Pharmaceutical Organic Chemistry-1

Chapter-5: Aldehydes & Ketones

Aldehydes & Ketones

Common Classes of Carbonyl Compounds

Common Classes of Carbonyl Compounds					
General Formula	Class	General Formula	Class		
	Aldehydes R R'		Ketones R H		
	Acid Chlorides R OH		Carboxylic acids R CI		
	Amides R O R'		sters R NH ₂		

Aldehydes & Ketones

- Carbon is sp² hybridized.
- C=O bond is shorter, stronger, and more polar than C=C bond in alkenes.

		length	energy
R.	ketone C=O bond	1.23 Å	178 kcal/mol (745 kJ/mol)
R 120°	alkene C=C bond	1.34 Å	146 kcal/mol (611 kJ/mol)

Structure of Aldehydes and Ketones

 Aldehydes and ketones are characterized by the presence of the carbonyl group.

Carbonyl oxygen
Carbonyl carbon
The carbonyl group

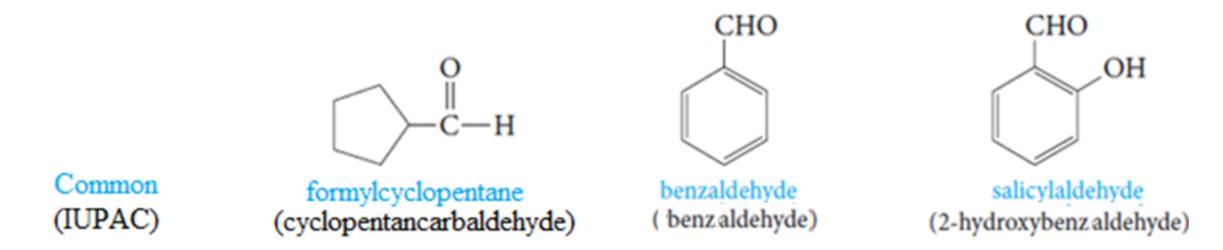
O Aldehydes have at least one hydrogen atom attached to the carbonyl carbon atom.

The remaining group may be another hydrogen atom or any aliphatic or aromatic organic group.

The -CH=O group characteristic of aldehydes is often called a formyl group.

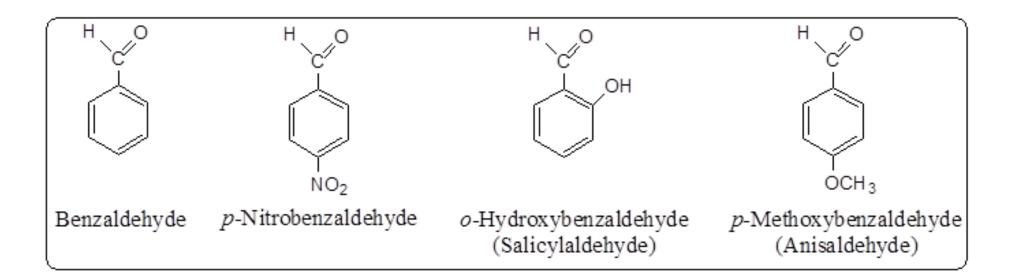
 In ketones, the carbonyl carbon atom is connected to two other carbon atoms.

IUPAC System


 Aliphatic aldehydes are named by dropping the suffix -e from the name of the hydrocarbon that has the same carbon skeleton as the aldehyde and replacing it with the suffix -al.

