

7. Let f be a function such that  $f(x) = x^2 - 3x^2 - 9x - 5$ . Then f has an unlection point at x = 3.

Ш

254 مكتبة خواطر MAM

Scanned by CamScanner

20. Let I be a function such that  $f(x) = x^2 - 3x^2 - 9x + 5$ . Then I has a local minimum value at x = 20.

21 The area of the region bounded by the curves: y = x and  $y = x^2$  equals:

- 1 c.  $\frac{1}{3}$  d.  $\frac{1}{4}$  e. name

đ.

22. The volume of the solid that results when revolving the region bounded by x=0, x=1,  $y=x^2$ and the x-axis about the x-axis equals:

- <u>я</u> **d**. я

23. The vertical asymptotes of the function  $f(x) = \frac{2x-4}{(x^2-2)^2}$  are:

- a. x=2 b. x=-2 c. x=2, x=-2 d. f has no vertical asymptotes e, none

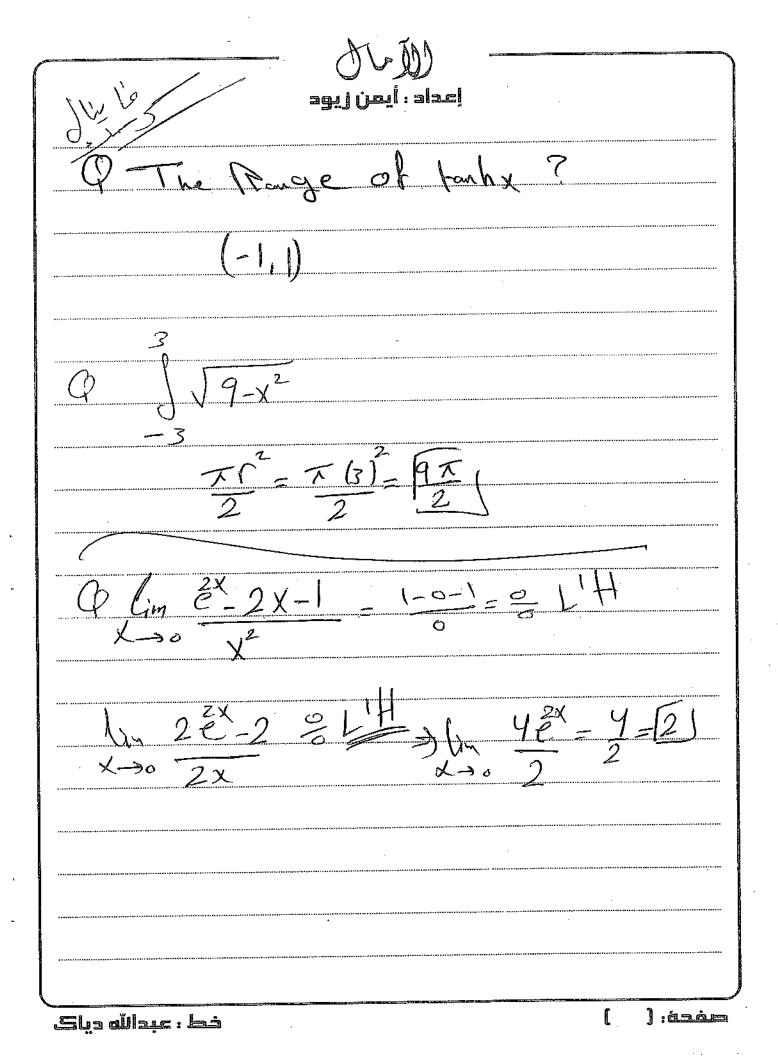
24. frenh 2s sec h 2s di =

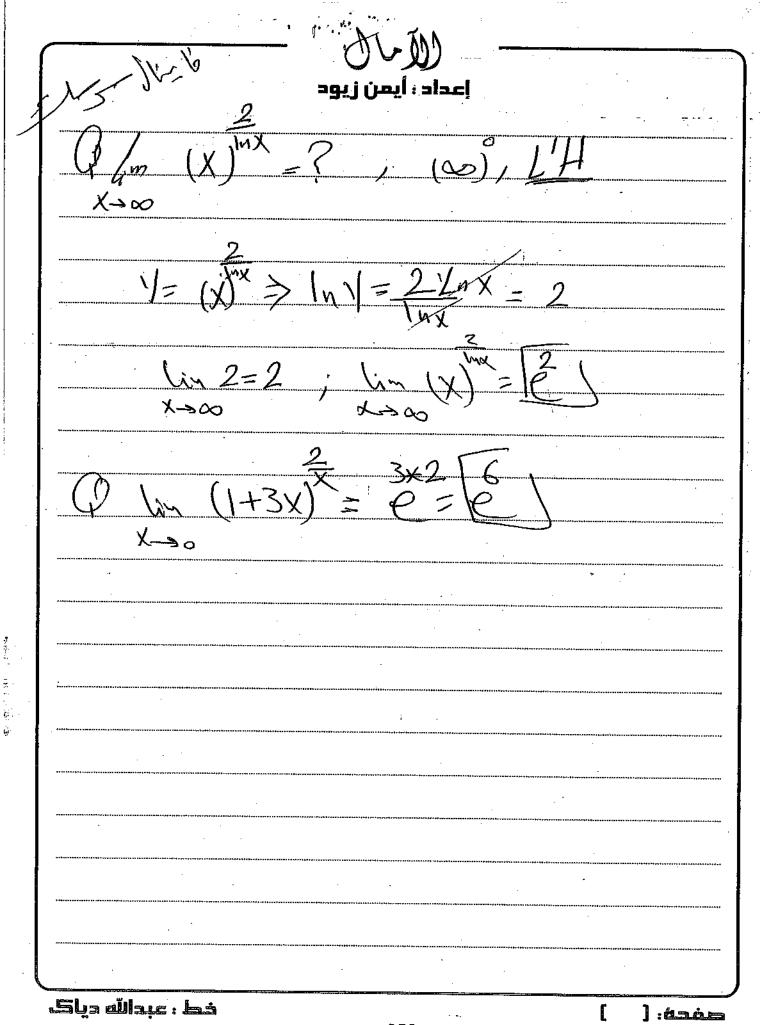
- $-\sec hx + C$  b.  $-\sec h2x + C$  c.  $-2\sec h2x + C$  d.  $-\frac{\sec h2x}{2} + C$  e. none

25. Let  $f(x) = e^{(x^2-12x)}$ . Then the values of x at which the graph of f has a horizontal tangent line are c. 2, -2 d. I has no horizontal tangent line e. none

