Acetaminophen (paracetamol) Toxicity

Key points

- Suspect paracetamol poisoning in all adolescent deliberate self-poisonings.
- N-acetylcystine (NAC) is a safe and effective antidote. Time to NAC is crucial to protect the liver from significant toxicity.
- Stated timing and dose are often unreliable and this needs to be taken into consideration.

Paracetamol

- N-acetyl-p-aminophenol (APAP)
- Effective analgesic and anti-pyretic
- Its antipyretic action is directly on the hypothalamus
-APAP action is mediated by interference with PG synthesis in the CNS
- Very weak activity as inhibitor of the peripheral PG synthetase.....weak anti-inflammatory action

Paracetamol

- Generally well tolerated
- □ Use: analgesic / anti-pyretic (0.5-1 g every 4 to 6 hours, maximum daily dose 4 g) (2000 mg/day for chronic alcoholics)
- 2014 FDA Alert: discontinue prescribing and dispensing prescription combination drug products containing >325 mg acetaminophen per dosage unit.
- Children (less 12 years): up to 75mg/kg/day
- Available in tablets regular strength 325mg, 500mg
- Also supplied as suppositories 125, 250mg
- Extended-release preparation

Aspirin vs Acetaminophen (APAP)

- □ Aspirin considered a wonder drug for >50 years (1899-1950). . . but found to cause gastrointestinal ulcers and bleeding, to cause CNS "salicylism", altered acid-base balance (respiratory alkalosis), inhibit cyclooxygenase, Reye's syndrome in children with viral infections. ...
- Acetaminophen approved 1950 and for OTC use about 1959 (proof of efficacy not required) . . . did not cause bleeding or GI ulcers, did not cause Reye's syndromebut,....

Br Med J 1966 (27 Aug); 2 (5512)

- Davidson DGD, Eastham WN. (Edinburgh) pp 497-9:
 Acute liver necrosis following overdose of paracetamol.
- Thompson JS, Prescott LF. (Aberdeen) pp 506-7:
 Liver damage and impaired glucose tolerance after paracetamol overdosage.
- Editorial pp 485-6: Liver necrosis from paracetamol.

Paracetamol ToxicoKinetics

- □ Rapidly absorbed from GI tract and reaches a peak plasma level in 30min to 2 hrs; half life is approximately ~3 hrs
- □ Elimination is by hepatic metabolism (95%):
- Metabolized in liver mainly through glucuronic acid conjugation
- 65% inactive glucuronide conjugation, 30% sulfate conjugate
- A small portion of the ingested dose undergoes metabolism by the cytP450 mixed function oxidase to a <u>reactive</u>, arylating <u>metabolite</u>, N-acetyl-p-benzoquinoneimine (NAPQI)

Acetaminophen (APAP) Conjugates

Paracetamol Metabolism

- At therapeutic doses
 acetaminophen is
 glucuronidated or
 sulfated at its –OH
 group which can be
 excreted
- When the glucuronidation and sulfation pathways become saturated, a cytochrome p450 pathway converts the acetaminophen to NAPQI (a reactive compound)

Mechanism of Toxicity

- NAPQI is a <u>strong oxidizing agent</u>, <u>subsequently reduced</u>
 by the <u>sulfhydryl groups</u> of <u>glutathione</u> to a <u>nontoxic</u>
 form
- This glutathione conjugates is then converted to cysteine and mercapturic acid conjugate
- If no sufficient glutathione available.....NAPQI bind covalently to cellular protein.....hepatocellular and renal toxicity

HEPATOTOXICITY

- Hepatotoxicity In adults, hepatotoxicity may occur after ingestion of a single dose of 10 to 15 g (150 to 250 mg/kg) of acetaminophen
- Doses of 20 to 25 g or more are potentially fatal High-risk people:
- Conditions of CYP induction (e.g. heavy alcohol consumption, those on anticonvulsant drugs)
- Condition of GSH depletion
- With pre-existing liver disease

Phases of toxicity

□ Phase 1 – from to of ingestion to 24 hours

The patient typically has anorexia, nausea, vomiting, and diaphoresis

The results of laboratory tests are usually normal.

□ Phase 2 – 24-72 hours

RUQ pain, elevated liver enzymes, prolonged PT.

