Pharmaceutical Organic Chemistry-1

Chapter-7: Carboxylic Acids and their derivatives

Structure of Carboxylic Acids

- The functional group common to all carboxylic acids is the carboxyl group ame is a contraction of the parts: the carbonyl and hydroxyl
- o The general formula for a carboxylic acid can be written in expanded or abbreviated forms.

Acids

- Depending on whether an R or an Ar. residue is attached to the carboxyl group; Carboxylic acids are classified as aliphatic or aromatic.
 - Aliphatic Carboxylic Acids.

R-COOH (R = H or alkyl)
$$CH_3$$
-COOH Aliphatic acid

• Aromatic Carboxylic Acids.

Ar—COOH (R = C₆H₅-)

Aromatic acid

Fatty acids.

Long straight-chain carboxylic acids with even numbers of carbons, which were first isolated from fats and waxes.

COOH

Benzoic acid

C o m m o n

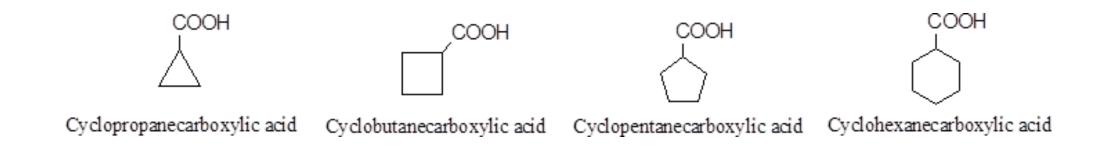
Names of carboxylic acids all end in -ic acid.

- These names usually come from some Latin or Greek word that indicates the original source of the acid.
- Common name, substituents are located with Greek letters, beginning with the α-carbon atom.

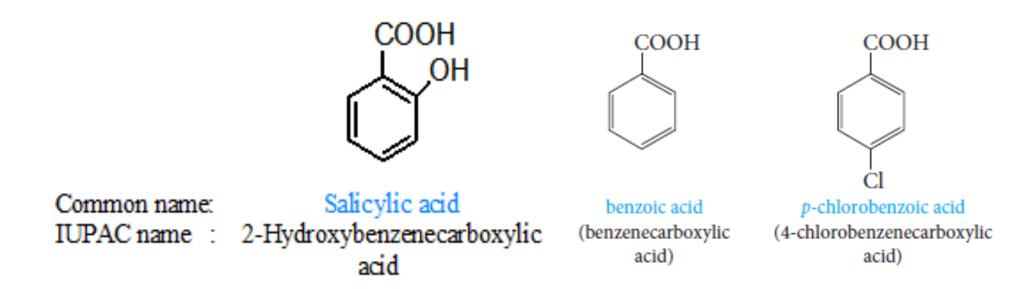
I U P A C

SystNear replace the final e in the name of the corresponding alkane with the suffix - oic and add the word acid.

Alkane- e + oic acid = Alkanoic


o IUPAC system, the chain is numbered beginning with the carboxyl carbon atom, and substituents are located in the usual way.

Carbon atoms	Formula	Source	Common name	IUPAC name
1	НСООН	ants (Latin, formica)	formic acid	methanoic acid
2	CH ₃ COOH	vinegar (Latin, acetum)	acetic acid	ethanoic acid
3	CH ₃ CH ₂ COOH	milk (Greek, protos pion, first fat)	propionic acid	propanoic acid
4	CH ₃ (CH ₂) ₂ COOH	butter (Latin, butyrum)	butyric acid	butanoic acid
5	CH ₃ (CH ₂) ₃ COOH	valerian root (Latin, <i>valere</i> , to be strong)	valeric acid	pentanoic acid
6	CH ₃ (CH ₂) ₄ COOH	goats (Latin, caper)	caproic acid	hexanoic acid
7	CH ₃ (CH ₂) ₅ COOH	vine blossom (Greek, oenanthe)	enanthic acid	heptanoic acid
8	CH ₃ (CH ₂) ₆ COOH	goats (Latin, caper)	caprylic acid	octanoic acid
9	CH ₃ (CH ₂) ₇ COOH	pelargonium (an herb with stork-shaped seed capsules; Greek, <i>pelargos</i> , stork)	pelargonic acid	nonanoic acid
10	CH ₃ (CH ₂) ₈ COOH	goats (Latin, caper)	capric acid	decanoic acid


- The carboxyl group has priority over alcohol, aldehyde, or ketone functionality in naming.
- The prefix oxo- is used to locate the carbonyl group of the aldehyde or ketone.