- 26.  $\lim_{n\to 0} \left(1 * \cos x + x^2 \sin \frac{1}{x}\right) =$

27.  $\int (2x+1)^{10} dx =$ 


a.  $\frac{1}{22}(3^{11}-1)$  b.  $\frac{1}{11}(3^{11}-1)$  c.  $\frac{1}{2}(3^{11}-1)$  d.  $(3^{11}-1)$  e. none 28. Let  $f(x) = \frac{1}{\sqrt{2 - \ln x}}$ . Then the domain of f is:


- (0,2) b.  $(0,e^2)$  c.  $(e^2,\infty)$  d.  $(2,\infty)$  e. none

١٧

(MMM)

Scanned by CamScanner





مکتبة خو مکتبة خو (1) X - 3X - 9X+1, X E [0,4] 1/26 Then the absolute maximum value of f max 0 % Stakentelb101 fai , ing ?  $f(x) = 3x^{2} - 6x - 9 = 0$ x - 2x - 9 = 0 (X-3)(X+1 F(01=  $f(y) = (4)^3 - 3(4)^3 - 9(4) + 1 = -19$ Then absolute maximum for=[]

for = Sinhx, for ? Plas = Coshx  $\frac{Q_{13}}{1}$   $\left(1+\frac{\sin t}{t^2+1}\right).dt$  $\Rightarrow \int_{-2}^{2} \left\{ \int_{-2}^{2} \frac{S_{in} t}{t^{2} + 1} \right\} \int_{-a}^{a} o dt = 0$  $1 \times (2+2) + \left( \int_{-2}^{2} \frac{\sin(-h)}{(-h)^{2}+1} \right) = \int_{-2}^{2} \frac{-\sin h}{h^{2}+1}$ 4+0=[4]

