Industrial Pharmacy 1 Introduction Particle size analysis Dr. Isra Dmour Credit: Prof. Nizar Al-Zoubi ### Introduction ### Categories of dosage forms - 1. Solids: Powder, granulates, tablets, capsules - **** Powder, granules - 1. Liquids: solutions, Suspensions, emulsions, etc - 2. Semisolids: creams, ointments, etc. - 3. Gaseous ** Particle size and the lifetime of a drug ## Particle size and the lifetime of a drug #### Particle size influence - mixing (content uniformity for potent drugs, segregation) - · powder flow - · tabletability - · Bulk volume - drug release into solution - (e.g. griseofulvin, tolbutamide, spironolactone, indomethacin and nifidipine) - Nitrofurantoin optimal particle size is 150 μm - ** practically insoluble in water 3 ## Particle size and the lifetime of a drug #### Particle size influence - The properties and behavior of various dosage forms: - <u>suspensions</u>: sedimentation rate, texture, taste, rheology - parenteral <u>suspensions</u>: syringeability, injectability and sustained release. - ophthalmic suspensions: irritation of the eye surface (small particle size is used) - <u>inhalation</u> aerosols: The position and retention of particles in the bronchopulmonary tract - <u>topical</u> formulation: grittiness (powder must be impalpable) ### Effect of particle size on dissolution rate #### **Noyes & Whitney equation:** $\frac{dM}{dt} = \frac{DS}{h} (C_s - C)$ *dM/dt*: rate of dissolution (Change of the dissolved amount with time) C_S is the solubility of solute C is the concentration of solute at time, t Cs-C =concentration gradient D is the diffusion coefficient of the solute in solution, *h* is the thickness of the diffusion layer. 5 ### Particle size - When determining the size of large solid usually we need to measure at **least three dimensions**. - When determining the size of regular particles like spheres or cubes, it is possible to describe the size using one dimension (diameter or length). - If the particles <u>are mono-sized</u> (have the same size) then it is possible to describe the particle size by measuring one particle. ### Particle size - However powders generally are composed of particles that are: - irregular in shape - with different sizes - Are very small in size to allow measuring of dimensions - In order to give good representation the size of relatively large number of particles should be determined. ### Particle size - For these reasons it is impractical to measure more than one dimension. - For this reason, solids are considered to approximate to a **sphere**, which can then be characterized by determining its diameter. - This is an <u>approximate</u> representation of the particle size and is referred to as *equivalent diameter* of the particle. ## **Equivalent diameters** ### Projected perimeter diameter (d_p) • The diameter of a circle that has the same <u>perimeter</u> as the projected image of the particle. ### Projected area diameter (d_a) • The diameter of a circle that has the same <u>area</u> as the projected image of the particle. 9 ## **Equivalent diameters** ### Feret's diameter (d_F) • The mean distance between two parallel tangents to the projected particle perimeter ### Martins diameter (d_M) The mean length of the chord separating the projected particle into two equal areas. **Fig. 10.3** Influence of particle orientation on statistical diameters. The change in Feret's diameter is shown by the distances, $d_{\rm F}$; Martins diameter $d_{\rm M}$ corresponds to the dotted lines in the midpart of each image. ## **Equivalent diameters** ### **Volume diameter (d_v)** • The diameter of a sphere that has the same volume as the particle. #### Stokes diameter (d_{st}) • The diameter of a sphere that has the same sedimentation rate as the particles ### Sieve diameter (d_s) • The particle dimension that passes through a square aperture 11 Fig. 10.7 Sieve diameter ds for various shaped particles ### **Description of particle size** #### Mean particle size The mean particle size of an analyzed sample can be considered as a rough description for the size of sample. #### Particle size distribution - The distribution of particles into different size ranges can be plotted in the form of histogram. - A histogram presentation allows different particle size distributions to be compared. - The value of the peak is the *mode* (highest frequency) 13 ### **Presentation of size distribution** ### 1) Frequency distribution data ### 2) Cumulative frequency distribution data They are either <u>under size</u> or <u>oversize</u> 1) Frequency distribution data 2) Cumulative frequency distribution data ### **Presentation of size distribution** ## Number and weight distributions - Frequently, we are interested in obtaining data based on a weight, rather than a <u>number</u> distribution. - This can be obtained directly by methods such as <u>sieving</u> and <u>sedimentation</u>. - Number distribution can be **converted** to weight distributions and vice versa. 