Pharmaceutical Organic Chemistry-1

Chapter-1: Introduction

Organic Chemistry: Definition

- The word Organic can be a biological or chemical term, in biology it means anything that is living or has lived. The opposite is Non-Organic.
- Organic Chemistry is unique in that it deals with vast numbers of substances, both natural and synthetic.

The clothes, the petroleum products, the paper, rubber, wood, plastics, paint, cosmetics, insecticides, and drugs

- But, from the chemical makeup of organic compounds, it was recognized that one constituent common to all was the element carbon.
- Organic chemistry is defined as the study of carbon/hydrogencontaining compounds and their derivatives.

The Uniqueness of Carbon

- What is unique about the element carbon?
- Why does it form so many compounds?
 - ? The answers lie
 - The structure of the carbon atom.
 - **➤** The position of *carbon* in the periodic table.
- These factors enable it to form strong bonds with
 - > other carbon atoms
 - > and with other elements (hydrogen, oxygen, nitrogen,
- Each organic compound has its own characteristic set of physical and chemical properties which depend on the structure of the molecule.

Atomic Structure

- Atoms consist of three main particles: neutrons (have no charge), protons (positively charged) and electrons (negatively charged).
 - > Neutrons and protons are found in the nucleus.
 - ➤ Electrons are found outside the nucleus.

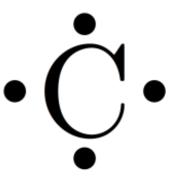
Electrons are distributed around the nucleus in successive shells (principal energy levels).

- Atom is electrically neutral.
 - i.e. Number of electrons = Number of protons
- Atomic number of an element is the number of protons.

Atomic Structure

- The energy levels are designated by capital letters (K, L, M, N, ..) or whole numbers (n).
- The maximum capacity of a shell = $2n^2$ electrons.

n = number of the energy level.

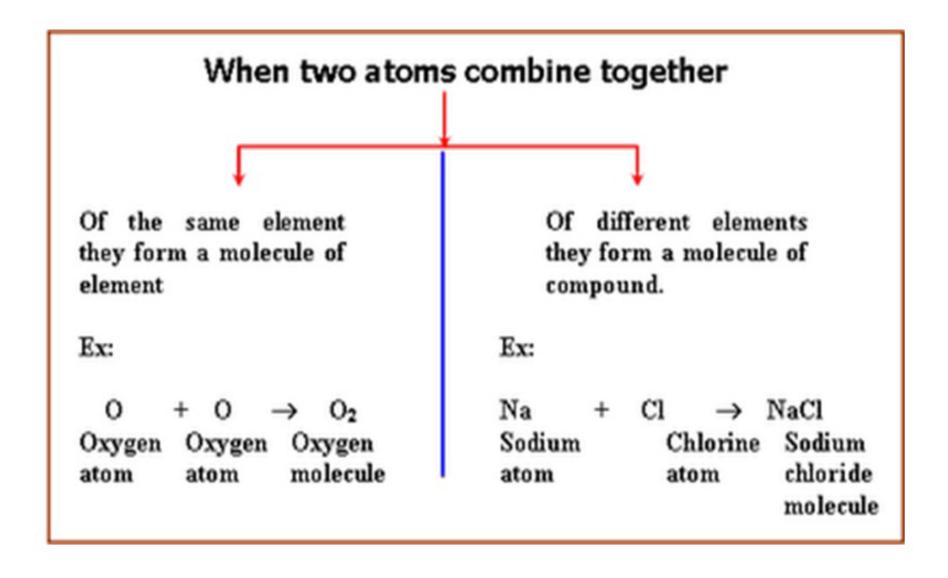

For example, the element carbon (atomic number 6)

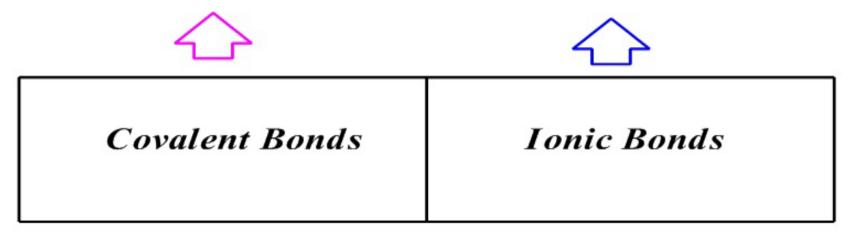
6 electrons are distributed about the nucleus as

Atomic Structure

Valance Electrons: Electron-Dot

- Valance Electrons are those electrons located in the outermost energy level (the valance shell).
- Electron-dot structures
 - ➤ The symbol of the element represents the core of the atom.
 - ➤ The valance electrons are shown as dots around the symbol.