➤ Cycloalkane carboxylic acid

When the carboxyl group is attached to a ring, the ending -carboxylic acid is added to the name of the parent cycloalkane. (i.e. Cycloalkanecarboxylic acid)

➤ Aromatic acids are named by attaching the suffix -oic acid or -ic acid to an appropriate prefix derived from the aromatic hydrocarbon.

➤ Dicarboxylic acids (acids that contain two carboxyl groups) are known almost exclusively by their common names.

➤ Aliphatic dicarboxylic acids are given the suffix -dioic acid in the IUPAC system.

➤ The three benzenedicarboxylic acids are generally known by their common names.

 CO_2H

 CO_2H

Physical Properties of Acids

- Carboxylic acids are polar and they form hydrogen bonds with themselves or with other molecules.
- Carboxylic acids form dimer, with the individual units held together by two hydrogen bonds between the electron-rich oxygens and the electron-poor hydrogens.

$$R-C$$
 $O-H-O$
 $C-R$
 $O-H-O$
 $C-R$
 $O-H-O$
 $C-R$
 $O-H-O$
 $C-R$
 $O-H-O$
 $O-H-O$

Boiling Points

Therefore, they have high boiling points for their molecular weights-higher even those of comparable alcohols.

Acids

Solubility in water

Hydrogen bonding also explains the water solubility of the lower molecular weight carboxylic acids.

- ? The first four aliphatic acids (formic through butyric) are completely miscible in water.
- ? Aromatic acids are insoluble in water.

Solubility in H ₂ O at 25°C	b.p. °C	Mol. Wt.	Name	Structure
Very soluble Very soluble	100	46	Formic acid	HCOOH
	78	46	Ethyl alcohol	CH ₃ CH ₂ OH
Very soluble	118	60	Acetic acid <i>n</i> -Propyl alcohol	CH ₃ COOH
Very soluble	97	60		CH ₃ CH ₂ CH ₂ OH
4.0 g/100 g H ₂ O	187	102	Valeric acid n-Hexyl alcohol	CH ₃ (CH ₂) ₃ COOH
0.6 g/100 g H ₂ O	156	102		CH ₃ (CH ₂) ₄ CH2OH
Insoluble	250	122	Benzoic acid 3-Phenylethanol	Ph-COOH
Insoluble	250	122		Ph-CH ₂ CH ₂ OH

Acid Strength and Structure

 Carboxylic acids (RCOOH) dissociate in water, yielding a carboxylate anion (RCOO-) and hydronium ion.

Why carboxylic acids are more acidic than alcohols?

- ➤ In ethoxide ion, the negative charge is localized on a single oxygen atom.
- ➤ In acetate ion, on the other hand, the negative charge can be delocalized through resonance.

$$CH_{3}CH_{2}\overset{..}{\overset{..}}}{\overset{..}}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset{..}{\overset$$

$$\begin{bmatrix} CH_3 - C & O & - & CH_3 - C & O & - \\ O & - & CH_3 - C & O & - \\ O & - & CH_3 - C & O & - \\ \end{bmatrix}$$
resonance in a carboxylate ion (acetate ion)

Structure

Effect of Structure on Acidity; the Inductive

- Effektidities can vary depending on what other groups are attached to the molecule.
 - Recall that *electron-withdrawing groups* (-*I*) *enhance acidity, and electron-releasing groups* (+*I*) *reduce acidity.*

This effect relays charge through bonds, by displacing bonding electrons toward electronegative atoms, or away from electropositive atoms.

$$\sum_{NO_2}^{COOH}$$
 $>$ $\sum_{NO_2}^{COOH}$ $>$ $\sum_{CH_3}^{COOH}$ $>$ $\sum_{CH_3}^{COOH}$

Structure

Effect of Structure on Acidity; the Inductive Effect or Formic acid is a substantially stronger acid than acetic acid.