15 | | | | | | | (7) | (8) | (9) | (10) | |-----------|-------------|--------------|-------------|---------|-------------|------------|------------|------------|------------| | | | (3) Number | | | | Cumulative | Cumulative | Cumulative | Cumulative | | | | of particles | | | | percent | percent | percent | percent | | | (2) Mean of | in each | | | (6) Percent | frequency | frequency | frequency | frequency | | (1) size | size range, | size range, | (4) Percent | | nd3 | undersize | undersize | oversize | oversize | | range | d (μm) | n | n | (5) nd3 | (Weight) | (Number) | (Weight) | (Number) | (Weight) | | 2.0-4.0 | 3 | 2 | 1 | 54 | 0.03 | 1 | 0.03 | 100 | 100 | | 4.0-6.0 | 5 | 32 | 16 | 4000 | 2.31 | 17 | 2.34 | 99 | 99.97 | | 6.0-8.0 | 7 | 64 | 32 | 21952 | 12.65 | 49 | 14.99 | 83 | 97.66 | | 8.0-10.0 | 9 | 48 | 24 | 34992 | 20.16 | 73 | 35.15 | 51 | 85.01 | | 10.0-12.0 | 11 | 30 | 15 | 39930 | 23.01 | 88 | 58.16 | 27 | 64.85 | | 12.0-14.0 | 13 | 14 | 7 | 30758 | 17.72 | 95 | 75.88 | 12 | 41.84 | | 14.0-16.0 | 15 | 6 | 3 | 20250 | 11.67 | 98 | 87.55 | 5 | 24.12 | | 16.0-18.0 | 17 | 3 | 1.5 | 14739 | 8.49 | 99.5 | 96.04 | 2 | 12.45 | | 18.0-20.0 | 19 | 1 | 0.5 | 6859 | 3.95 | 100 | 99.99 | 0.5 | 3.96 | | | | Σ n = 200 | 100 | 173534 | 99.99 | | | | | ## **Description of particle size** #### Types of distributions - *Normal distribution*: The mode separates the curve into two symmetrical halves. - *Positively skewed*: A frequency curve with an elongated tail towards the higher size range. - *Negatively skewed*: A frequency curve with an elongated tail towards the <u>lower size</u> range. - *Bimodal*: The frequency curve containing two peaks (two modes) ### **Presentation of size distribution** #### **Evaluation of degree of skewness** • The degree of skewness can be estimated by determining interquartile coefficient of skewness (*IQCS*) **Particle diameter** $$IQCS = \frac{(D_{75} - D_{50}) - (D_{50} - D_{25})}{(D_{75} - D_{50}) + (D_{50} - D_{25})}$$ Cumulative frequency distribution curves. Point D_{50} corresponds to the median diameter; D_{25} is the lower quartile point and D_{75} is the upper quartile point. 20 ### **Presentation of size distribution** ### **Evaluation of distribution width** • The size distribution width can be estimated by determining Span • Note: D₉₀, D₅₀, D₁₀ are values corresponding to 90, 50 and 10% in the cumulative undersize curve. ## Particle size analysis methods #### Microscope methods ### **Equivalent diameters** d_a , d_p , d_F and d_M can be determined #### Range of analysis - Light microscope (1 1000 µm) - Scanning electron microscope (0.05 1000 μm) - Transmission electron microscope (0.001 0.05 μm) Image by light microscope Image by scanning electron microscope(SEM) 23 ## Particle size analysis methods ### Microscope methods Sample preparation ### **Techniques** - manual - Semiautomatic - Particle comparator - Image shearing eyepiece (double prism arrangement) - Automatic - A video camera is used to transform the image to a microprocessor where manipulations and calculations are done 25 ## Particle size analysis methods #### Sieve methods ### Equivalent diameter Sieve diameter (d_S) ### Range of analysis Available range: (5 - 125 000 μm) ISO range: (45 - 1000 μm) Sample preparation Dry sieving: for non cohesive powders Wet sieving: for suspensions and cohesive powders ## Particle size analysis methods #### Sieve methods #### Techniques - 1) Vibrated sieving: - Uses a sieve stack (usually 6 –8 sieves) - The Particles are retained on sieve mesh corresponding to the sieve diameter. - 2) Air-jet sieving: - Uses individual sieves starting from that of smallest aperture. - <u>Vacuum</u> is applied to encourage particles to pass through sieves. 27 Air-jet sieving: Vibrated sieving: | (1)
Sieve size
range (μm) | (2)
mean of
size range | (3)
Sieve fractions | | (4)
Nominal
aperture
size (µm) | (5)
%
Cumulative
undersize | (6)