In 1916 G.N. Lewis pointed out that:

The noble gases were stable elements and he described their lack of reactivity to their having their valence shells filled with electrons.

- **2** electrons in case of helium.
- > 8 electrons for the other noble gases.
- According to Lewis,

in interacting with one another atoms can achieve a greater degree of stability gement of the valence electrons to acquire the outer-shell structure of the closest noble gas in the periodic table.

A) Ionic

- Elements at the left of the periodic table give up their valance electrons and become +ve charged ions (cations).
- Elements at the right of the periodic table gain the electrons and become -ve charged ions (anions).
- o lonic bond

The electrostatic force of attraction between oppositely charged ions.

$$\mathbf{A}^{\times} + \mathbf{B} : \longrightarrow \mathbf{A}^{+} + \begin{bmatrix} \mathbf{B} : \end{bmatrix}$$
Electron donor Electron acceptor Cation Anion atom

$$A^{+} + \begin{bmatrix} \vdots B \vdots \end{bmatrix} \longrightarrow A^{+} \begin{bmatrix} \vdots B \vdots \end{bmatrix}$$
Electrostatic attraction

Ionic bond

The majority of ionic compounds are inorganic substances.

Electronegativity Measures The Ability of An Atom To Attract Electrons

Increasing electronegativity

						H	D	
						2.1	erea	••
F	O	N	C	В	Be	Li	Decreasing	Li : +
4	3.5	3	2.5	2	1.5	1	elec	••
Cl	S	P	Si	Al	Mg	Na	electronegativity	$\text{Li} \xrightarrow{+} \text{F} : \longrightarrow \text{Li}^{+} \text{F}^{-}$
3	2.5	2.1	1.8	1.5	1.2	0.9	egat	electron transfer He configuration Ne configuration ionic bond
Br						K	ivity	
2.8						0.8	<u></u>	

B) Covalent **Bonds**

 Elements that are close to each other in the periodic table attain the stable noble gas configuration

by sharing valence electrons Ocvalent bond between them.

The chemical bond formed when two atoms share one pair of electrons.

 A shared electron pair between two atoms or single covalent bond, will be represented by a dash (-).

B) Covalent

Exambagds

H₂
$$H \cdot + \cdot H$$
 \longrightarrow $H \cdot H$ or $H \rightarrow H$ each H shares two electrons (He configuration)

Cl₂ $\circ Cl \cdot + \circ Cl \cdot \longrightarrow \circ Cl \cdot Cl \cdot \circ Cl \cdot \circ Cl \cdot \circ Cl \cdot Ol \cdot \circ Ol \cdot Ol \cdot Ol \cdot \circ Ol \cdot$

B) Covalent

- In molecules that consist of two like atoms;
 - the bonding electrons are shared equally
 - (both atoms have the same
- O When two unike atoms,

the bonding electrons are no longer shared equally (shared

A) Polar Covalent

Bond

A bond, in which an electron pair is shared

➤ The more electronegative atom assumes a partial negative charge and the less electronegative atom assumes a partial positive charge.

$$C \longrightarrow O$$
 or $C \longrightarrow O$

B) Coordinate Covalent

- Bonds
 There are molecules in which one atom supplies both electrons to another atom in the formation of a covalent bond.
- For example;

- L e w i s
 base The species that furnishes the electron pair to form a coordinate
 covalent bond.
- Lewis acid

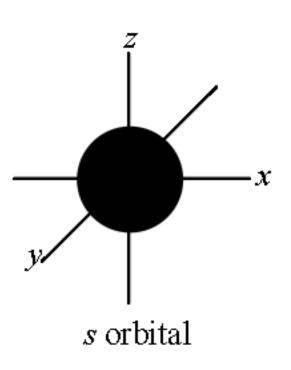
The species that accepts the electron pair to complete its valance shell.