 $\frac{2}{4x} \int_{-\frac{1}{2}+1}^{x^{2}} \frac{dt}{t^{2}+1} \Rightarrow \frac{1}{(x^{2})^{2}+1} \times 2x - \frac{1}{(2x^{2})^{2}+1} \times 2x - \frac{1}{(2x$ 

6

 $2^{x} \cdot t \times \frac{1}{2} \cdot \frac{$  $\frac{Q_6}{2} \int fanh x dx = \int \frac{\sinh x}{\cosh x} dx$ And 5 9 - 165/42  $(cosh_x) = sinhx$ Sinha la = In Coshalta Vise 1 Co PH Sechxe ido U=2 toution du= 2sechx.lx Joseph x P. Ju = 1 e #c = [1 ztonhx | - 1 e +c |

Jfcx1.dx=4 then  $\int \frac{f(\ln x)}{x} \cdot dx$ fitter) Gerel (5 U= lnx = du= = 1.8x => X du = dx ) x = e => u = lne = [  $\int \frac{f(u)}{x} x du = \int \int \frac{f(u)}{u} du = \int \frac{u}{u} du$ 262 مكتبة خواطر

f(x)= X-3X:-9X+5 Then I has inflection Point localmaximaxima at X= T Cal Cro X on fa)=0 = inflection  $\Rightarrow / \times 1 = 3 \times 2 - 6 \times -9$ f(x) = 6x - 6 = 0 $\mathscr{A}(X-1)=0$ inflection [X=1] Pal= 3x-6x-9=0 X - 7x -3=0 1X=then max local at [x=-1]

The area region bounded by the Gire Y=X ) Y=X2 مُا ينا ( X = X = X = X = 0X(X-1)=0 cé Illie 4-1= -4100 =  $\left(\frac{1}{3} - \frac{1}{2}\right)$  $-\left(\frac{2-3}{6}\right)=-\left(\frac{-1}{6}\right)=\left(\frac{1}{6}\right)$ 

> \_\_\_\_\_\_\_ مكتبة خواطر

(0)

(P22) find the Volume of the .... Solid that result when revolving the region born led by X=0, X=1, Y=x2 & x-axis about the x-axis ? V= The (Aca), da  $\sqrt{=} \pi \int (\chi^2)^2 d\chi = \pi \int \chi^4 d\alpha = \pi \frac{5}{5}$  $=\left[\frac{6}{5}\right]$ 

The vertical asympotopy

$$f(x) = \frac{2x - y}{|x| - 2}$$

X=2

$$\frac{2\times -4}{\times -2} = 2\left(\times -2\right)$$

$$\times -2$$

 $\chi - -2$ 

$$\frac{2x-4}{(-x)-2} = \frac{-4-4}{0}$$

Then sertical

266 مكتبة خواطر []

نا پئال

(Pan) | tanhzx sechzx.dx = - Sechzx +c (25) for e Then the value of x at which the graph thus horizantal Longent? horizonld tengent and cites  $f(x) = (3\chi^2 - 12) = 0$ , 3x2-12-0 x - 4=0

(13

267 مكتبة خواطر

- J'ilé (126) (jus  $\left(H \cos x + X^2 \sin \frac{1}{X}\right)$ Sin 00 Cos 00 Sequerz.  $\frac{1}{2} \leq \frac{1}{x} \leq -1$  $X^{2}$   $X^{2}$  Sin  $\frac{1}{x}$   $\Rightarrow$   $-X^{2}$ 1+Cosx+x2 1+Cosx + x2sin 1 > 1+cosx-x2 1M 1+Cosx + x27/m (4 cosx + x25/m) lin (+ cosx - x2 x10) 1+1+07 lim 1+ Cosx + x2 sml > 1+1-0 2 Then Gim (+ cosx + x 5in 1)=(2)

268 مكتبة خواطر

(ax+b) = (ax+b) $(2 \times +1)$ 1

3 - 1 - 22

269

Then the domain 52-11X V2-1nx 2-1nx70=27/nx (C2) to X 1/X-> [X>0] 1-1nx =0 2 = 1 nx => (2 + x)  $\left(0,e^{2}\right)$  270