%
Cumulative
oversize | |---------------------------------|------------------------------|------------------------|-------|---|-------------------------------------|------------------------------------| | | | wt (g) | wt% | | | | | >250 | | 0.02 | 0.04 | 250 | 99.96 | 0.04 | | 180-250 | 215 | 1.32 | 2.96 | 180 | 96.99 | 3.01 | | 125-180 | 152.5 | 4.23 | 9.50 | 125 | 87.49 | 12.51 | | 90-125 | 107.5 | 9.44 | 21.19 | 90 | 66.30 | 33.70 | | 63-90 | 76.5 | 13.1 | 29.41 | 63 | 36.89 | 63.11 | | 45-63 | 54 | 11.56 | 25.95 | 45 | 10.93 | 89.07 | | <45 | 22.5 | 4.87 | 10.93 | 0 | 0 | 100 | | | | Sum=44.54 | | | | | ## Standards for powders based on sieving • Standards for pharmaceutical powders are provided in **pharmacopoeiae**, which indicate the degree of <u>coarseness</u> or <u>fineness</u> depending on percentage passing or not passing through certain sieves. | • e.g. | ΒP | |--------|----| |--------|----| | Table 12.1 Powder grades specified in British
Pharmacopoeia | | | | | | | |--|---------------------------------------|---|--|--|--|--| | Description of grade of powder | Coarsest
sieve
diameter
(µm) | Sieve diameter through
which no more than
40% of powder must
pass (µm) | | | | | | Coarse | 1700 | 355 | | | | | | Moderately coarse | 710 | 250 | | | | | | Moderately fine | 355 | 180 | | | | | | Fine | 180 | _ | | | | | | Very fine | 125 | _ | | | | | 31 ## Standards for powders based on sieving - Some Pharmacopoeia define another size fraction, known as '<u>ultrafine powder</u>'. - In this case it is required that the maximum diameter of <u>at least 90%</u> of the particles must be no greater than $5 \mu m$ and that none of the particles should have diameters greater than $50 \mu m$. ## Particle size analysis methods #### **Electric stream sensing zone method (Coulter counter)** ## Particle size analysis methods ### **Electric stream sensing zone method (Coulter counter)** #### Principle of measurement - Powder samples are dispersed in an <u>electrolyte solution</u> to form a very dilute suspension. - The particle suspension is drawn through an orifice where electrodes are situated on either side and surrounded by electrolyte solution. - As the particle travels through the <u>orifice</u>, it displaces its own volume of electrolyte solution. - The <u>change in electrical resistance</u> between the electrodes is proportional to the volume of the particle (volume of electrolyte displaced) Diagram of electrical sensing zone apparatus ## Particle size analysis methods #### **Sedimentation methods** ### Range of analysis - for gravitational ~ 5 1000 μm - for centrifugal $\sim 0.5 50 \mu m$ ## Particle size analysis methods #### **Sedimentation methods** Equivalent diameter: Stokes diameter (d_{st}) • Stokes equation: $$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$ - $\cdot \mathbf{d}_{st}$ = Stokes diameter, - η = viscosity of fluid, - • \mathbf{h} = height or sedimentation distance, - ρ_s = density of solid, - • ρ_f = density of fluid, - • \mathbf{g} = the acceleration due to gravity, - • \mathbf{t} = time 3′ ## Particle size analysis methods #### **Sedimentation methods** ### Principles of measurement - Particle size distribution can be determined by examining the powder as it <u>sediments</u> out. - The powder is dispersed uniformly or introduced as a thin layer in a fluid. - Techniques can be divided into two main categories. ### **Sedimentation methods** #### Pipette method (Andreasen pipette) - In this method known volumes of the suspension are withdrawn, at various time intervals, from bottom (lower set limit). - The amount of solid is determined in each volume. - The particle diameter corresponding to each time period is calculated from Stokes' law. - The amount of solid determined for each time interval is the weight fraction having particles of sizes more than the size obtained by the Stokes' law for that time period. 39 • A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec. $$d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$ | Time | Particle
size | _ | Mean of size range | wt of
sample
collected | wt | Cumulative undersize | Cumulative