This suggests that the methyl group is more electron-releasing (hence anion-destabilizing and acidity-reducing) than hydrogen.

Example: acetic acid with those of mono-, di-, and trichloroacetic acids.
 Comparison of acid strengths of acetic Acid and chlorinated acetic acids

Structure

Effect of Structure on Acidity; the Inductive

Effect

$$\begin{array}{c} CH_3 - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}{c} \frac{\delta - Cl}{CH - CH_2} - C \\ O \\ O \end{array} - \begin{array}$$

The more chlorines, the greater the effect and the greater the strength of the acid.

 Comparison of acid strengths of butyric acid and the monochlorinated acids.

Preparation of Acids

- 1) Hydrolysis of Cyanides
 - (Nitriles) action requires either acid or base.
 - > In acid, the nitrogen atom of the cyanide is converted to an ammonium ion.

$$R-C\equiv N+2$$
 H_2O \xrightarrow{HCl} $R-C-OH$ $+$ NH_4 $+$ Cl^- a cyanide, an acid ammonium ion

In base, the nitrogen atom is converted to ammonia and the organic product is the carboxylate salt, which must be neutralized in a separate step to give the acid.

$$R-C \equiv N+2 \text{ H}_2O \xrightarrow{\text{NaOH}} R-C-O-\text{Na}^+ + \text{ NH}_3$$
a carboxylate salt ammonia

Alkyl cyanides are generally made from the corresponding alkyl halide.

Acids

2) Reaction of Grignard Reagents with Carbon Dioxide (Carbonation of

- Grignard Reagent)

 Output

 Grignard Reagents

 add to the carbonyl group of carbon dioxide to give acids, after protonation of the intermediate carboxylate salt with a mineral acid like
- The acid obtained has one more carbon atom (the reaction provides a way to increase the length of a carbon chain).

Reactions of Acids

1) Reactions with Bases: Salt

Formation

Carboxylic acids, when treated with a strong base, form carboxylate

salts.

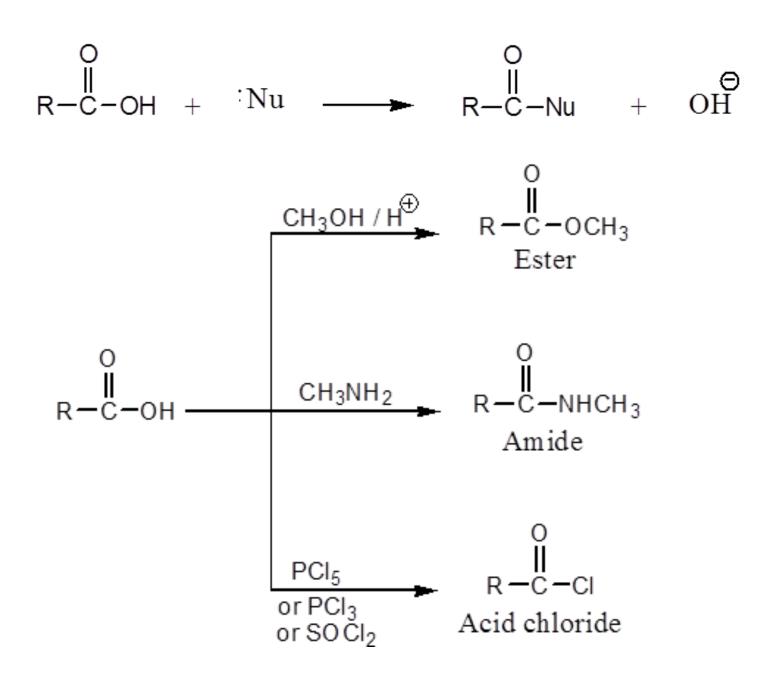
$$R-C$$
 $+ Na^{+}HO^{-}$ $+ R-C$ $+ HOH$
 $O-Na^{+}$