Alkane -e+al=Alkanal

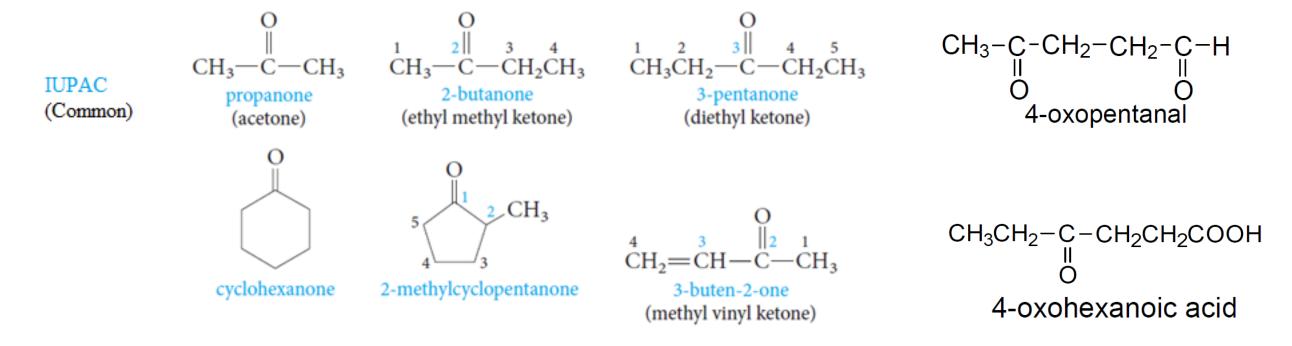
IUPAC System


- Substituted aldehydes, we number the chain starting with the aldehyde carbon=0 group is assigned the number 1 position.
 - Aldehyde group has priority over a double bond or hydroxyl group.

Cyclic aldehydes, the suffix –carbaldehyde is used.

IUPAC System

 Aromatic aldehydes are usually designated as derivatives of the simplest aromatic aldehyde, benzaldehyde.


Nomenclature of Ketone

Common

- Common names of ketones are formed by adding the word ketone to the names of the alkyl or aryl groups attached to the carbonyl carbon. Alkyl ketone.
- In still other cases, traditional names are used.

IUPAC

- o hythenUPAC system, the ending for ketones is -one.
- The chain is numbered so that the carbonyl carbon has the lowest possible number.
- For cyclic ketones, numbering always starts from the C=O group.
- The prefix "oxo" is used when the ketone is not the principal functional group.

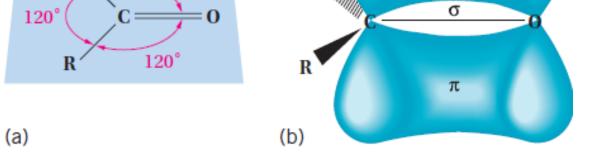
Nomenclature of Aldehydes Ketones

NOTE

In common names carbon atoms near the carbonyl group are often designated by Greek letters.

The atom adjacent to the function is *alpha* (α), the next removed is *beta* (β) and so on. Since ketones have two sets of neighboring atoms and set is labeled α β etc., and the other (

The functional group priority order in nomenclature system is as following:


Acid and derivatives >aldehyde> ketone> alcohol > amine > alkene > alkyne > ether

The Carbonyl Group

- The structure and properties of the carbonyl group.
 - ➤ The carbon-oxygen double bond consists of a sigma bond and a pi bond.
 - ➤ The carbon atom is sp²-hybridized. The three atoms attached to the carbonyl carbon lie in a plane with bond angles of 120°.
 - ➤ The pi bond is formed by overlap of a *p* orbital on carbon with an oxygen *p* orbital.
 - ➤ There are also two unshared electron pairs on the oxygen atom.

120°

➤ The C=O bond distance is 1 24∆ shorter than the C-O distance in alcohols and ethers (1.43A)

The Carbonyl Group

 Oxygen is much more electronegative than carbon. Therefore, the electrons in the C=O bond are attracted to the oxygen, producing a highly polarized bond.

 As a consequence of this polarization, most carbonyl reactions involve nucleophilic attack at the carbonyl carbon, often accompanied by addition of a proton to the oxygen (electron rich).

attack here by a
$$\longrightarrow$$
 $C=O$ \longleftarrow may react with a proton

Physical Properties of Aldehydes and Ketones

Boiling Points

Carbonyl compounds boil at higher temperatures than hydrocarbons, but at lower temperatures than alcohols of comparable molecular weight.

$$CH_3(CH_2)_4CH_3$$
 $CH_3(CH_2)_3CH$ $CH_3(CH_2)_3CH_2OH$ hexane (bp 69°C) pentanal (bp 102°C) $CH_3(CH_2)_3CH_2OH$

➤ This is due to the intermolecular forces of attraction, called <u>dipole-dipole</u> <u>interactions</u>, which is stronger than van der Waals attractions but not as strong as hydrogen bonds.