(P)

|          | 11       | į 2 | 3        | 4                                                | 5        | 16           | 1 7            |   | # | 0.44 |          | الرأم أ  |
|----------|----------|-----|----------|--------------------------------------------------|----------|--------------|----------------|---|---|------|----------|----------|
| A        | <u> </u> |     | 1        | 1                                                | 9        | <u></u>      | <del>! /</del> | 8 | 9 | 10   | 90       | 1 2 54   |
| b        | Ī        |     |          | [                                                | <u></u>  | <del>}</del> | 1900           |   |   | 9    | 11       | 112      |
| C        | Ī        | İ   |          | - <del> </del>                                   | <u> </u> | <u></u>      |                |   |   | 780  | -        | <u> </u> |
| d        | -        |     | <u> </u> | <del>-                                    </del> | <u> </u> | ]<br>        |                |   |   |      |          |          |
| <u> </u> | 1        |     |          |                                                  | <u> </u> |              |                |   |   |      | <u> </u> |          |
|          |          |     |          |                                                  |          |              |                |   |   |      |          | 9        |

Chase the best correct nasvage (2.5 points each):

فيوست ماتم مقدادي

I) The range of the feature  $h(x) = 3x^2 + 6x + 10$ 

$$^{a)}[8,\infty)$$
  $^{b)}[-7,\infty)$   $@(7,\infty]^{d}(-\infty,-7]$  element of these

ď⊳3

e) mone of these

$$\sim$$
 3) The domain of the fraction  $f(x)=\frac{\sqrt[5]{5x^7-22}}{\sqrt[3]{\sqrt{x-1}-3}}$  is

<sup>a)</sup>(37,∞]

<sup>b)</sup>(1, ∞)

② (10,∞)

d) (1,6) e)aone of these

$$\lim_{x\to 0} \frac{\sqrt{x^2+121}-11}{x^2} =$$

الامال اين / يود

a)  $\frac{1}{20}$  b)  $\frac{1}{6}$  c)  $\frac{1}{10}$  d)  $\frac{1}{22}$  e)none of these

Here describes to the equation:  $0.00001=0.1^{z}$  is z=

e) agas of these

(H)

Scanned by CamScanner

$$^{6)}\cos\left(2\tan^{-1}(\frac{12}{5})\right) =$$

7) if 
$$h(x) = \frac{8}{2x-3}$$
 then  $h^{-1}(x)$  has a vertical asymptotic

$$x = 0$$
  $bx = 4$ 

$$f(x = \frac{2}{3}) \qquad f(x = \frac{3}{2}) \quad \text{e)note of these}$$

$$^{87}\log_{\frac{1}{2}}343 - \frac{\ln(49)}{\ln(7)} =$$

$$f(x) = 3\cos^{-1}(x) + 2\ln(e^{x^2}) + 2\log(x)$$
 then  $f^{-1}(2) = 2\log(x)$ 

18) the range of 
$$f(x) = \cos^{-1}(x) + \csc(x)$$
 is

$$a(-\omega, \omega) = \frac{9[-1, 1]}{2} = \frac{0[-\pi, \frac{\pi}{2}]}{2} = 0[-\pi, \frac{\pi}{4}] = 0[0, \pi]$$

stythe faction 
$$f(x) = \frac{5x + \sqrt[2]{100x^2 + 20} + \sqrt[2]{2}}{5x + 82}$$
 has a horizontal asymptotics

$$^{3)}y = 3$$
 and  $y = -1$   $^{3)}y = -1$  and  $x = \frac{3}{17}$ 

$$^{6}y = 5$$
 and  $y = \frac{-5}{3}$   $^{6}y = -1$  and  $y = \frac{17}{3}$ 

elaunt of these

fal the of the following mathematical formulas is not a fauction:

$$^{1/}x^2 + y = 81$$
  $^{1/}y = ln((x-1)^2)$ 

$$^{\rm tr} y = log(\sqrt[3]{x})$$
  $^{\rm d} y = ln(-(x-1)^2)$  ejnope af these