carboxylic acid strong a sodium carboxylate water pK_a 3–5 base (weak base) pK_a 16

$$R-C-OH + NaHCO_3 \longrightarrow R-C-O$$
: $Na^+ + CO_2$ $+ H_2O$

Reactions of Acids

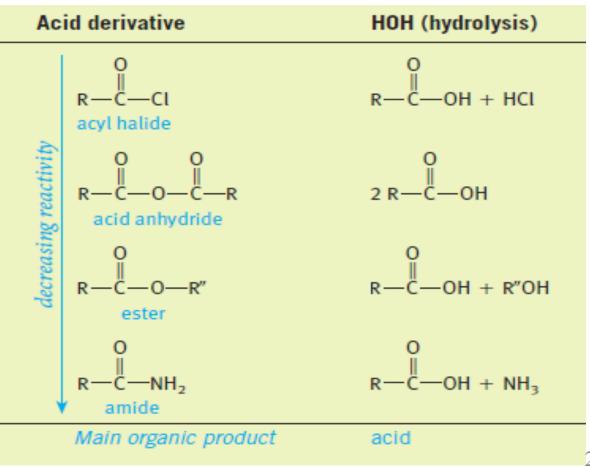
1) Reactions with Bases: Salt


Formation

Examples.

Reactions of Acids

2) Nucleophilic Substitution


Reactions

Carboxylic Acid Derivatives

 Carboxylic acid derivatives are compounds in which the hydroxyl part of the carboxyl group is replaced by various other groups.

 All acid derivatives can be hydrolyzed to the corresponding carboxylic acid.

20

Carboxylic Acid **Derivatives**

Acid

Chloride

- Acyl chlorides have the general formula RCOCI.
- > Acyl chlorides are more common and less expensive than bromides or iodides. Nomenclature:

Acyl chlorides, or acid chlorides, are named by replacing the -ic acid ending of the parent acid by -yl chloride.

IUPAC Ethanoyl Chloride

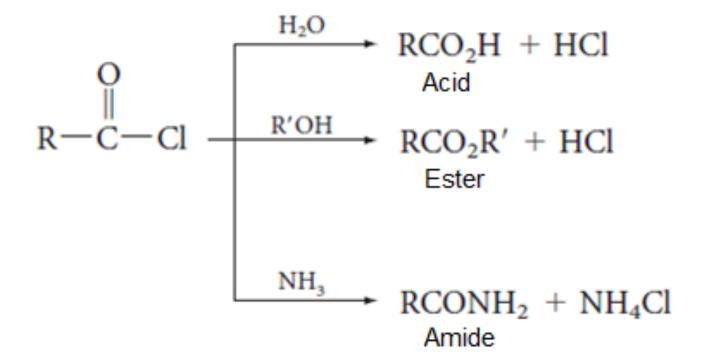
Acid

Chloride

> Preparation:

They can be prepared from acids by reaction with thionyl chloride or phosphorous pentachloride.

$$R-C-OH + SOCl_2 \longrightarrow R-C-Cl + HCl + SO_2$$


$$0$$

$$R-C-OH + PCl_5 \longrightarrow R-C-Cl + HCl + POCl_3$$

Acid

Chloride

> Reactions: They can react rapidly with most nucleophile.

Acid

Chloride ? Examples:

O
$$\parallel$$
 $CH_3C-Cl + 2 NH_3 \longrightarrow CH_3C-NH_2 + NH_4^+ Cl^-$
acetyl chloride acetamide

Esters

➤ Esters are derived from acids by replacing the –OH group by an –OR group and have the general formula R/COOR.

Nomenclature:

- They are named in a manner analogous to carboxylic acid salts.
- The R part of the –OR group is name first, followed by the name of the acid, with the –*ic acid* ending changed to –*ate*.

Esters

> Preparation:

When a carboxylic acid and an alcohol are heated in the presence of an acid catalyst (HCl or H₂SO₄), an equilibrium is established with the ester and water.

$$\begin{array}{c} O \\ \parallel \\ R-C-OH+HO-R' \stackrel{H^+}{\longleftarrow} R-C-OR'+H_2O \\ \text{acid} \qquad \text{alcohol} \qquad \text{ester} \end{array}$$

Cyclic esters (lactones) can be prepared from hydroxy acids if these groups can come in contact through bending of the chain.