How Many Bonds to an Atom? Covalence Number

The number of covalent bonds that an atom can form with other atoms.

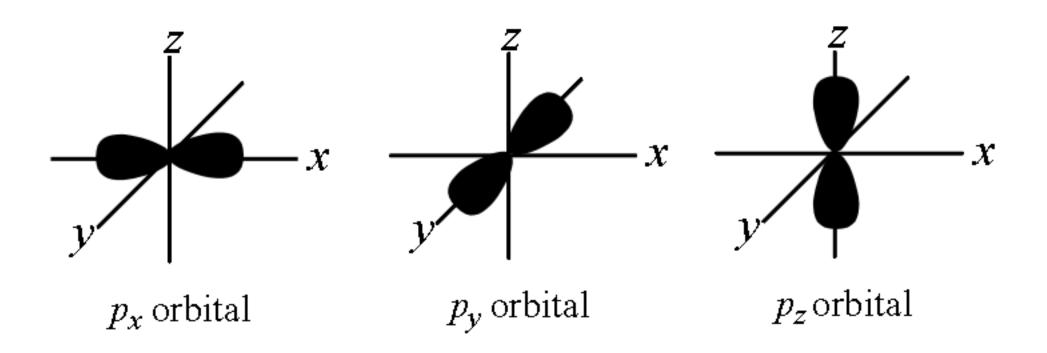
i.e. the covalence number is equal to the number of electrons needed to fill its valance shell.

Element	Number of	Number of electrons		
Cova	lence			
	valence electrons	in filled valenc	e shell	
numb	per			
Н	1	2	1	
C	4	8	4	
N	5	8	3	
0	6	8	2	
F, CI, Br, I	7	8	1	


Atomic

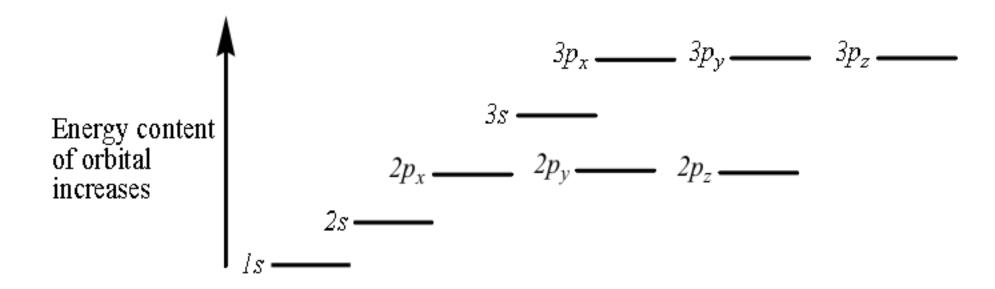
Orbitals

- An atomic orbital represents a specific region in space in which an electron is most likely to be found.
- Atomic orbitals are designated in the order in which they are filled by the letters s, p, d, and f.
 - Examples: K shell has only one 1s orbital.


L shell has one 2s and three 2p $(2p_x, 2p_y)$ and $2p_z$.

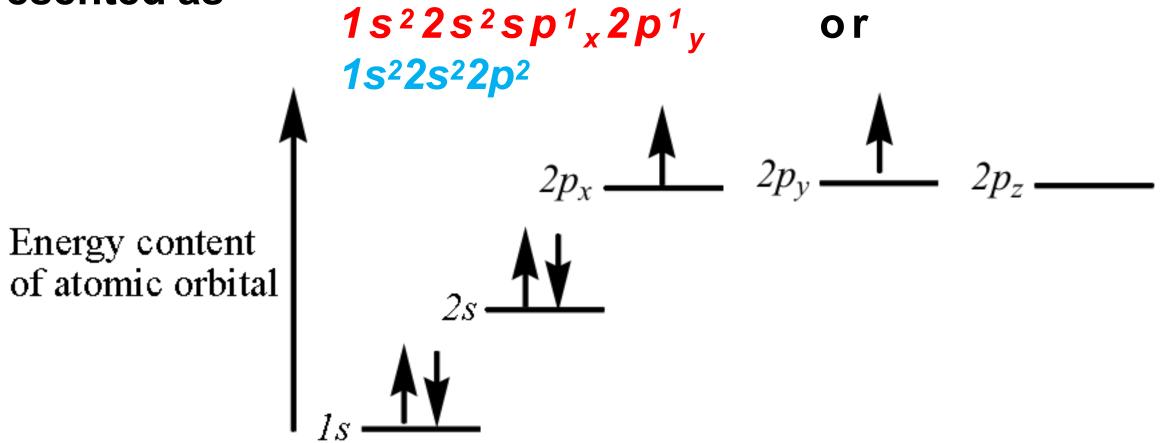
 An s orbital is spherically shaped electron cloud with the atom's nucleus and its center.