(H)

Charte the last content around (2.5 points man) سكند جائم مقدادي 181 1(x) = (x + 2)(x3 - 3) 200 ['(0) = by ti cj-2 dj-3 ejance of these 1 2/1/(1/1) = (10) = الامل المجاريود d) -2 e)none of these £12 610 #1 In the value of k that make  $f(x) = \begin{cases} 3x^2 - 2k, x \ge 3 \\ 4k - x < 2 \end{cases}$  continuous every where is k = 14/2 6) 4 5)2 a) ) differentiable at  $x = 4\pi i x$  function f(x) = (3x - 2) + 27 is not differentiable at  $x = 4\pi i x$ dyls emone of these c)1.5 0)9 312 Splee function f(x) = [x] + 15 is not continuous at x = $67\frac{12}{7}$   $67\frac{147}{2}$  e)none of these a) [1]  $f(x) = \sinh(x) \sec(x) + \sec(x) =$ c) 2 d) ÷ e)none of these **5)** () 6,1 7.18  $f(x) = xe^{-tx}$  then f''(0) =b) -10 c) 25 d)-15 e)none of these a) 🦸

(HH)

Scanned by CamScanner

273

مكتبة خو اطر

 $8) if \ln(y) + 2^{x}y = 0 \text{ then } \frac{dy}{dx} =$ 

(a) 
$$\frac{\sin(2)y^22^4}{1+2^2y}$$
 (b)  $\frac{\log(6.5)y^22^4}{1+2^2y}$  (c)  $\frac{\log(2.5)y^52}{1+2^2y}$ 

chone of these

9) if 
$$f(x) = \tan^{-1}(5x)$$
 then  $f''(x) =$ 

$$b)\frac{50x}{(1+25x^2)^3}$$

b) 
$$\frac{50x}{(1+25x^2)^2}$$
 c)  $\frac{-155x}{(1+25x^2)^2}$ 

e)none of these

$$10)\lim_{x\to 0}\frac{\cos(x)-x}{5x}=$$

b) 1 c)-0.2 d)  $\frac{1}{5}$  c) none of flavor

[1] if  $y = \log_3 \sqrt[4]{x}$  then  $\frac{dy}{dx} =$ 

$$b) \frac{1}{2 \log Dx}$$

d) 
$$\frac{1}{2\ln(3)\epsilon}$$

a)  $\frac{-1}{2 \ln(3)\pi}$  b)  $\frac{1}{2 \log(3)\pi}$  c)  $\frac{1}{\ln(3)\pi}$  d)  $\frac{1}{2 \ln(3)\pi}$  e)none of these

12) if  $y = \cos^2(\frac{c}{2})$  then  $\frac{dy}{dx} =$ 

a) 
$$\frac{-\sin(x)}{2}$$
 b)  $-2\sin(2x)$  c)  $\frac{-\sin(2x)}{2}$  d)  $\frac{-\sin(2x)}{4}$ 

(HIH)

Scanned by CamScanner

#### Choose the boil courest anime (I points each)

little function  $f(x) = 2x^2 + 6x^2 - 46x \ge 10$  is ingressing on

11 R - (-24) (11-24) (11-12,-2) (114,0) chanc of these

Tele lucino fill o Zi' - 614 - 481 e 10 bas a heal maximum-

the the che the shorther

tale temperatural (t) = 11 - 41 - 44 - 44 - 10 ii consider up an

an - or is by - m - it lift or light to enough of their

Later Exercise files of the other and a this of the bar an inflation point

war begen bei ber ber bei biebe fieb albeit meie ift Gene

有可能的 中国发生中的 中心主义 中 g 1 一种 新 在 新 **表 对 在 X (4) (4) (4) (4)** 

医乳腺 医自体性 出来 過度 医医神经神经神经

الامل اعتزيود

THE SERVE OF THE PARTY OF THE PROPERTY OF THE

Figure & North and a grant of the second of

state of the same 
oral treatment of amending the approprie

and ord cold diff control there

to Crestative wat pro tit til description

Had fired = 5. Little = -1 to al fired =

as his tile die semesthem

Million of the same seems also come of come

(H H H)