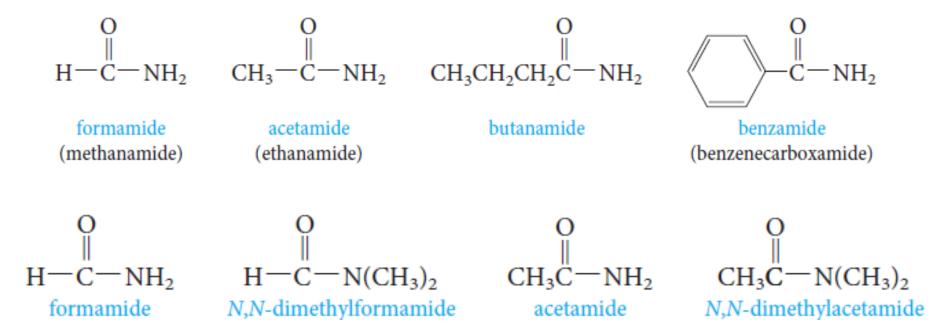
Esters

▶ Reactions

Saponification; esters are commonly hydrolyzed with base.

$$R-C$$
 + $Na^{+}HO^{-}$ $\frac{heat}{H_{2}O}$ R $-C$ O + $R'OH$ ester nucleophile salt of an acid alcohol

Ammonia converts esters to amides.


$$R - C + NH_3 \longrightarrow R - C + R'OH$$

$$OR' \qquad NH_2$$
ester amide

Amides

- Amides are the least reactive of the common carboxylic acid derivatives.
- ➤ Primary amides have general formula RCONH₂.
- **Nomenclature:**

Amides are named by replacing the -ic or -oic acid ending of the acid name, either the common or the IUPAC name, with the -amide ending.

Amides

> Preparation:

- They can be prepared by the reaction of ammonia with esters, with acyl halides, or with acid anhydrides.
- Amides can also prepared by heating the ammonium salts of acids.

Amides

▶ Reactions

Amides react with nucleophiles and they can be hydrolyzed by water.

$$R - C - NH_2 + H - OH \xrightarrow{H^+ \text{ or} \atop HO^-} R - C - OH + NH_3$$
amide

Amides can be reduced by lithium aluminums hydride to give amines.

$$\begin{array}{c|c}
C & & \\
R - C - NH_2 & \xrightarrow{LiAlH_4} & RCH_2NH_2 \\
& amide & amine
\end{array}$$

Acid

- > Acid arity arity arity arity and a result of the second of the second
- **Nomenclature:**

The name of an anhydrides is obtained by naming the acid from which is derived and replacing the word acid with anhydride.

$$CH_3$$
 $-C$ $-C$ $-CH_3$

ethanoic anhydride or acetic anhydride

IUPA C name: Propanoic anhydride Common name: Propionic anhydride

Benzoic anhydride

Succinic anhydride

Acid

- > Apreparation
 - Acid anhydrides are derived from acids by removing water from two carboxyl groups and connecting the fragments.

• Anhydrides can also be prepared from acid chlorides and carboxylate salts.

This method is used for preparing anhydrides derived from two different carboxylic acids (mixed anhydrides).

$$CH_3CH_2CH_2-C-Cl+Na^{+-}O-C-CH_3 \longrightarrow CH_3CH_2CH_2-C-O-C-CH_3+NaCl$$
 but an oic ethanoic anhydride

Acid

> Aphydrides

• Anhydrides undergo nucleophilic acyl substitution reactions (They are more reactive than esters, but less reactive than acyl halides).

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - O - C - CH_{3}$$

$$CH_{3} - C - OR + CH_{3} - C - OH$$

$$CH_{3} - C - OR + CH_{3} - OH$$

$$CH_{3} - C - OR + CH_{3} - OH$$

$$CH_{3} - C - OH$$