Phases of toxicity

- □ Phase 3 72-96 hours
 Also known as the hepatic stage
 Severe signs of hepatotoxicity appear
 This includes:
- Plasma ALT and AST levels often >10,000 IU/L, Increased in PT or INR
- A total bilirubin concentration above 70umole/l (primarily indirect)
- Death most commonly occurs in this stage, usually from multiorgan system failure.

Phases of toxicity

- □ Phase 4 (4 days-2 weeks) :
- Is the recovery stage
- Patients who survive stage III enter a recovery phase that usually begins by day 4 and is complete by 7 days after overdose
- However, transient renal failure may develop 5-7 days after ingestion
- Complete hepatic recovery may take 3-6 months.

Table 1. Phases of Acute Acetaminophen Toxicity

Phase 1

(30 minutes to 24 hours)

Anorexia

Nausea

Vomiting

Pallor

Diaphoresis (excessive

sweating)

Patient may also be

asymptomatic

Phase 2

(24-72 hours)

Symptomatology from Phase

1 becomes less pronounced

Right upper quadrant pain

from liver damage

Liver enzyme abnormalities

PT and creatinine

abnormalities

Phase 3

(72-96 hours)

Sequelae of hepatic damage

Jaundice

Coagulopathy

Encephalopathy

Renal failure

Cardiomyopathy

Death

Phase 4

(4 days to 2 weeks)

Resolution of symptoms and

lab abnormalities, with

complete resolution of liver

damage

or

Continued worsening of liver function and death

Complications

- 10% of patients develop renal impairment from acute tubular necrosis occasionally in the absence of hepatic failure
- Very rarely <u>patients with G6PD deficiency</u> develop <u>methemoglobinemia and hemolysis</u>

Prognostic features

- A prothrombin time of 20s at 24 hrs indicates significant hepatocellular damage; the more rapid the rise in PT, the poorer the prognosis
- In patients developing hepatic failure, a poor prognosis is suggested by:
 - Blood pH <7.3;
 - 2. Prothrombin time >100s;
 - 3. Serum Creatinine >300 mol/l

They should be considered for early liver transplantation

Prognostic features

Laboratory analysis:

- paracetamol levels must be determined not sooner than 4 hours after ingestion??.....After the distribution phase
- The values are plotted on the modified Rumack-Matthew nomogram to assess potential toxicity

PARACETAMOL TOXICITY MANAGEMENT

- Paracetamol levels checked at 4hrs & compared to treatment curve (200mg/l or 1.32mmol/l at 4h joined to 6mg/l or 0.04mmol/l at 24h). 60% of patients above the line develop severe liver damage defined as AST >1000
- Patients on or above the line should be given IV Nacetylcysteine*
- up to 10% have a rash, bronchospasm or hypotension during the Tx (acts as a <u>mast cell</u> <u>releaser</u>). Stopping and giving diphenhydramine IV usually allows the IV to be safely restarted al slow infusion rate

PARACETAMOL TOXICITY MANAGEMENT

Cautions for use of this chart:

- (1) Must be used only in relation to a single acute ingestion, and when the approximate time of ingestion is known
- (2) Concomitantly <u>ingested drugs</u> (opioids and anticholinergics) or <u>carbohydrate-rich foods</u> may change the gastric emptying time and the peak time
- (3) May underestimate the peak concentration of APAP extended-release tablet coz of a possible delayed peak

PARACETAMOL TOXICITY MANAGEMENT

If time of ingestion is not known?

- One way to overcome this obstacle....determine the patient's plasma half-life of acetaminophen
- Determination of at least 3 plasma levels and plotting them to obtain a half-life value
- The approximate normal half life of acetaminophen is 1 to 3hrs.....is prolonged following overdose.....use this indicator for potential liver toxicity:
- If plasma half-life >4hrs, liver damage is likely to occur
- If >12hrs, hepatic coma will probably ensue

Treatment of Acute Acetaminophen Ingestion

1. Gastrointestinal Decontamination

- Is largely determined by the approximate <u>timing</u> and estimated <u>amount</u> of acetaminophen ingested, any suspected <u>co-ingestions</u>, and the patient's <u>mental status</u>
- Administer <u>activated charcoal</u> orally. Gastric lavage <u>is not</u> <u>necessary</u> after small to moderate ingestions if activated charcoal can be given promptly
- Spontaneous vomiting may delay the oral administration of antidote or charcoal and can be treated with metoclopramide