Scanned by CamScanner

$$(4)\int_{0}^{\frac{\pi}{2}}\cos(x)e^{\sin(x)}dx$$

$$14) \int_0^{\frac{\pi}{2}} \cos(x) e^{\sin(x)} dx = a) e^{-\frac{\pi}{2}} b) e^{-1} c)_{\frac{\pi}{2}}^{\frac{\pi}{2}} d) \pi e \ln a$$

$$15) \int_0^{\log_2 x} dx = a \ln a$$

$$15) \int \frac{\log_1 x}{x} dx = a) \frac{(\ln(x))}{2\ln(3)} + c \qquad b) \frac{(\ln(x))^2}{2\ln(3)} + c \qquad c) \frac{(\ln$$

d) 
$$\frac{(\ln(3x))^2}{2\ln(3)} + c$$
 e)none of these

16) the area bounded by the curve 
$$y = \frac{x+1}{x^2+2x}$$
 and the lines  $x = 1$ .

a)15 b) 
$$\ln(5) - \ln(3)$$
 c) $\frac{1}{2}\ln(5)$  d)22 e)none of these

17) the volume of revolution the region bounded by f(x) = 5x and

And 
$$x = 2$$
 around the x axes is =

a)
$$\frac{200\pi}{3}$$
 b) $\frac{100\pi}{3}$  c)200 $\pi$  d)200 e)none of these

$$18) \int_0^1 \frac{4}{\sqrt{1-x^2}} dx = a)\pi \qquad b) 2\pi \qquad c) 3\pi \qquad d) \frac{\pi}{4} \quad e) none$$

a)
$$(1+\frac{1}{y})$$
 b)  $(1-\frac{1}{y})$  c)  $-(1+\frac{1}{y})$  d)  $-(1+\frac{2}{y})$  e)none of these

20) if 
$$f(x) = \cos(2x)$$
 then  $f^{13}(x) =$ 

(HHH)

Choose the best correct, answer 12 points each

I the function  $f(x) = 2x^3 - 6x^2 - 48x + 10$  is occreasing on

a) 
$$R = (-2.4)$$
 b)  $(-2.4)$  c)  $(-\infty, -2)$  d $(4, \infty)$  element of these

In the function  $f(x) = 2x^3 - 6x^2 - 48x + 10$  has a local maximum.

3) the function  $f(x) = 2x^3 - 6x^2 - 48x + 10$  is conserve up as

a)
$$(-\infty, 1)$$
 b) $(-\infty, -2)$  c) $(1, \infty)$  d) $(4, \infty)$  space of these

4) the function  $f(x) = 2x^3 - 6x^2 - 48x + 10$  has an inflection points

5) the function  $f(x) = x^2$  has a local maximum at x =

d) A comme of these a) 0 b)10000 c) 1

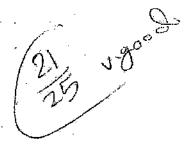
6) if  $g(x) = (2x + 7)^n$  then g'(x) =

7) 
$$\lim_{x\to 0} x \cos(2x = x) = b_1 + 2 + c_1 + c_2 + c_3 + c_4 + c_4 + c_4 + c_5 + c_4 + c_5 + c_5 + c_5 + c_6 $

8) if 
$$h(x) = \int_{3}^{\sqrt{x}} \frac{1}{x} dt$$
 then  $h'(x) =$ 

$$a) \frac{1}{\sqrt{2}} (b) \frac{1}{2\pi} (c)^{\frac{3}{2}} d) \frac{1}{\sqrt{2}}$$
 chance of these.