Oversize | |-------|------------------|------------|--------------------|------------------------------|-----|----------------------|------------------------| | (sec) | (µm) | (µm) | (µm) | (g) | (%) | (%) | (%) | | 600 | 11.54 | >11.54 | | 0.7 | 14 | 86 | 14 | | 1200 | 8.16 | 8.16-11.54 | 9.85 | 0.9 | 18 | 68 | 32 | | 1800 | 6.66 | 6.66-8.16 | 7.41 | 1.5 | 30 | 38 | 62 | | 2400 | 5.77 | 5.77-6.66 | 6.22 | 0.8 | 16 | 22 | 78 | | 3000 | 5.16 | 5.16-5.77 | 5.47 | 0.6 | 12 | 10 | 90 | | 3600 | 4.71 | 4.71-5.16 | 4.94 | 0.5 | 10 | 0 | 100 | | | | | | $\Sigma = 5$ | | | | • A suspension of 5 g of ZnO₂, density 5.60 g/cm³, in 50 ml of water was prepared containing 2.75 g sodium citrate as deflocculating agent was transferred to Andreasen pipette (h = 20 cm) and volume made up to 550 ml using distilled water. The suspension was shaken and allowed to settle under the acceleration of gravity, 981 cm/sec², at 25°C. the density of the medium is 1.01 g/cm³, and its viscosity is 1 centipoise = 0.01 poise or 0.01 g/cm sec. | Time
(sec) | Particle
size
(µm) | Size
range
(µm) | Mean of
size range
(µm) | wt of
sample
collected
(g) | wt
(%) | Cumulative undersize (%) | Cumulative
Oversize
(%) | |---------------|--------------------------|-----------------------|-------------------------------|-------------------------------------|-----------|--------------------------|-------------------------------| | 600 | 11.54 | >11.54 | , | 0.7 | 14 | 86 | 14 | | 1200 | 8.16 | 8.16-11.54 | 9.85 | 0.9 | 18 | 68 | 32 | | 1800 | 6.66 | 6.66-8.16 | 7.41 | 1.5 | 30 | 38 | 62 | | 2400 | 5.77 | 5.77-6.66 | 6.22 | 0.8 | 16 | 22 | 78 | | 3000 | 5.16 | 5.16-5.77 | 5.47 | 0.6 | 12 | 10 | 90 | | 3600 | 4.71 | 4.71-5.16 | 4.94 | 0.5 | 10 | 0 | 100 | | | • | • | | $\Sigma = 5$ | | | | #### **Sedimentation methods** #### Balance method The increase in weight of sedimented particles falling onto a balance pan suspended in the fluid is recorded with time. **Gravity** ### **Sedimentation methods** ### Alternative technique • It is the application of centrifugal sedimentation to make <u>quicker</u> the sedimentation of small particles. ## Particle size analysis methods ### Laser light scattering methods Equivalent diameters: Area diameter, d_a , volume diameter, d_v . Principle of measurement: Interaction of laser light with particles ### 1) Fraunhofer diffraction - This is based on forward scatter (small angle change) of laser light by particles, which is detected, amplified and analyzed by microprocessor. - Range of analysis = 0.5 1000 nm - Sample is liquid orair-suspendedd ## Particle size analysis methods ### Laser light scattering methods #### 2) Photon correlation spectroscopy (PCS) - It is termed also Dynamic light scattering (DLS) - This is based on the <u>Brownian</u> movement (random motion of small particles or macromolecules caused by the <u>collisions</u> with the smaller molecules of the suspending fluids). - Range of analysis $\sim 0.001 1 \, \mu m$ - PCS analyses the constantly changing patterns of laser light scattered or diffracted by particles in Brownian movement and monitors the rate - Calculation of size is based on Stokes-Einstein equation: $$D = \frac{1.38 \times 10^{-12} T}{3\pi \eta d} m^2 s^{-1} \qquad d_{st} = \sqrt{\frac{18\eta h}{(\rho_s - \rho_f)gt}}$$ - $T = absolute temperature, d = diameter, \eta = viscosity of liquid,$ - D = Brownian diffusion 47 ## Selection of particle size analysis method ### **Factors to be taken into consideration:** - 1. Size range of powder - 2. Amount of sample If sample is very small we can use microscopy but we can not use sieving - 3. Speed of analysis - 4. Accuracy of results - 5. Cost - 6. Physical nature of material (like Agglomeration and cohesiveness) ## **Influence of particle shape** Fibrous particle Circumscribed circle, do Circularity = di/dc **Fig. 10.6** A simple shape factor is shown which can be used to quantify circularity. The ratio of two different diameters (d_i/d_c) is unity for a circle and falls for acicular particles. 49 ## **Particle shape descriptors** ### **Aspect ratio** - The ratio of the minimum to the maximum Feret diameter is another measure for the particle shape. - = $df \min/df \max$ ## Particle shape descriptors ### **Sphericity** • The sphericity S is the ratio of the surface area of a sphere (with the same volume as the given particle) to the surface area of the particle: | Shape | Spherecity | |-------------------|------------| | Tetrahedron | 0.671 | | Cube | 0.806 | | Dodeca-
hedron | 0.910 | 51 ## Particle shape descriptors ### Convexity and fullness ratio convexity ratio = $$\frac{\text{area}}{\text{convex area}}$$ fullness ratio = $\sqrt{\frac{\text{area}}{\text{convex area}}}$ Example: Convexity ratio =4/2=2 fullness ratio= $\sqrt{4/2}$ =1.414