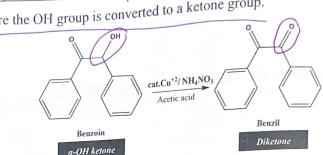
Benzoin Ji is Experiment 3

o living

Multistep synthesis of Phenytoin

Multistep synthesis of Phenytoin


Part2: Oxidation of Benzoin to Benzil

Dimerization

of Benzipreparation of benzil can be done by Mild oxidation of benzoin using

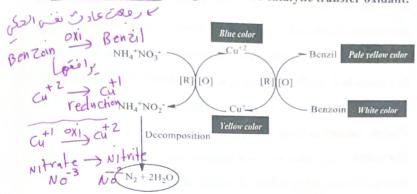
catalytic oxidation reaction/nitric acid or any other mild oxidizing agent,

where the OH group is converted to a ketone group.

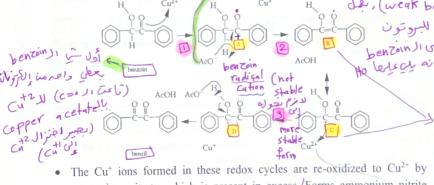
 Benzoin can be oxidized to the diketone benzyl using a Cu²⁺ salt and ammonium nitrate. Only catalytic amounts of copper(II) acetate are necessary because the Cu²⁺ is continuously recycled.

Benzoin Si co Enzoin Denzil De

Refer to appendix IX: Oxidation of Benzoin to Benzil using nitric acid.


decompose in the reaction mixture into nitrogen gas.

reoxidation of the Cut2 & again and again from cycle to cycle ammonium sicerbiae nitrate (No.3 -> No.2)


Mechanism

The reaction is

Coupled Oxidation; using Cu+2 as the catalytic transfer oxidant.

- In the first redox cycle, benzoin donates an electron to Cu²⁺, forming Cu⁺ and benzoin redical cation A.
- The benzoin radical cation loses a proton to acetate ion (AcO-), forming acetic acid(AcOH) and a resonance stabilized radical, depicted by structure B and C.
- Another redox cycle between Cu²⁺ and the radical takes place, forming a second Cu⁺ ion and cation D, which loses a proton to another acetate ion to form benzil. (Conjugate base of acetic acid) a cetate ion I on

ammonium nitrate, which is present in excess./Forms ammonium nitrite (NH4NO2), which decomposes to nitrogen and water under the reaction (No -> No conditions. $2 \text{ Cu}^+ + 2 \text{ H}^+ + \text{ NH}_4 \text{NO}_3 \rightarrow 2 \text{ Cu}^{2+} + \text{ H}_2 \text{O} + \text{ NH}_4 \text{NO}_2 \rightarrow 2 \text{ Cu}^{2+} + \text{ N}_2 \uparrow + 3 \text{ H}_2 \text{O}$

resonance stabilized ra dical

لہے کہ ال

(more

benzoin

stable)

7 Assignment

stable on is Carbo cation of radical of CIPLESS. *

Noch single e rege other ct 2 ... (SS) is in single e rege other ct 2... benzilliliber. another acetate - benzoin ationlis ma

Procedure

- 1. In a round bottomed flask place 1.75 g of unrecrystallized benzoin, ml of glacial acetic acid, 0.8 g of pulverized (reduced to fine particle) ammonium nitrate, and 1 ml of a 2% solution of cupric acetate.
- 2. Add 1-2 boiling chips, attach a reflux condenser and bring the solution to a gentle boil. As the reactants dissolve, evolution of nitrogen begins
- 3. Boil the blue solution for 1.5 hr to complete the reaction.
- 4. Cool the solution to 50-60°C and pour it into 10 ml of ice-water mixture in a beaker [to ppt product, since benzil insoluble in water], while stirring it. Then Benzil separates out as yellow oil, which immediately solidifies.
- 5. After crystallization of benzil is complete, collect the crystals on suction filtration and wash them thoroughly with water.
- 6. Press the product as dry as possible on the filter.
- 7. If desired, it may be purified by re-crystallize from methanol or 75% ethanol. (After dissolving the product in hot ethanol, add water dropwise to reach the cloud point and allow it to crystallize).

	Weight (gm)	M.P
Benzil		The second secon

- 4.1 Discus the chirality of the product, does it optically active? Explain your answer.
- 4.2 What structural features make benzil yellow and benzoin colorless (white)?
- 4.3 Would you have obtained the same results for the oxidation of benzoin if the label on the copper acetate bottle had read "cuprous acetate?