Atomic Orbitals


- A p orbital is a dumbbell-shaped electron cloud with the nucleus between the two lobes.
- Each p orbital is oriented along one of three perpendicular coordinate axes (in the x, y, or z direction).

Atomic

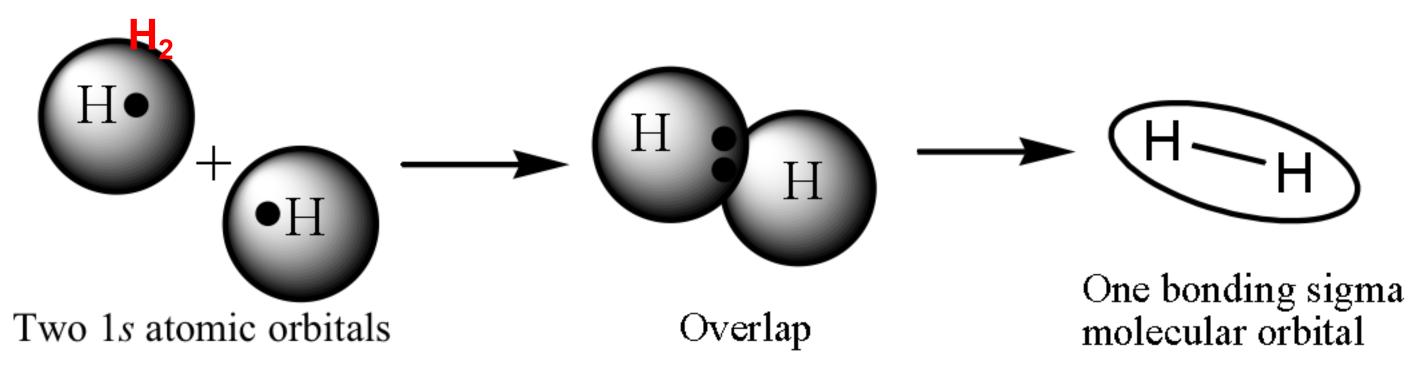
Orbitals


An energy level diagram of atomic orbitals.

- When filling the atomic orbitals, keep in mind that
 - (1) An atomic orbital contain no more 2
 - 2 Electrons fill orbitals of lower energy
 - No orbital is filled by 2 electrons until all the orbitals of equal energy have at least one electron.

Atomic Orbitals

 The electronic configuration of carbon (atomic number 6) can be represented as


Energy level diagram for carbon.

Molecular

Orbitals

- A covalent bond consists of the overlap between two atomic orbitals to form a molecular orbital.
- Example:

Molecular orbital of

Molecular Orbitals

- Sigma bonds (σ bonds) can be formed from
 - ➤ The overlap of two s atomic orbitals.
 - ➤ The end-on overlap of two p atomic orbitals.
 - ➤ The overlap of two an s atomic orbital with a p atomic orbital.
- pi bonds (π bonds) can be formed from the side-side overlap between two p atomic orbitals.