Dipole-dipole attractions among carbonyl compounds

Physical Properties of Aldehydes and Ketone

Solubilit

y

- Carbonyl compounds as aldehydes and ketones have a C=O bond, but no O-H bond, cannot form hydrogen bonds with themselves.
- The polarity of the carbonyl group also affects the solubility properties of aldehydes and ketones.
- Carbonyl compounds with low molecular weights are soluble in water as they can form hydrogen bonds with O-H or N-H compounds.

$$C = O : \cdots H - O$$

1) Oxidation of Primary and Secondary Alcohols

Oxidation of secondary alcohols yields ketones.

2) Hydration of Alkynes

Hydration of acetylene yields acetaldehyde (catalyzed by acid and mercuric).

2) Hydration of Alkynes

 Hydration of terminal alkynes EXCEPT acetylene yields ketones (catalyzed by acid and mercuric).

CH₃(CH₂)₅C=CH
$$\xrightarrow{H^+, H_2O}$$
 CH₃(CH₂)₅CCH₃
1-octyne 2-octanone

3) Ozonolysis of

Alkenes

Product (aldehyde or ketone) depends on the structure of alkene.

4) Friedel-Crafts

Acylation

Preparing ketones that contain an aromatic ring.

$$+ H_3CH_2C - C - CI \qquad AICI_3 \qquad C - CH_2CH_3$$

$$- Propionyl chloride \qquad Ethyl phenyl ketone (Prpiophenone)$$

$$+ \qquad C - CI \qquad AICI_3 \qquad C - CI$$

$$- Benzoyl chloride \qquad Diphenyl ketone (Benzophenone)$$

A) Reduction of Carbonyl Compounds

- Aldehydes and ketones are easily reduced to primary and secondary alcohols, respectively.
- The most common metal hydrides used to reduce carbonyl compounds are lithium aluminum hydride (LiAlH₄) and sodium borohydride (NaBH₄).

$$O-AlH_3$$
 $C=O$
 $O-AlH_3$
 $O-AlH_3$

B) Oxidation of Carbonyl

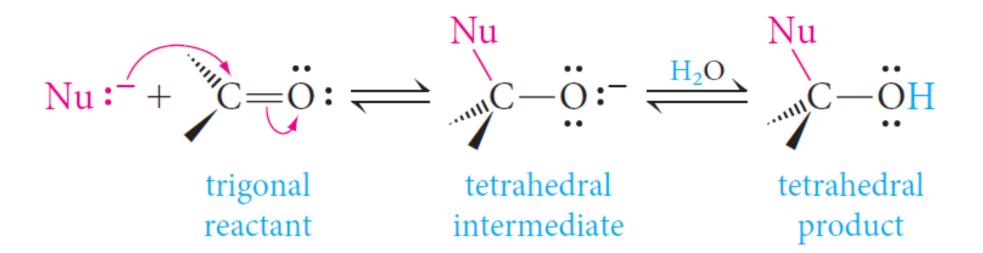
Compounds

 Oxidation of aldehydes gives a carboxylic acid with the same number of carbon atoms.

Because the reaction occurs easily, many oxidizing agents, such as KMnO₄, CrO₃, Ag₂O and peracids (such as, <u>perchloric acid</u> HClO4, and <u>permanganic acid</u> HMnO4). will work ____

$$\begin{array}{c|c}
C & \text{oxidizing} \\
R - C - H & \xrightarrow{\text{agent}} & R - C - OH \\
\text{aldehyde} & \text{acid}
\end{array}$$

o Example:


$$CH_{3}(CH_{2})_{5}CH = O \xrightarrow{CrO_{3}, H^{+}} CH_{3}(CH_{2})_{5}CO_{2}H$$