9) if 
$$\int_{-\pi}^{2} f(\pi) d\pi = 0$$
,  $\int_{1}^{\pi} g(\pi) d\pi = -10$  then  $\int_{-\pi}^{\pi} (f + g)(\pi) d\pi =$ 


$$10) \int_{1}^{\frac{1}{2}} \cos(\pi s) ds = 0)_{\frac{\pi}{2}}^{\frac{\pi}{2}} \quad \text{for } c) \frac{1}{\pi} \quad di = \frac{\pi}{2} \quad \text{s) some of these}$$

$$(1) i \int_{1}^{3} f(x) dx = 5$$
,  $\int_{5}^{3} f(x) dx = -3$  then  $2 \int_{3}^{3} f(x) dx =$ 

$$(2)\int_0^1 (4x+2)^4 dx \approx a) \frac{96}{6}$$
 b)  $64$  c)  $80$  d)  $36$  e) none of these

( HHH )

Scanned by CamScanner



1 2 1 35 is

The Hashemite University

Calculus I

Date 12 -11-2012

Department of Mathematics

Second Exam

Time: One Hour

| اميم المالب: ﴿ اللَّهُ مَا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ المتعالمان: |       |     |     |   |            |     |     |             |     |     |     |
|----------------------------------------------------------------------------------------------------------------|-------|-----|-----|---|------------|-----|-----|-------------|-----|-----|-----|
| وقت المحاضرة: ٢٥ - 12 اسم المدرس:                                                                              |       |     |     |   |            |     |     |             |     |     |     |
| 1                                                                                                              | /2    | 3   | 4   | 5 | 6.         | 7 / | 8   | 9           | 10  | 11  | 12  |
| a                                                                                                              | / a / | a   | a   | 0 | a          | (a) | (a) | <b>₽</b> √. | а   | a / | a   |
| (b)                                                                                                            | b     | ь/  | 6   | 8 | bj         | b   | Ъ   | ъ           | b / | 6)  | ь / |
| 8                                                                                                              | (g)   | c   | 00X | ¢ | C          | С   | c   | 0           | c / | .64 | c   |
| d                                                                                                              | ď     | (a) | d   | d | <b>(4)</b> | d   | d   | <u>d</u>    | (d) | d   |     |

T) Let f and g be differentiable at x = 1, such that f(1) = 1, f'(1) = 2, g(1) = -2 and

$$g'(1) = 4$$
, then  $\frac{d}{dx}(g(x)\sqrt{f(x)})|_{x=1} =$ 

a) 5

c) 
$$-\frac{5}{2}$$
 d)  $\frac{5}{2}$ 

d) 
$$\frac{5}{2}$$

الاطل ايمن ريود

2) If f(2) = 1,  $g(x) = \ln(x^2 + 1)$ , and (gof)'(2) = 6, then f'(2) =

- a) 7
- b) -3
- d) 8

3) The equation of the tangent line to the curve

 $f(x) = \sin^2 x - x \cos x^2 + 3$  at x = 0 is given by

- a) y = x + 3
- b) y= x-3
- c) y=-x-3

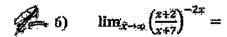
4) The critical point(s) of  $f(x) = x + \frac{4}{x}$  is (are)

a) 0 only

- b) -2 and 0 and 2
- c) -2 and 2
- d) 2 only

Page "1"

(Test)


### 5) The values of k and in that make

$$f(x) = \begin{cases} \frac{1}{x} + x & , x > 1 \\ \frac{1}{x} + x & , x < 1 \end{cases}$$
 differentiable at x=1 are:

b) k=0, m=2

c) 
$$k=1, m=2$$

d) k=1, m=2



c) e<sup>8</sup>

d)  $e^{10}$ 

7) The value of (c) such that the line y=-x-4, is tangent to the curve  $y=c\sqrt{x}$ 

$$(a) c = -4$$

b) c = -2 c) c = 2

d) c = 4

8) If 
$$2x^2 + y^2 = 2$$
, then  $\frac{d^2y}{dx^2} =$ 

b)  $\frac{4}{y^3}$  c)  $-\frac{6}{y^3}$ 

9) One of the following is an inflection point for  $f(x) = \frac{x^2}{x^2+3}$ 

a) 
$$(-1, \frac{1}{4})$$

b)  $(0,\frac{1}{3})$   $(0)(1,\frac{4}{3})$   $(0)(-2,\frac{4}{7})$ 

10) 
$$f(x) = \frac{x^2}{x^2+3}$$
 increasing in

b) [1,∞)

c)  $(-\infty, 0]$ 

11) 
$$f(x) = \frac{x^2}{x^2+3}$$
 concave down in

a) [-1, 1]

b)  $(-\infty, -1)U(1, \infty)$  c) (-1, 1) d)  $\{0, \infty\}$ 

12) 
$$f(x) = \frac{x^2}{x^2+3}$$
 has absolute maximum at

a) x = -1

b) x = 0

c) x=1

(d) non of these

page \*2 \*

(Test

سكند انماني ملان ملان ملان ملان العقدة

Select the best correct seswer and fill it in the table above:

1) 
$$\lim_{h \to 0} \frac{(5+h)^2-25}{h} =$$
(a) 8 (b) 10 (c) 0 (d) doesn't exist

2) 
$$\lim_{x \to \infty} \sin(\frac{1}{x}) =$$
(a) 0 (b) -1 (c) 1 (d) doesn't exist

3) The horizontal asymptote(s) of 
$$y = \frac{\sqrt{4x^2 + 2}}{x + 3}$$
 is(are)

b) y = 2 (c) y = 2, y = -2

4) 
$$\lim_{x \to \infty} x^3 - 2x^2 + 7 =$$
(a) 0 (b)  $-\infty$  (c) We can not compute this limit (d)  $\infty$ 

5) Let 
$$f(x) = e^{x^2}$$
. Then  $f'(1) =$ 
a) 0 b) e c) doesn't exist d) 2e

مين زيود

teixs fareob (b)

6) Let 
$$f(x) = \sin^2 x$$
. Then  $f\left(\frac{\pi}{4}\right) =$ 

(a) y= -2

7) Let 
$$g(x) + \sin(xg(x)) = x^2 - 2$$
. Note that  $g(0) = -2$ . Then  $g'(0) = -2$ .

(Tc,+)

Scanned by CamScanner

281 مكتبة خواطر 8) cosh(ln 1) =

(b) 
$$-\frac{4}{3}$$
 (c) 0

(d) 
$$\frac{5}{3}$$

9) Let  $f(x) = 2^{\cos(x)}$ . Then f'(0) =

$$(c)-ln2$$

10) Let  $f(x) = x \tan^{-1}(x)$ . Then f'(-1) =

(b) 
$$\frac{1}{2} + \frac{\pi}{4}$$
 (c) 0

(d) 
$$\frac{-1}{2} + \frac{-\pi}{4}$$

(1) Let  $f(x) = \ln(x^{1} + 3)$ . Then f'(1) =

(a) 
$$\frac{-1}{2}$$

(b) 0 (c) 
$$\frac{1}{2}$$

12) Let  $f(x) = (x+1)^x$ . Then f'(1) =

Scanned by CamScanner

上しいかしてはしりが

9) far = Sinhx. Southx | for = Sinhor . Easter of last of sero

10) fix = x ton'x Then 1'41=??

Then 1'41=??

Then 1'41=??

Then 1'41=??

Then 1'41=??

11) for the Three?

Engine Feam

11) for La (x2+3) For = ??

f(x1 = 2x = >f(1) = ??

12) In fix = (n (x+1) x , f(1) f(x) = (x+1) Y In fix = y (n (x+1) . f(1) = (1+1) = []

 $\frac{f(x)}{f(x)} = \chi \cdot \frac{1}{x+1} + \ln x + 1$ 

= 1+1000°=1+109

Engine feem

Scanned by CamScan@

283

مكتبة خو اطر

ال كنم سي لكولاس 1) him (5+4) = 25 = him (5+4) = (5) fine (x) = fix) = fine = 2x fist=10 2) lim Sim(x) = Sim(1) = Sim(0) = 0 أعند أيود 1 X - 2x +7 - 1 x = -00 Engline beam 5) for e fill= 55 for 5 x 5 = 1/11= 5016-56 6) for = 2: 4 = 5: 1 = 5 : 1 = 5 : 1 = 5 : 1 7) 9(x) + Sin (x)(x)) = x2-2 9(0)=-2 9(0) 9(x) + (x9(x) +9(x) (co (x4xx) = 2) 9(0)+ (0(3) - 2) cos (ones) = 2(0) lma s blua 9(0) -2 = => 9(01=2) 8) cosh(h3) = (+e) = (+e) = 3+3 = (0 = 5)

Scanned by CamScanner

مكتبة خواطر