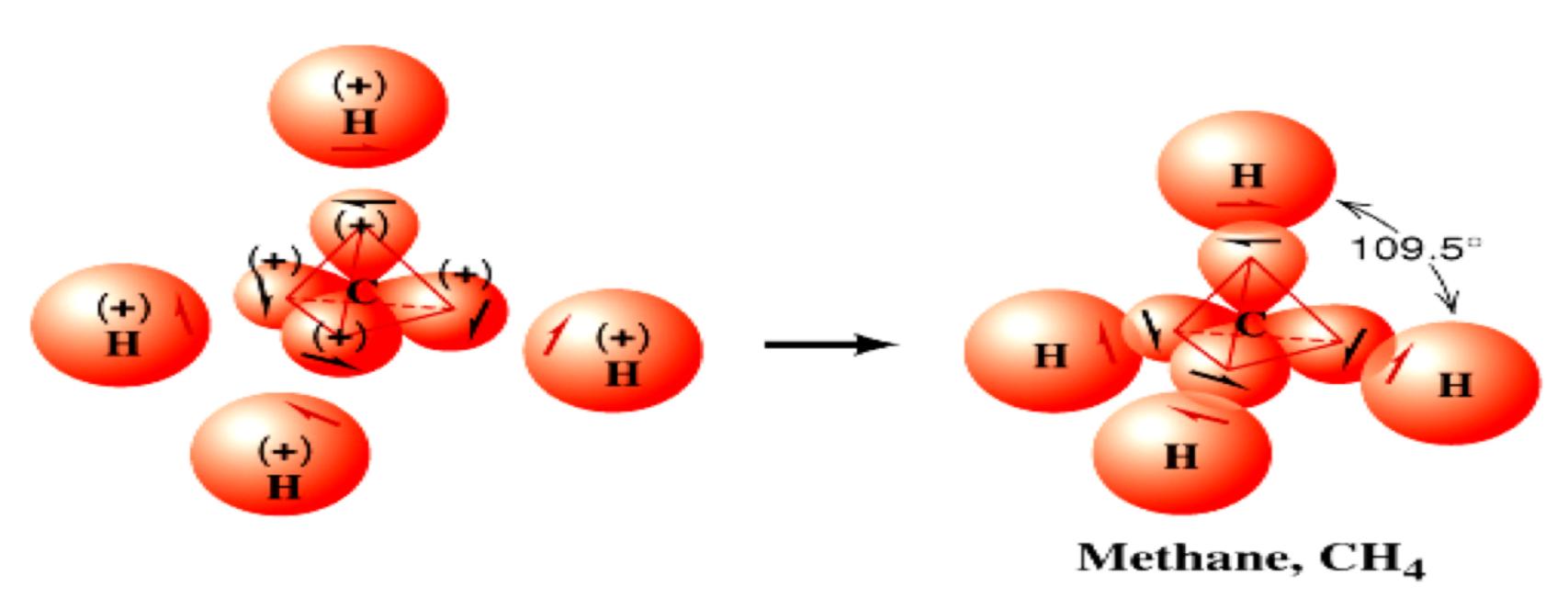
Bond Energy and Bond Length

A molecule is more stable than the isolated constituent atoms.

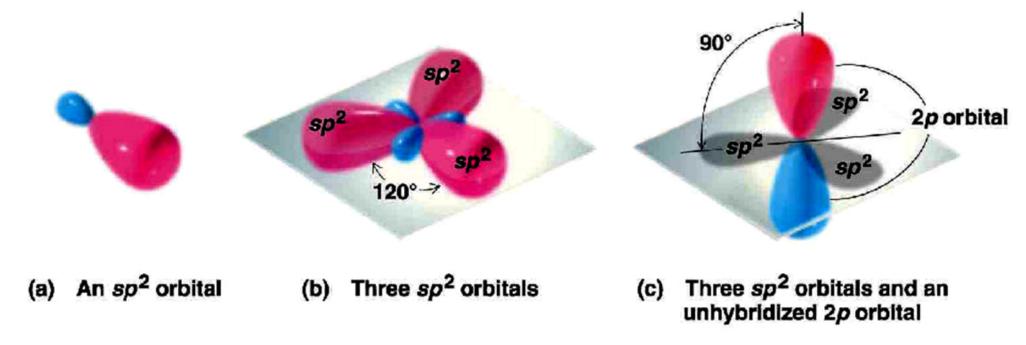
This stability is apparent in the release of energy during the formation of the molecular bond.