Other Therapies for Acetaminophen Toxicity

Extracorporeal methods:

- Hemodialysis effective but is not generally indicated because antidotal therapy is so effective
- □ <u>Dialysis</u> should be considered for <u>massive ingestions</u> with <u>very high levels (eg, >1000 mg/L) complicated by coma or renal failure</u> that persists more than 48hrs
- Charcoal hemoperfusion does <u>not remove any toxic</u> <u>intermediates</u> formed in the liver or the kidney and currently has <u>no role</u> in the management of acetaminophen toxicity

Treatment of Acute Acetaminophen Ingestion

3. Antidote Therapy for Acetaminophen Toxicity

- Different amino acids containing sulfhydryl groups were tested as potential antidotes
- Glutathione was an immediate choice but was expensive and had poor penetration into cells
- Although <u>cysteamine</u> and <u>methionine</u> were found to be effective antidotes, N-acetylcysteine (NAC) was <u>more effective and had fewer adverse effects</u>

Single acute ingestion

NABQI Detoxification

N-acetylcysteine

Mechanism of Action

- N-acetylcysteine is the antidote of choice for acetaminophen toxicity
- Several different mechanisms of action have been postulated for the antidotal effect of NAC, including:
 - 1) NAC is a <u>glutathione precursor</u> that replace glutathione storage;
 - 2) NAC reacts directly with NABQI and prevents cellular damage;
 - 3) **NAC acts as a <u>sulfur donor</u>** to enhance the non-toxic sulfation elimination of acetaminophen;
 - 4) NAC has some non-specific <u>cellular protective</u> <u>effects</u>, which may be related to <u>anti-oxidizing effects</u> in the microcirculatory system

Administration...p.o

- In the United States, the oral form of NAC is used
- The loading dose of NAC is 140 mg/kg; the maintenance dose is 70 mg/kg every four hours for an additional 17 doses (72 hours total)
- i.v route avoids the risk of Tx failure by vomiting (available in Canada & EU)

Preparation of Antidote Solution

- The duration of i.v regime is 20 hours
- loading dose of 140 mg/kg, 5 maintenance dose of 70 mg/kg every four hours
- If evidence of liver injury develops, continue NAC until liver function tests are improving
- The mixture should be consumed within one hour of preparation

Side Effects of Oral NAC

- Nausea and vomiting, which are due to the hyperosmolarity and disagreeable "rotten egg" odor of NAC
- To minimize these gastrointestinal symptoms, NAC should be diluted to a 5% solution with a sweet beverage (juice or soda) to make it more palatable
- Alternatively, NAC may be administered through a nasogastric tube
- Anaphylactic reactions are <u>rare</u> with oral NAC, although <u>rash</u>, <u>angioedema</u>, and <u>bronchospasm</u> have been reported with intravenous NAC

Tx of Chronic Acetaminophen Poisoning

- Repeated chronic overdose can produce toxic levels of hepatotoxicity
- NAC is administered no matter what the time since the last dose in case:
 - History of more than the recommended dose for several days (more than 200 mg/kg within a 24-hour period, 150 mg/kg/d for 2 days, or 100 mg/kg/d for 3 days or more)
 - Elevated liver function tests
 - Detectable acetaminophen in the serum
 - Persistent vomiting

Tx of Acetaminophen Poisoning

□ PREGNANCY:

- Overdose during pregnancy has been associated with <u>fetal</u>
 <u>death and spontaneous abortion</u>
- The available data appear to indicate no teratogenicity for APAP and NAC (category C)
- Currently, there are no recommendations for the early termination or delivery of a fetus in setting of APAP toxicity
- It is recommended that pregnant patients with a toxic blood concentration of APAP be treated with NAC to prevent hepatotoxicity in both fetus and mother

NAC and Activated Charcoal

- Binding of NAC to activated charcoal has been demonstrated both in *in-vitro* and *in-vivo* studies
- Administration of <u>60 gm of activated charcoal</u> with NAC <u>decreases the bioavailability of NAC by approximately 20%</u>
- The current evidence suggests that a <u>small decrease in NAC</u> does not alter its efficacy
- If <u>multiple doses of activated charcoal</u> are required because of co-ingestions, it would be prudent to <u>separate NAC and</u> <u>activated charcoal dosing by 1-2 hours</u>