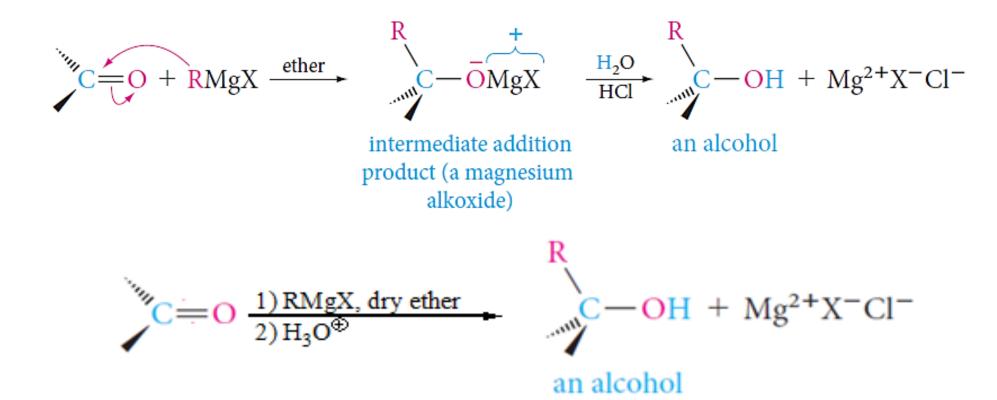
$$CHO \xrightarrow{Ag_{2}O} CO_{2}H$$

C) Nucleophilic Addition

Reactions

- Nucleophiles attack the carbon atom of a carbon-oxygen double bond because that carbon has a partial positive charge.
- The overall reaction involves addition of a nucleophile and a proton across the pi bond of the carbonyl group (when carried out in alcohol or water).

C) Nucleophilic Addition


nroducad

Reactions

1) Addition of Grignard Reagents: Formation of

Alcoholard reagents act as carbon nucleophiles toward carbonyl compounds.

 The reaction of a Grignard reagent with a carbonyl compound provides a useful route to alcohols.

The type of carbonyl compound chosen determines the class of alcohol

23

C) Nucleophilic Addition

Reactions

1) Addition of Grignard Reagents: Formation of

A coho sidehyde gives primary alcohols.

$$R-MgX + H-C-H \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH$$

formaldehyde

a primary alcohol

Other aldehydes give secondary alcohols

Ketones give tertiary alcohols.

$$R - MgX + R' - C - R'' \longrightarrow R - C - OMgX \xrightarrow{H_2O} R''$$

$$R''$$

ertiary alcohol

C) Nucleophilic Addition

Reactions

2) Addition of Hydrogen Cyanide: Formation of

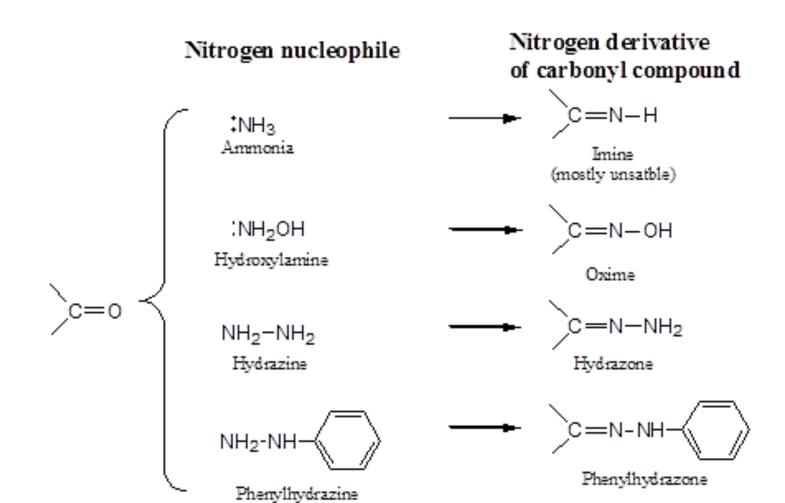
Cyladrobendryaside adds to the carbonyl group of aldehydes and ketones to form cyanohydrins, compounds with a hydroxyl and a cyano group attached to the same carbon.

NC

$$C = O + HCN \xrightarrow{KOH} C - OH$$

a cyanohydrin

Example


$$\begin{array}{c} O \\ \\ CH_{3}-C-CH_{3} + HCN & \xrightarrow{KOH} & CH_{3}-C-CH_{3} \\ \\ acetone & acetone \ cyanohydrin \\ O \longrightarrow H & HO \longrightarrow CN \\ \\ benzaldehyde & benzaldehyde \ cyanohydrin \\ \end{array}$$

C) Nucleophilic Addition

Reactions 3) Addition of Ammonia and Ammonia

Derevadidities of nitrogen nucleophile, such as ammonia(NH₃) and substituted ammonia (NH₂-Y).

$$c=0 + H_2N-Y \xrightarrow{H^+} c=N-Y + H_2O$$