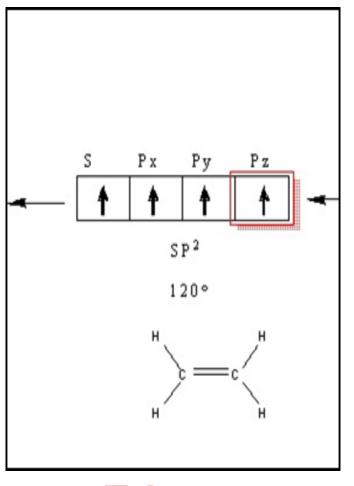
- Heat of formation (bond energy)
 - The amount of energy released when a bond is formed.
- Bond dissociation energy
 - The amount of energy that must be absorbed to break
- a bondBond length

The distance between nuclei in the molecular structure.


Hybridization (Alkanes sp³)

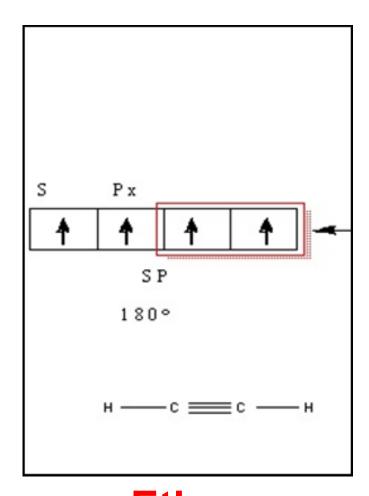
- o In the case of alkanes sp^3 , the three 2p orbitals of the carbon atom are combined with its 2s orbital to form four new orbitals called " sp^3 " hybrid orbitals.
- Four hybrid orbitals were required since there are four atoms attached to the central carbon atom.
- These new orbitals will have an energy slightly above the 2s orbital and below the 2p orbitals as shown in the following illustration.
- Notice that no change occurred with the 1s orbital.
- Regular tetrahedron with all H-C-H bond angles of 109.5°.


Methan e


Hybridization (Alkanes sp

Hybridization (Alkenes sp²)

- In the case of alkenes sp^2 , the 2s orbital is combined with only two of the 2p orbitals (since we only need three hybrid orbitals for the three groups. thinking of groups as atoms and nonbonding pairs) forming three hybrid orbitals called sp² hybrid orbitals.
- The other p-orbital remains unhybridized and is at right angles to the trigonal planar arrangement of the hybrid
- o The algorial planar arrangement has bond angles of



Ethene (Ethylen

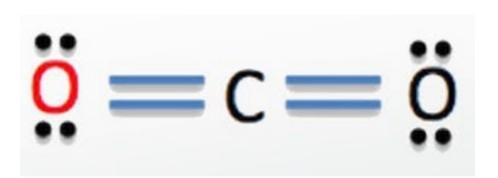
Hybridization (Alkynes sp)

- one of the 2p orbitals to yield two sp hybrid orbitals.
- The two hybrid orbitals will be arranged as far apart as possible from each other with the result being a linear arrangement.
- The two unhybridized *p*-orbitals stay in their respective positions (at right angles to each other) and perpendicular to the **linear** molecule (180°).

Ethyne (Acetylen e)

Formal Charge

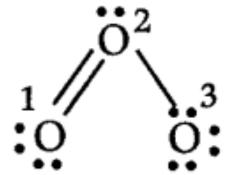
Formal Charge: is the net charge on each atoms of the molecule or ion. (which contain a covalent bond only)


How to calculate the Formal Charge (FC):

FC =
$$\frac{\text{Valence e}^{-}}{\text{in Free Atom}}$$
 - $\frac{\text{Total}}{\text{Nonbonding e}^{-}}$ + $\frac{\text{Bonding e}^{-}}{2}$

Example: calculate the formal charge of CO2

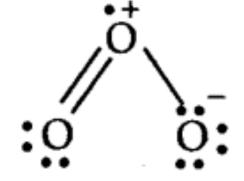
FC for
$$O = 6 - (4 + 4/2) = 0$$


FC for
$$C = 4 - (0 + 8/2) = 0$$

Example:

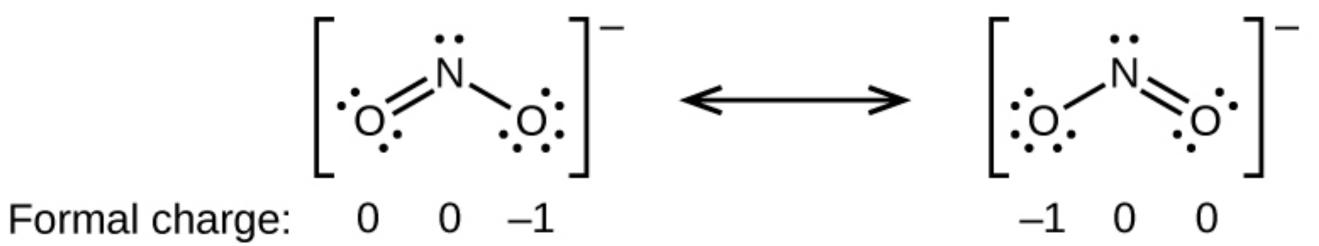
Formal Charg

Lewis structure of O₃ is

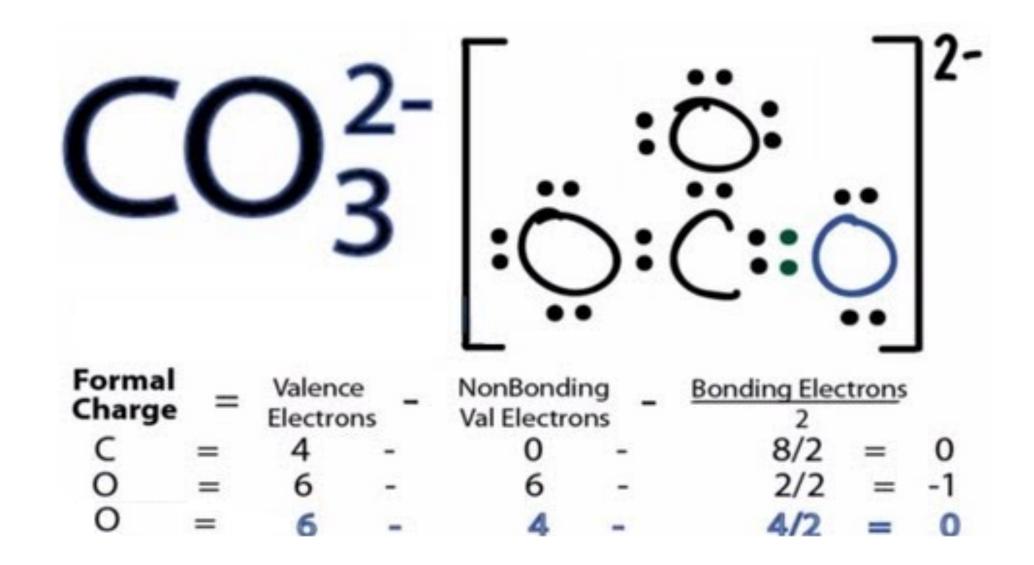


Formal charge on O(1) = 6 -
$$(4 + \frac{4}{2})$$
 = 0

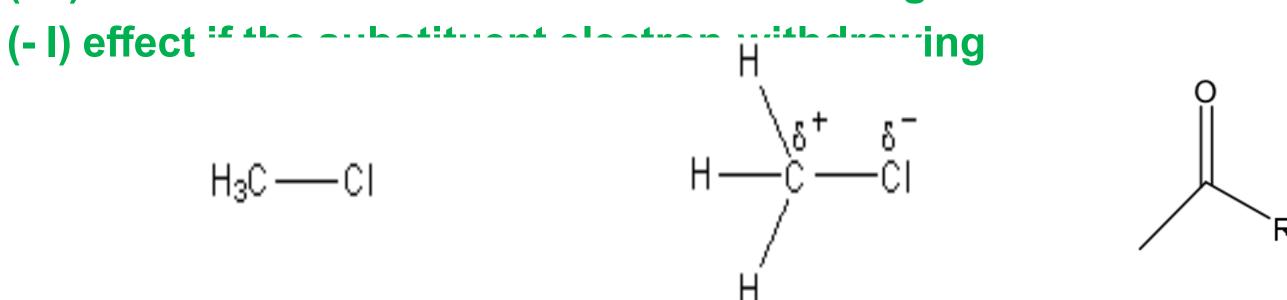
Formal charge on O(2) =
$$6 - (2 + \frac{6}{2}) = + 1$$


Formal charge on O(3) = 6 -
$$(6 + \frac{2}{2}) = -1$$

Hence we represent O₃ along with formal charges as follows.

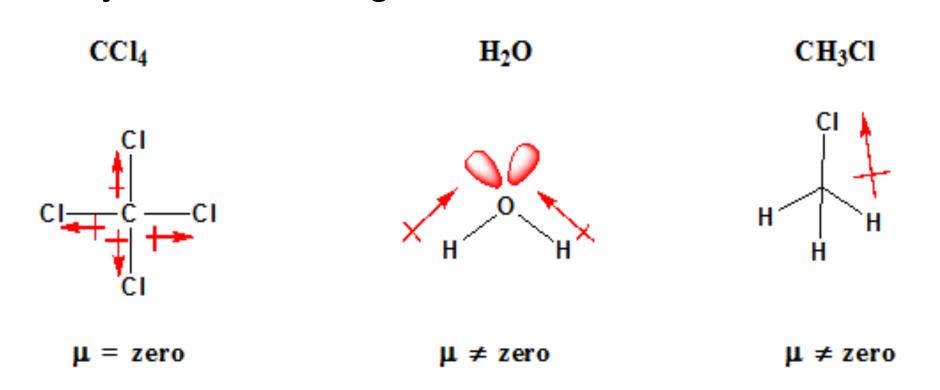

Formal Charg

Example:


Formal Charg

Example:

Inductive Effect


- o Inductive effect can be defined as the permanent displacement of electrons forming a covalent bond (sigma σ bonds) towards the more electronegative element or group.
- The inductive effect is represented by the symbol, the arrow pointing towards the more electronegative element or group of elements.
 - (+ I) effect if the substituent electron-donating

Electron-donating substituents (+I): -CH₃, -C₂H₅,.... Electron-withdrawing substituents (-I): -NO₂, -CN, -SO₃H, COOH, COOR, NH₂, OH, OCH₃

Bond Polarity and Dipole Moment (µ)

- Dipole moment (depends on the inductive effect).
- A bond with the electrons shared equally between two atoms is called a nonpolar bond like in CI-CI and C-C bond in ethane.
- A bond with the electrons shared unequally between two different elements is called a polar bond.
- $_{\odot}$ The **bond polarity** is measured by its dipole moment (μ).
- O Dipole moment (μ) defined to be the amount of charge separation ($+\delta$ and $-\delta$) multiplied by the bond length.

32

Functional Groups

Functional Group is a reactive portion of an organic molecule, an atom, or a group of atoms that confers on the whole molecule its characteristic properties.

Class	General formula	Functional group	Specific
Alkane	RH	C – C (single bond)	H_3C-CH_3
Alkene	$R - CH = CH_2$	C = C (double bond)	$H_2C = CH_2$
Alkyne	R-C≡CH	c≡c (triple bond)	нс≡сн
Alkyl halide	RX	-X (X = F, Cl, Br, I)	H ₃ C - Cl
Alcohol	R-OH	-OH	H ₃ C - OH
Ether	R – O –R'	- C- O - C -	$H_3C-O-CH_3$
Aldehyde	R-Ë-H	ё_н 	О H-С-H H ₃ C-С-Н
Ketone	O R-C-R	-ç-ç-ç-	О Н-С-Н, Н₃С-С-Н О Н₃С-Ё-СН₃
Carboxylic acid	O R-C-OH	' о ' —ё-он	О Н-С-ОН, Н ₃ С-С-ОН
Ester	R -Ö-OR	0 —Ü-OR	О H−С− ОСН₃ О Н₃С−С−ОСН₃
	D NIII		
Amine	$R - NH_2$	-¢-NH ₂	H_3C-NH_2